JPS6014990A - Dephosphorization process - Google Patents

Dephosphorization process

Info

Publication number
JPS6014990A
JPS6014990A JP12216783A JP12216783A JPS6014990A JP S6014990 A JPS6014990 A JP S6014990A JP 12216783 A JP12216783 A JP 12216783A JP 12216783 A JP12216783 A JP 12216783A JP S6014990 A JPS6014990 A JP S6014990A
Authority
JP
Japan
Prior art keywords
phosphate
calcium phosphate
water
acid
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12216783A
Other languages
Japanese (ja)
Inventor
Isao Joko
勲 上甲
Shigeki Sawada
沢田 繁樹
Hatsumi Kaneniwa
金庭 初美
Chuichi Goto
後藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12216783A priority Critical patent/JPS6014990A/en
Publication of JPS6014990A publication Critical patent/JPS6014990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To maintain high rate of dephosphorization of water contg. phosphate for along time by treating the water with acidic soln. in the presence of Ca ion at >=6pH and allowing thereafter the treated water to contact with seed crystals having powder contg. calcium phosphate deposited thereon. CONSTITUTION:Seed crystals having powder contg. calcium phosphate such as hydroxyapatite, fluoroapatite, tricalcium phosphate, etc. deposited thereon, are allowed to contact with soln. contg. 0.1-30% inorg. acid such as HCl or org. acid such as acetic acid for 5min - several hours. The water contg. phosphate is allowed to contact with the above described seed crystals having powder contg. calcium phosphate which has been treated with acid at >=6pH in the presence of Ca ion to perform dephosphorization. By this method, superior activating effect for seed crystals as compared to the conventional method is attained due to synergistic effect of acid treatment and deposition of calcium phosphate powder.

Description

【発明の詳細な説明】 本発明は脱リン方法に関し、詳しくは晶析脱リン法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dephosphorization method, and more particularly to an improved crystallization dephosphorization method.

近年、湖沼、内陣をはじめとする閉鎖水域における富栄
養化の問題が著しく、この対策が急がれている。富栄養
化の原因の一つは水中に存在するリン酸塩にあり、リン
酸塩の防去についての仙究が進められている。このリン
酸塩は洗剤ビルダー、肥料などに汎く使ゎれており、生
活廃水、産業g6水などにオルトリン酸塩、縮合リン酸
塩などの無機リン酸塩や有休リン酸塩の形で存在してい
る。
In recent years, the problem of eutrophication in closed water areas such as lakes and marshes has become serious, and countermeasures are urgently needed. One of the causes of eutrophication is phosphates present in water, and studies are underway to find ways to prevent phosphates. This phosphate is widely used in detergent builders, fertilizers, etc., and is present in domestic wastewater, industrial G6 water, etc. in the form of inorganic phosphates such as orthophosphates and condensed phosphates, and free phosphates. are doing.

水中のリン酸塩を除去づ−る方法としては、硫献ハン上
等を用いる載乗法、活性汚泥法、あるいはこれらを組み
合わせる方法が実験プラントや実際のプラントで用いら
れて効果が認められているが、近年、より操作がfWi
単で、しかも汚泥が発生せず、処理効率の高い晶析脱リ
ン法が注目されている。
Methods for removing phosphates from water include the loading method using sulfuric acid, the activated sludge method, or a combination of these methods, which have been used in experimental plants and actual plants and have been shown to be effective. However, in recent years, the operation has become more fWi
The crystallization dephosphorization method is attracting attention because it is simple, does not generate sludge, and has high processing efficiency.

晶析脱リン法は、リン酸塩を含む水を、カルシウムイオ
ンの存在下にヒドロキシアパタイトなどのリン酸カルシ
ウムを含む結晶種と接触させて、水中のリン鼠イオンを
リン酸カルシウムの形にして結晶種表面に晶析させる方
法であり、時々、晶析脱リン装置内にたまった88分を
洗浄、除去している。
In the crystallization dephosphorization method, water containing phosphate is brought into contact with crystal seeds containing calcium phosphate such as hydroxyapatite in the presence of calcium ions, and the phosphorus ions in the water are converted into calcium phosphate and deposited on the surface of the crystal seeds. This is a method of crystallization, and from time to time, the 88 minutes accumulated in the crystallization/dephosphorization equipment is washed and removed.

