JPS6033352A - Vacuum cvd apparatus - Google Patents

Vacuum cvd apparatus

Info

Publication number
JPS6033352A
JPS6033352A JP14056983A JP14056983A JPS6033352A JP S6033352 A JPS6033352 A JP S6033352A JP 14056983 A JP14056983 A JP 14056983A JP 14056983 A JP14056983 A JP 14056983A JP S6033352 A JPS6033352 A JP S6033352A
Authority
JP
Japan
Prior art keywords
reaction tube
tube
gas
reaction
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14056983A
Other languages
Japanese (ja)
Inventor
Hironobu Miya
博信 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP14056983A priority Critical patent/JPS6033352A/en
Publication of JPS6033352A publication Critical patent/JPS6033352A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Abstract

PURPOSE:To form a thin SiO2 film with a uniform thickness onto a wafer, in forming the thin SiO2 film to the surface of the wafer by a vacuum CVD apparatus, by introducing reactive gas into a reaction tube, in which a large number of wafers are arranged in a vertical state, so as to flow the same along the surfaces of said wafers. CONSTITUTION:A large number of wafers 5 are arranged vertically in the inner reaction tube 10 within a double reaction tube apparatus made of quartz consisting of an outer reaction tube 9 and the inner reaction tube 10. The space between the inner and outer reaction tubes 9, 10 are divided left and right by a flange 11 so as to be partitioned into a reactive gas supply side 14 and a reactive gas exhaust side 15. A large number of nozzles 12, of which the lengths are different, are provided to the reactive gas supply side 14 and a gaseous mixture 2 consisting of O2 or NO2 and carrier gas He and SiH4-gas 3 are supplied to the nozzles 12. These gases enter the inner reaction tube 10 from a large number of perforations in a uniform concn. and are flowed along the surfaces of the wafers 5 to form a thin SiO2 film formed by the reaction of SiH4 and O2 or NO2 in a uniform thickness.

Description

【発明の詳細な説明】 本発明は減圧下で気相中の熱分解あるいは化学反応を利
用して基板(ウェハ)上に薄膜を形成する減圧OVD装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a low-pressure OVD apparatus that forms a thin film on a substrate (wafer) by utilizing thermal decomposition or chemical reaction in a gas phase under reduced pressure.

シリコン酸化膜(SiO2)やリン・シリケート・ガラ
ス(PEIG)膜は層間絶縁膜、パッシベーション膜と
して用いられることはよく知ら捗ているが、薄膜形成技
術は難しいものであって、ホットウォール(Hot w
all)形の減圧OVD装置を用いた場合においても、
1バッチ当りの処理枚数は40〜50枚が限度である。
It is well known that silicon oxide (SiO2) and phosphorus silicate glass (PEIG) films are used as interlayer insulating films and passivation films, but thin film formation technology is difficult and hot wall (hot wall)
Even when using a reduced pressure OVD device of the type
The maximum number of sheets to be processed per batch is 40 to 50 sheets.

ホットウォール形の減圧CV D装置の特長は、縦形ペ
ルジャー型の常圧OVD装置あるいは枚葉式CVD装置
に比べて多数枚のウェハを一時に処理できる点にある。
A feature of a hot wall type low pressure CVD apparatus is that it can process a large number of wafers at once compared to a vertical Pelger type normal pressure OVD apparatus or a single wafer type CVD apparatus.

本発明はこの利点を更に高めてより多数枚のウエノ・処
理を可能にする炉体構造にしたことが特徴である。
The present invention is characterized by a furnace structure that further enhances this advantage and enables processing of a larger number of wafers.

まず従来の装置とその欠点について説明する。First, a conventional device and its drawbacks will be explained.