しかしながら、この方法では結晶4事表面が次第に不活
性化して脱リン性能が低下する問題があった。特に原水
中にマグネシウムイオンや有機物等の反応阻害物質が含
まれている場合に著しくなる。
However, this method has the problem that the surface of the crystal gradually becomes inactive and the dephosphorization performance deteriorates. This is especially noticeable when the raw water contains reaction inhibiting substances such as magnesium ions and organic substances.

従来よりこのような1iiJ題を解決する手段として、
脱リン性能が低下した結晶種を酸性溶液で処理して再活
性化づ゛る方法が提案されている。
Conventionally, as a means of solving such 1iiJ problems,
A method has been proposed in which crystal seeds with reduced dephosphorization performance are treated with an acidic solution to reactivate them.

また、本発廚者らは、脱リン性能の低下した結晶種にリ
ン酸カルシウムを含む粉末を担持させることによって再
活性化を行う方法を提案した( 4!j頗昭57−22
9212号参照)。
In addition, the inventors proposed a method of reactivating crystal seeds with reduced dephosphorization performance by supporting powder containing calcium phosphate (4!j Kokusho 57-22
(See No. 9212).

本発明の目的は、上記のような従来法に比べて賦活処理
効果の大きい新規な賦活処理方法を採用した処理効率の
商い脱リン方法を提供する所にある9゜ 本発明の脱リン方法は、カルシウムイオンの存在下であ
って、かつpI■6以上の条件下でリン駐塩を含む水を
、リン酸カルシウムを含む結晶種と接融させて脱リンす
る方法において、上記結晶種として、ば性浴Villで
処理した佐リン酸カルシウムを含む粉末を担持させた結
晶種な使用することを特徴とづ−るものである。
An object of the present invention is to provide a dephosphorization method with high treatment efficiency that employs a novel activation treatment method that has a greater activation treatment effect than the conventional methods described above.9゜The dephosphorization method of the present invention , a method of dephosphorizing water containing phosphorus salts by fusing them with crystal seeds containing calcium phosphate in the presence of calcium ions and under conditions of pI 6 or higher, wherein the crystal seeds include calcium phosphate. It is characterized by the use of crystal seeds supported by powder containing calcium sulfate treated with bath Vill.

ます、本発明における結晶種の活性化方法について詳述
する。活性化する結晶種は新品でも良いし、一定期間使
用後の性能の劣化したものでもよい。
First, the method for activating crystal seeds in the present invention will be explained in detail. The crystal seeds to be activated may be new or may be those whose performance has deteriorated after being used for a certain period of time.

例えば、脱リン性能の低下した結晶種の場合、先ず、酸
性溶液と接融させて、結晶種表面の反応阻害物を除去す
る。酸は公知の無機酸、有機酸、例えば塩酸、硫酸、硝
酸、リン酸、クエン酸、酢酸、蓚酸、酒石酸等が使用で
きる。酸濃度は0.1〜30%、接触時間は5分〜数時
間で良い。なお、結晶掠には、リン鉱石、骨炭、または
表面にリンばカルシウム系結晶を有する粒状物が使用さ
れる。
For example, in the case of a crystal seed with reduced dephosphorization performance, first, it is fused with an acidic solution to remove reaction inhibitors on the surface of the crystal seed. As the acid, known inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, citric acid, acetic acid, oxalic acid, and tartaric acid can be used. The acid concentration may be from 0.1 to 30%, and the contact time may be from 5 minutes to several hours. Note that phosphate rock, bone charcoal, or granules having phosphate calcium crystals on the surface are used for the crystal scoop.

この酸性溶液の処理によって、結晶4.!II表血表面
部俗解されて表面積が増大し、リン酸カルシウムの微粒
子が担持されやずい状憑になっているものと考えられる
。他方、酸性浴液で処理した際に結晶種表面が溶解して
リンを宮む廃液が発生するが、このリン含有廃液は、粉
末状のリン酸カルシウムを担持させる際に有効利用する
ことができる。即ち、酸処理工程で発生したリン含有1
%液中にはリンの他にカルシウムイオンも多量に溶加“
しているため、このbi液のpHを局めるとリン叡カル
シウムの結晶が析出する。従って、粉末状のリン酸カル
シウムを結晶種と接触させた状態で、酸処理工程で発生
した廃液をpH7以上に高めて通水すると、晶析反応で
液中のリン酸カルシウムが析出する。そして析出したリ
ンらソカルシワムが糸・f品積と粉末を結合する作用を
する。つまり、この操作によって粉末状のリン1波カル
シウムは、析出する結晶をバインダーとして結晶149
面に担持されることになる。
By treatment with this acidic solution, crystals 4. ! It is believed that the surface area of II surface blood increases, and that fine particles of calcium phosphate are carried thereon, creating a lily-like appearance. On the other hand, when treated with an acidic bath solution, the crystal seed surface dissolves and a waste liquid containing phosphorus is generated, but this phosphorus-containing waste liquid can be effectively used when supporting powdered calcium phosphate. That is, phosphorus-containing 1 generated in the acid treatment step
In addition to phosphorus, a large amount of calcium ions are also dissolved in the solution.
Therefore, when the pH of this Bi solution is adjusted, calcium phosphorus crystals precipitate. Therefore, when the waste liquid generated in the acid treatment step is raised to pH 7 or more and water is passed through the waste liquid while the powdered calcium phosphate is in contact with the crystal seeds, the calcium phosphate in the liquid is precipitated by a crystallization reaction. Then, the precipitated phosphorus acts to bind the yarn/f-product and the powder. In other words, by this operation, powdered phosphorus 1-wave calcium is made into crystals 149 using the precipitated crystals as a binder.
It will be carried on the surface.

酸性溶液処理後は、リン酸カルシウムを含む粉末の担持
処理を行う。担持処理は、上記の敵性廃液を用いて通水
する方法でも、別途リン及びカルシウムイオンを含慣す
る液を用いて通水する方法でもよい。
After the acid solution treatment, a powder containing calcium phosphate is supported. The supporting treatment may be carried out by passing water using the above-mentioned hostile waste liquid, or by passing water using a separate liquid containing phosphorus and calcium ions.

リン酸カルシウムを営む粉末としては、ヒドロキシアパ
タイト、フルオロアパタイト、リン酸三石灰、リン鉱石
、・11′炭、またはリン酸カルシウムを主成分と1−
る凝集法JHjQ物、例えはリン含有水にカルシウムを
加えて沈殿したリン酸カルシウム等のス〃末が使用でき
る。リン酸カルシウムを含む7防末は粒径0.4 tu
+以下(約36メツシユ以下)のものか好ましく、もと
もとar末状で得ら」するものはそのまま使用でき、粒
状物ま□たは塊状物として得られるものは粉床化して使
用する。粉末化手段としては公知の手段が用いられる。
Powders containing calcium phosphate include hydroxyapatite, fluoroapatite, tricalcium phosphate, phosphate rock, 11' carbon, or calcium phosphate as a main component and 1-
A flocculation method JHjQ product, for example, a powder such as calcium phosphate precipitated by adding calcium to phosphorus-containing water can be used. 7 anti-powder containing calcium phosphate has a particle size of 0.4 tu
It is preferable to have a particle size of less than + (approximately 36 meshes or less).Those originally obtained in the form of ar powder can be used as they are, and those obtained as granules or lumps are used after being made into a powder. As a powdering means, a known means is used.

こうして活性化処理の施された結晶種等からなる充填層
に原水を通水して晶析脱リン処11されろ。
The crystallization and dephosphorization process 11 is carried out by passing raw water through a packed bed consisting of the activated crystal seeds and the like.

リン酸塩を含む水をカルシウムイオンの存在下にリン酸
カルシウムを含む結晶種と接触させたときに起こる反応
は反応条件によって異なるが、通常は次式によって表わ
される。
The reaction that occurs when water containing phosphate is brought into contact with crystal seeds containing calcium phosphate in the presence of calcium ions varies depending on the reaction conditions, but is usually expressed by the following formula.