第1図および第2図は従来の減圧OVD装置の炉1ノド
:凸じの(I讐工清”? ’jl!T: ”:!% i
ニイJ −H4z、!−) ;ヱン3゜第1図の装置は
一重反応管を用いた一例で、図中の1は石英製反応管、
2は酸素(02)あるいは2酸化屋ff1(No2)ガ
ス注入口、またキャリアヘリウム(He)ガス注入口、
6は七ツノ、、7 ン(G tH4)供給用ガスノズル
、4はウェハ5を載置する石英製ボート、6は真空ポン
プへの排気である。反応ガスのSiH4はノズル3より
反応管1内に流れ、もう一方の反応ガスo2 あるいは
No2およびキャリアガスHe は炉口近くの2から流
れる。これらの反応ガスはウェハ5の近くで混合反応I
−ウェハ上に薄膜を形成する。しかしこのような−重反
応管は炉口側と排気側とでは反応ガスの濃度が異なるた
め、炉口側では膜厚は厚く、排気側の膜厚は薄いという
傾向があって、1回の生成]二種における処理量はSi
O2やPSGの膜では40〜50枚が限度であった。こ
のため第2図に示すような多孔管構造の装置が開発され
た。
Figures 1 and 2 show the furnace nozzle of a conventional reduced-pressure OVD device: 1 no.
Nii J-H4z,! -); 3゜The apparatus shown in Figure 1 is an example using a single reaction tube, and 1 in the figure is a quartz reaction tube,
2 is an oxygen (02) or carbon dioxide ff1 (No2) gas injection port, and a carrier helium (He) gas injection port;
6 is a gas nozzle for supplying GtH4, 4 is a quartz boat on which the wafer 5 is placed, and 6 is an exhaust gas to a vacuum pump. The reaction gas SiH4 flows into the reaction tube 1 from the nozzle 3, and the other reaction gas O2 or No2 and carrier gas He2 flow from 2 near the furnace mouth. These reaction gases form a mixed reaction I near the wafer 5.
- forming a thin film on the wafer; However, in such a heavy reaction tube, the concentration of the reactant gas is different between the furnace opening and the exhaust side, so the film tends to be thicker on the furnace opening side and thinner on the exhaust side. Generation] The processing amount in the two types is Si
For O2 and PSG films, the limit was 40 to 50 sheets. For this reason, a device with a perforated tube structure as shown in FIG. 2 was developed.

第2図において2〜6は第1図と共通、7は石英製多孔
(内)管、8は石英製外部反応管である。
In FIG. 2, 2 to 6 are the same as in FIG. 1, 7 is a quartz porous (inner) tube, and 8 is a quartz outer reaction tube.

第2図のような多孔管装置においては、反応ガス02、
N02およびキャリアガスHe 等は炉口部の注入口2
より多孔管7の内部を流れ、反応ガスSf、H4は多孔
管7と外部反応管の間を通る多数のノズルを管軸に沿っ
て形成したノズル管6内を流れるが、多孔管7の孔はウ
ェハ群の位置附近に多数管70周辺に沿ってあけられて
いるから、とれらの孔を通ってSiH4ガスはウェハ附
近に到達し反応して薄膜を形成する。ウェハ間の膜厚分
布を良くするためノズル管を数本用いることもある。こ
のような多孔管装置19ではウェハ面に供給される反応
ガスの濃度を調整することによってウェハ間の膜厚分布
の均一性を改善することができるが、炉口側にお(八て
未反応の反応ガスが排気1141Iに流れるため、排気
側の膜厚が炉口側に比べ厚くなる傾向がありこの調整は
困難である。さらにウエノ・5乞ボート4に直接装填し
lこ場合、多孔管7とウエノ・の間隔がウェハ上の膜厚
分布に火ぎ/【影響を与えるため、ウェハの大きさによ
って間隔を適随に一定化することが必要で、実用上の難
しさがあった。本発明は上記のような欠点を防止するた
めに行ったもので、以下詳細に説明する。
In the perforated pipe device as shown in Fig. 2, the reaction gas 02,
N02, carrier gas He, etc. are injected into the inlet 2 at the furnace mouth.
The reaction gases Sf and H4 flow inside the nozzle tube 6 which has a large number of nozzles formed along the tube axis between the porous tube 7 and the external reaction tube. Since the holes are opened along the periphery of the multiple tubes 70 near the position of the group of wafers, the SiH4 gas reaches the vicinity of the wafers through these holes and reacts to form a thin film. Several nozzle tubes may be used to improve the film thickness distribution between wafers. In such a porous tube device 19, the uniformity of the film thickness distribution between wafers can be improved by adjusting the concentration of the reaction gas supplied to the wafer surface. Because the reaction gas flows into the exhaust gas 1141I, the film thickness on the exhaust side tends to be thicker than on the furnace mouth side, making this adjustment difficult. Since the distance between 7 and Ueno has an effect on the film thickness distribution on the wafer, it is necessary to make the distance constant depending on the size of the wafer, which is difficult in practice. The present invention was made to prevent the above-mentioned drawbacks, and will be described in detail below.