5Ca −1−70H+3H2PO4→Ca!(OH)
 (PO4)3 +G If20−’(1)(1)式か
らも判るように、リンば塩の除去率を上げるためには、
反応を右に進行させる必要があり、同時に生成するリン
酸カルシウムを晶析させるために、結晶種の表面を清浄
に保って活性度を高く維持する必要がある。そこで、本
発明ではカルシウムイオンの存在下、かつ、pH6以上
の条件下に通水処理がなされる。
5Ca -1-70H+3H2PO4→Ca! (OH)
(PO4)3 +G If20-' (1) As can be seen from equation (1), in order to increase the removal rate of phosphorus salt,
It is necessary for the reaction to proceed to the right, and in order to crystallize the calcium phosphate produced at the same time, it is necessary to keep the surface of the crystal seeds clean and maintain high activity. Therefore, in the present invention, water passing treatment is performed in the presence of calcium ions and under conditions of pH 6 or higher.

反応を進行させるためには反応系にカルシウムイオンお
よび水散イオンを多量に存在させることが望ましいが、
これらが過剰に存る二すると、結晶イ5I以外のところ
にリン酸カルシウムなどの微細沈殿が生じ、剛、合晶秘
等b・らなる充填H1を閉塞して通水処理効率を[ハ、
下さぜることもある。
In order for the reaction to proceed, it is desirable to have a large amount of calcium ions and aqueous ions present in the reaction system.
If these are present in excess, fine precipitates such as calcium phosphate will occur in areas other than crystal A5I, blocking the filling H1 consisting of rigidity, crystal secretion, etc., and reducing the water flow treatment efficiency.
Sometimes I give it away.

(1)式において、生成“ツーイ)リン酸カルシウムの
j17を度が俗解度より高く、過r6’Ai度(反応系
に結晶種が存在しない」場合に111品が析出し始める
濃度)より低くなるようなカルシウムイオン濃度および
pHの領域、すなわち桑安定域に」dいては、生成する
リン醇カルシウムは結晶種表面に析出し微細沈殿は生成
しない。だが、カルシウムイオンおよび/またはpTI
が高<1.1:す、生成するリン酸カルシウムが過溶工
灯度を越える不安定域においては、リン酸カルシウムは
微細沈殿となって析出する。このため準安定域は原水中
に含まれろリン酸イオンのL度によって範囲が異なり、
リン畝イオン61℃展がa′、4いはと広く1よる。し
たがって、リン酸イオンO1、度が高い場合はカルシウ
ムイオン畝度および/またはpl−iを高くすると不安
定域となって沈殿が生成しやすいが、リン酸イλンσ7
2反が低いζ7合にはカルシウムイオン濃度および/ま
たはpI+4高くしても準安定域で晶析できるから、沈
殿を生成させることな(反応速度を速くすることができ
る。
In Equation (1), the degree of j17 of the produced "twoi" calcium phosphate is higher than the common understanding and lower than the excess r6'Ai degree (the concentration at which 111 products start to precipitate when there are no crystal seeds in the reaction system). In the range of calcium ion concentration and pH, that is, in the mulberry stable range, the phosphorous calcium produced precipitates on the surface of the crystal seeds and no fine precipitates are produced. However, calcium ions and/or pTI
is high < 1.1: In the unstable region where the produced calcium phosphate exceeds the overmelting intensity, the calcium phosphate precipitates as fine precipitates. Therefore, the range of the metastable region varies depending on the L degree of phosphate ions contained in the raw water.
The phosphorus ridge ion expansion at 61°C is broadly based on a', 4, or 1. Therefore, if the degree of phosphate ion O1 is high, increasing the degree of calcium ion ridge and/or pl-i will result in an unstable region where precipitation is likely to occur;
When the ζ7 value is low, crystallization can occur in the metastable region even if the calcium ion concentration and/or pI+4 is increased, so the reaction rate can be increased without forming a precipitate.

充填)曽に通す原水には前記(1)式の反応が進行する
ようにカルシウムイオンを存在させる。原水にカルシウ
ムイオンが存在しない場合または不足する場合は、外部
からカルシウム剤を添加する。反応系のpHは6以上、
通常は6〜12であり、必要に応じてアルカリ剤を添加
する。このようにして被処理水中に存在するカルシウム
イオン濃度およびpHを準安定域内となるように調醗す
る。
(Filling) Calcium ions are made to exist in the raw water passed through the sock so that the reaction of the above formula (1) proceeds. If calcium ions are absent or insufficient in the raw water, add a calcium agent from the outside. The pH of the reaction system is 6 or higher,
Usually it is 6 to 12, and an alkaline agent is added if necessary. In this way, the calcium ion concentration and pH present in the water to be treated are adjusted to be within the metastable range.

充填層は、上記のリン酸カルシウム粉末を含む結晶種が
充填されたものであり、これらAJi晶種はそれ自体を
粒状物として充填f7flを形成してもよく、また、粉
状物として適当な支持体層に捕捉させた状態で充填して
もよい。さらに、原水と結晶種との接触方法は固定床式
でも流動床式のいずれでもよい。
The packed bed is filled with crystal seeds containing the above-mentioned calcium phosphate powder, and these AJi crystal seeds themselves may be used as granules to form the filling f7fl. It may be filled in a state in which it is trapped in a layer. Furthermore, the method of contacting the raw water with the crystal seeds may be either a fixed bed method or a fluidized bed method.

脱リン処理された水は、必をに応じて公知の手段で中和
処理された後、放流される。
The dephosphorized water is neutralized by known means, if necessary, and then discharged.

本発明によれば、ば処理とリン酸カルシウム粉末担持処
理の相乗的効果により従来法に比べて、結晶種のイ殴れ
た活性化効果が得られる。このため、長期間にわたって
筒いリン除去率が維持できる。また、酸処理工程からの
廃液をリン酸カルシウム粉末担持処理に有効に利用する
ことができる。他に、脱リン処理後の処理水のpI(が
低いため、従来法に比べ処理水の中和処理カー省略でき
るか、或いは中イ1」に要する梨剤量か削減できる。
According to the present invention, due to the synergistic effect of the bar treatment and the calcium phosphate powder loading treatment, a more effective activation effect on crystal seeds can be obtained than in the conventional method. Therefore, the cylinder phosphorus removal rate can be maintained over a long period of time. Moreover, the waste liquid from the acid treatment process can be effectively used for the calcium phosphate powder supporting treatment. In addition, since the pI (pI) of the treated water after dephosphorization treatment is low, it is possible to omit the neutralization treatment car for the treated water compared to conventional methods, or the amount of pear agent required for neutralization can be reduced.

笑施例 マグネシウムイオンを40〜60 my / l 、硫
酸イオンをl 5 o〜z 50mg / l 、リン
を1〜2mvlを含む下水二次処理水の晶析法による脱
リンに約2年間使用した粒層16〜32メツシュのリン
鉱石結晶fjn 150 tallを、自行−30陥、
筒さ500簡のアクリル(ii:t Biiカラムに充
填した。この充填M2に0.5モル/lの酢散水溶7色
(pH2,5)750−を100ノn、l/mmの0I
1.、通で1時間循環処理した。
Example This product was used for about 2 years to dephosphorize secondary treated sewage water containing 40-60 my/l of magnesium ions, 50 mg/l of sulfate ions, and 1-2 mvl of phosphorus by the crystallization method. Phosphate crystal fjn 150 tall with grain layer 16 to 32 mesh,
Acrylic (ii:t Bii column) with a tube size of 500 pieces was packed. To this packing M2, 7 colors (pH 2,5) 750- in vinegar sprinkled at 0.5 mol/l were added at 100 nm, l/mm of 0I.
1. , for 1 hour.

1時間後に酸処理に用いた廃液を抜き出した後、粒径0
. ] trm以下のヒドロキシアパタイト粉末2gを
5.00 mlの水道水中に懸濁させた液を50〜10
0 ml 7mmの流速で循環通水して、ヒドロキシア
パタイトの粉末を充填層に捕捉させた。
After 1 hour, the waste liquid used for acid treatment was extracted, and the particle size was 0.
.. ] A solution prepared by suspending 2 g of hydroxyapatite powder below trm in 5.00 ml of tap water was
Water was circulated at a flow rate of 0 ml 7 mm to trap the hydroxyapatite powder in the packed bed.