本発明では反応ガスの流れをウエノ・面に垂直にする代
りに平行に面に沿って流すようにしたことが特徴で、こ
のためウエノ・と多孔管の間隔にはj膜厚分布はほとん
ど影響を受けず、ウェハの直径を任意に選べるという利
点がある。また反応ガスの流し方が第1図のように一方
向からであると反応ガスの濃度はC−= Oo(exp
−kt) (たソしcoは初期濃度、kは反応速度定数
である。)の関係から滞留時間tによって大きく減少す
る。本発明では反応ガスを反応管と直角すなわち横断面
方向にウェハの面に沿って平行に流すため滞留時間が短
かく、濃度のばらつきを少くすることができる。
The present invention is characterized in that the flow of the reaction gas is made to flow parallel to the surface of the tube instead of perpendicular to it, and therefore the film thickness distribution has almost no effect on the distance between the surface of the tube and the porous tube. This method has the advantage that the diameter of the wafer can be arbitrarily selected without being affected by Furthermore, if the reaction gas flows from one direction as shown in Figure 1, the concentration of the reaction gas is C-=Oo(exp
-kt) (where co is the initial concentration and k is the reaction rate constant), it decreases greatly depending on the residence time t. In the present invention, since the reaction gas is flowed perpendicularly to the reaction tube, that is, in the cross-sectional direction, and parallel to the surface of the wafer, the residence time is short and variations in concentration can be reduced.

第6図は本発明装置の炉体部の構成を示す断面図、第4
図は第6図の内部反応管の斜視図、第5図は内部反応管
の管軸に直角な断面図、第6図には炉体のみならず減圧
OVD装置としてのシステム構成図を示しである。第6
図において炉体はウェハの温度を均一にするための6加
熱ゾーン(6分割)制側j形のヒータ16で囲まれてい
る。(ホットウォール形)低温のSio2.PSG等の
膜生成の場合の生成温度は反応ガスによって相違するが
、約550〜550℃である。反応ガスの供給はそレソ
レカスボンベ17J:リマスフローコントローラ(MF
C)18を通じて流量制御されている。また排気は通常
メカニカルブースタポンプ(MBP) 19とロータリ
ポンプ(RP)200組合わせで行う。炉内は石英製の
外部反応管9と内部多孔反応管1゜より成り、その詳細
は第6図〜第5図によって説明する。
FIG. 6 is a cross-sectional view showing the configuration of the furnace body of the device of the present invention;
The figure shows a perspective view of the internal reaction tube in Fig. 6, Fig. 5 shows a cross-sectional view of the internal reaction tube perpendicular to the tube axis, and Fig. 6 shows not only the furnace body but also a system configuration diagram as a reduced pressure OVD device. be. 6th
In the figure, the furnace body is surrounded by a J-shaped heater 16 having six heating zones (six divisions) to make the temperature of the wafer uniform. (Hot wall type) Low temperature Sio2. The formation temperature for forming a film such as PSG varies depending on the reaction gas, but is approximately 550 to 550°C. Reactant gas is supplied using Remasu cylinder 17J: Remas flow controller (MF).
C) The flow rate is controlled through 18. In addition, exhaust is normally performed using a combination of 19 mechanical booster pumps (MBP) and 200 rotary pumps (RP). The inside of the furnace consists of an outer reaction tube 9 made of quartz and an inner porous reaction tube 1°, the details of which will be explained with reference to FIGS. 6 to 5.

第3図は炉体の断面図で、内部反応管10はこれと直角
な断面図である第5図で見た場合片側よりガスを供給し
反対片側から排気される。第4図は内部反応管の一例の
斜視図で、反応管1oの外側には多数のノズルが管軸に
沿って形成されたノズル管12が適宜の間隔で複数本設
けられ、ウェハ間の膜厚分布の均一を図るため図示のよ
うにノズル管を各加熱ゾーンに対応して配置し、そのガ
ス流量を各加熱ゾーンにおいてマスフローコントローラ
18で調整、できるようになっている。なお11は反応
管10の上下に設けたフランジで、第5図に示すように
内部反応管10と夕■部反応管9どの空間は反応ガスや
キャリアガスが供給される供給側14とこれらガスの排
気側1502つに分割されている。ウェハ5は石英ボー
ト4上に直接装填して内部反応管に挿入され、反応ガス
はウェハ5の面に沿って第6図に示すように一方向に流
れるようになる。
FIG. 3 is a sectional view of the furnace body, and the internal reaction tube 10 is supplied with gas from one side and exhausted from the opposite side when viewed in FIG. 5, which is a sectional view perpendicular to this. FIG. 4 is a perspective view of an example of an internal reaction tube. On the outside of the reaction tube 1o, a plurality of nozzle tubes 12 each having a large number of nozzles formed along the tube axis are provided at appropriate intervals. In order to achieve uniform thickness distribution, nozzle pipes are arranged corresponding to each heating zone as shown in the figure, and the gas flow rate can be adjusted in each heating zone by a mass flow controller 18. Reference numeral 11 designates flanges provided above and below the reaction tube 10, and as shown in FIG. The exhaust side 150 is divided into two parts. The wafer 5 is directly loaded onto the quartz boat 4 and inserted into the internal reaction tube, so that the reaction gas flows in one direction along the surface of the wafer 5 as shown in FIG.

次に本発明装置の動作について述べる。反応管内部は最
初0.66パスカル(Pa)程度の真空度に排気される
。炉体内部の温度を設定値に安定させた後、反応ガスを
MF018を通して供給し、ウェハ上に膜生成を開始す
る。膜生成中の真空度は約66 Paから530 Pa
 の間である。生成終了後炉体内部は再度真空排気し、
窒素(IJ2 ) 、アルゴン(Ar)などの不活性ガ
スと置換える。さらに炉体内部を大気圧に戻した後ボー
トを反応管外に引出し、ウェハを取出すことはよく知ら
れている手順である。
Next, the operation of the device of the present invention will be described. The inside of the reaction tube is initially evacuated to a degree of vacuum of about 0.66 Pascal (Pa). After stabilizing the temperature inside the furnace body to a set value, a reaction gas is supplied through MF018 to begin film formation on the wafer. The degree of vacuum during film formation is approximately 66 Pa to 530 Pa.
It is between. After the generation is completed, the inside of the furnace body is evacuated again.
Replace with an inert gas such as nitrogen (IJ2) or argon (Ar). Furthermore, it is a well-known procedure to return the inside of the furnace to atmospheric pressure, then pull the boat out of the reaction tube and take out the wafer.

最後に本発明の詳細な説明する。Finally, the present invention will be explained in detail.