次いで酸処理工程で発生した扁液を30倍に希釈した水
に、カラム入口部で水酸化ナトリウム水溶液を連続添加
してpmを8.8〜9.0となるように詞銑した後、上
向流300 mJ/hrの流速で充填Mに3日間通水処
理した。3日後に通水を止め、約11の水道水です/鉱
石結晶杭の充填層を展開させて洗浄(逆洗)し、未担持
粉末を充填層外に排出し、再活性化を終了した。
Next, an aqueous sodium hydroxide solution was continuously added at the inlet of the column to the water in which the flattened liquid generated in the acid treatment step was diluted 30 times. Water was passed through the packed M at a countercurrent flow rate of 300 mJ/hr for 3 days. After 3 days, the water flow was stopped, and the packed bed of the ore crystal pile was developed and washed (backwashed), and the unsupported powder was discharged outside the packed bed, and the reactivation was completed.

続いて、リン濃度2鼠グ/13.mアルカリ度約100
 jn97ノの合成水に、カラム入口部で塩化カルシウ
ム水浴液と水酸化す) IJウム水溶液を連続添加して
、カルシウムイオンm1度を約4 snrg/6、pH
を88〜9.0になるように調波した後、上向流a o
 o mli/brの流速で充:LA層に35日間連続
通水して晶析による脱リンを行った。
Next, the phosphorus concentration is 2/13. m alkalinity approximately 100
Continuously add an aqueous solution of calcium chloride (hydroxidized with a calcium chloride water bath solution) to the synthesized water of Jn97 at the column inlet to adjust the calcium ion concentration to approximately 4 snrg/6, pH
After harmonics are adjusted to 88 to 9.0, the upward flow a o
Water was continuously passed through the LA layer for 35 days at a flow rate of 0 mli/br to perform dephosphorization by crystallization.

上記通水期間中の処理水リン6を度とpHを衣−1に示
した。また比較例1として、同じリン鉱石を再活性化1
−ることなく同条件の脱リンに使用した場合の処理結果
を示した。比較例2として、同じリン鉱石を、上記実施
例の酸処理工程のみを実施して再活性化処理を行い、同
条件の脱リンに使用した場合のM来を示した。更に比較
例3として、同じリン鉱石を、上記実施例の酸処理工程
を実施せずにヒドロキシアパタイトの粉末を担持処理す
る方法で杓活性化処理を行い、同条件の脱リンに使用し
た場合の結果を示した。
The phosphorus content and pH of the treated water during the water flow period are shown in Cloth-1. In addition, as Comparative Example 1, the same phosphate rock was reactivated 1
The treatment results when used for dephosphorization under the same conditions without - are shown. As Comparative Example 2, the same phosphate rock was subjected to reactivation treatment by performing only the acid treatment step of the above example, and the M ratio was shown when it was used for dephosphorization under the same conditions. Furthermore, as Comparative Example 3, the same phosphate rock was subjected to ladle activation treatment by a method of supporting hydroxyapatite powder without performing the acid treatment step of the above example, and was used for dephosphorization under the same conditions. The results were shown.

(以下余白) 表−1に示したように、再活性化しない場合(比較例1
)の処理水の平均リン濃度は、1ダ/4に近(・上、通
水日数が多くなるにつれてリン除去効果が落ち、plI
は8.5以上であった。これに対し、本発明の方法で再
活性化した場合(実施例)の平均リン鋲度は、0.21
 my / lであり。
(Margins below) As shown in Table 1, in the case of no reactivation (Comparative Example 1
The average phosphorus concentration of treated water in
was 8.5 or higher. On the other hand, when reactivated by the method of the present invention (Example), the average phosphor density was 0.21
my/l.

pflも8.21と低く、仕れた処理効果を示している
。比較例2と比較例3に示した従来法と比べても格段に
良い処理水質となっており、本発明の方法による再活性
化処理が大きいことがわかる。
The pfl was also as low as 8.21, indicating a significant treatment effect. Even compared to the conventional methods shown in Comparative Examples 2 and 3, the quality of the treated water is much better, and it can be seen that the reactivation treatment achieved by the method of the present invention is significant.

Claims (1)

【特許請求の範囲】 1、 カルシウムイオンの存在下であって、かつpH6
以上の条件下でリン酸塩を含む水を、リン酸カルシウム
を含む結晶種と接触させて脱リンする方法において、上
記結晶種として、酸性溶液で処理した後リン酸カルシウ
ムを含む粉末を担持させた結晶種を使用することを特徴
とする脱リン方法。 2、 結晶種は、リン鉱石、骨炭、または表面にリン酸
カルシウム系結晶を有する粒状物である特許請求の範囲
第1項記載の方法。 1 リン酸カルシウムを含む粉末は、ヒドロキシアパタ
イト、フルオロアパタイト、リンは三石灰、リン鉱石、
骨炭、またはリン酸カルシウムを主成分とする凝集沈殿
物である特許請求の範囲第1項または第2狽記載の方法
。 4、リン酸カルシウムを含む粉末の」−μ持は、酸性溶
液による処理にて発生する廃液から析出されるリン1敬
カルシウムをバインダーとして行うものである特許請求
の範囲第1m乃至第3項のいずれかに記載の方法。
[Claims] 1. In the presence of calcium ions and at a pH of 6.
In the method of dephosphorizing water containing phosphate by contacting it with crystal seeds containing calcium phosphate under the above conditions, the crystal seeds are treated with an acidic solution and then supported with powder containing calcium phosphate. A dephosphorization method characterized by using. 2. The method according to claim 1, wherein the crystal seeds are phosphate rock, bone char, or granules having calcium phosphate crystals on the surface. 1 Powder containing calcium phosphate is hydroxyapatite, fluoroapatite, phosphorus is trilime, phosphate rock,
The method according to claim 1 or 2, which is a coagulated precipitate mainly composed of bone char or calcium phosphate. 4. The -μ retention of the powder containing calcium phosphate is carried out using calcium phosphorus precipitated from the waste liquid generated during treatment with an acidic solution as a binder. Claims 1m to 3. The method described in.
JP12216783A 1983-07-05 1983-07-05 Dephosphorization process Pending JPS6014990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12216783A JPS6014990A (en) 1983-07-05 1983-07-05 Dephosphorization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12216783A JPS6014990A (en) 1983-07-05 1983-07-05 Dephosphorization process

Publications (1)

Publication Number Publication Date
JPS6014990A true JPS6014990A (en) 1985-01-25

Family

ID=14829235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12216783A Pending JPS6014990A (en) 1983-07-05 1983-07-05 Dephosphorization process

Country Status (1)

Country Link
JP (1) JPS6014990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204087A (en) * 1985-03-08 1986-09-10 Ataka Kogyo Kk Crystallizing agent for phosphate ion in waste water and its preparation
JP2009119381A (en) * 2007-11-15 2009-06-04 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
CN105417593A (en) * 2015-11-24 2016-03-23 中国科学院地球化学研究所 In-situ passivation technology for eutrophication lake sediment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204087A (en) * 1985-03-08 1986-09-10 Ataka Kogyo Kk Crystallizing agent for phosphate ion in waste water and its preparation
JPH054159B2 (en) * 1985-03-08 1993-01-19 Ataka Construction & Eng
JP2009119381A (en) * 2007-11-15 2009-06-04 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
CN105417593A (en) * 2015-11-24 2016-03-23 中国科学院地球化学研究所 In-situ passivation technology for eutrophication lake sediment

Similar Documents

Publication Publication Date Title
JPS6014990A (en) Dephosphorization process
JP2001518376A (en) Agent for removing heavy metals containing phosphate compound
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JPS6014991A (en) Dephosphorization process
JPS59156488A (en) Artificial dephosphorizing agent and dephosphorization
JPS58139784A (en) Dephosphorizing agent and dephosphorizing method
JPS5943238B2 (en) How to treat water containing phosphates
JPS5916587A (en) Treatment of water containing phosphate
JPH0251678B2 (en)
JP3466270B2 (en) Phosphorus removal method using shell and method of using hydroxyapatite
JPS59123591A (en) Treatment of water containing phosphate
RU2058817C1 (en) Cationite regeneration method
JPS6078692A (en) Dephosphorization
JPH0315514B2 (en)
JP3666612B2 (en) Treatment method of phosphite-containing waste liquid
JPS5926190A (en) Phosphate-contg. water disposal
JPS59132994A (en) Treatment of phosphate-contg. water
JPS59203691A (en) Dephosphorization
JPS6139876B2 (en)
JPS61234984A (en) Dephosphorization process
JPS59203690A (en) Dephosphorization
JPS61238389A (en) Dephosphorization method
JPS61174989A (en) Dephosphorizing method
JPS59142893A (en) Process for removing phosphate in liquid
JPH0315515B2 (en)