(1) ウェハ面上の反応ガスの濃度を均一にすること
ができるので、100枚程鹿のウェハの処理が可能にな
った。従来の装置ではガスの流れ方向に直角となるよう
にウェハを並べているため、ガスの濃度分布の相違によ
る影響を避けられなかったが、本発明装置においてはガ
スの流れをウェハ面に平行方向としているため、ガスの
濃度分布を均一にするためのノズルよりのガス流量調整
が容易である。
(1) Since the concentration of the reaction gas on the wafer surface can be made uniform, it has become possible to process about 100 wafers. In conventional equipment, the wafers are arranged perpendicular to the gas flow direction, so the effects of differences in gas concentration distribution cannot be avoided, but in the present invention, the gas flow is parallel to the wafer surface. Therefore, it is easy to adjust the gas flow rate from the nozzle to make the gas concentration distribution uniform.

(2) ガスの流れがウェハに平行であるためウェハと
内部反応管の間隔はウェハ内の膜厚分布にほとんど無関
係で、このため内部反応管を変更することなく種々の直
径のウェハを処理できるという著しい効果が得られる。
(2) Since the gas flow is parallel to the wafer, the distance between the wafer and the internal reaction tube has almost no relation to the film thickness distribution within the wafer, so wafers of various diameters can be processed without changing the internal reaction tube. A remarkable effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の減圧CVD装置の炉体構造
例を示す断面図、第5図は本発明装置の炉木部の構成例
を示す断面図、第4図は第6図の内部反応管の斜視図、
第5図は内部反応管の管軸に直角な断面図、第6図は本
発明装置のシステム構成側口である。 1・・・反応管、2・・・反応ガス、キャリアガス注入
口、 6・・・SiH供給ノズル、 4・・・石英ボー
ト、5・・・ウェハ、6・・・排気、7・・・石英多孔
管、8.9・・・石英外部反応管、10・・・内部多孔
反応管、11・・・フランジ、12・・・ノズル(複数
)、14 ・・・ガス供給側、15・・・ガス排気側、
16 ・・・炉のヒータ、17・・・ガスボンベ、18
 ・・・マスフローコントローラ、19・・・メカニカ
ルプースタポンフ、20・・・ロータリポンプ。 特許出願人 国際電気株式会社 代理人 大板 学 外1名
1 and 2 are cross-sectional views showing an example of the structure of the furnace body of a conventional low-pressure CVD apparatus, FIG. 5 is a cross-sectional view showing an example of the structure of the furnace wood of the apparatus of the present invention, and FIG. Perspective view of internal reaction tube,
FIG. 5 is a sectional view perpendicular to the tube axis of the internal reaction tube, and FIG. 6 is a side view of the system configuration of the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... Reaction gas, carrier gas inlet, 6... SiH supply nozzle, 4... Quartz boat, 5... Wafer, 6... Exhaust, 7... Quartz porous tube, 8.9... Quartz external reaction tube, 10... Internal porous reaction tube, 11... Flange, 12... Nozzle (plurality), 14... Gas supply side, 15...・Gas exhaust side,
16...Furnace heater, 17...Gas cylinder, 18
... Mass flow controller, 19 ... Mechanical pump pump, 20 ... Rotary pump. Patent applicant Kokusai Denki Co., Ltd. agent: Oita, 1 external person

Claims (1)

【特許請求の範囲】[Claims] 炉体の反応管を外部反応管と、その内部に収められ、複
数個のガス流入、流出の孔を管壁に設けた内部多孔反応
管とよりなる2重構造とし、かつその内部多孔反応管に
は管軸にτaつて複数本の多数のノズルを管軸に沿って
形成したノズル管を適宜間隔で設けると共に、管軸に沿
ってフランジを設けて内部多孔反応管と外部反応管の間
化2室に仕切り、その一方の室に反応ガスおよびギヤリ
アガスを送り込み、各ウニ・・の面に沿って他方の室に
流出したガスを排気口から排出するように構成したこと
を特徴とする減圧OVD装置。
The reaction tube of the furnace body has a double structure consisting of an outer reaction tube and an inner porous reaction tube housed inside the outer reaction tube and having multiple gas inflow and outflow holes in the tube wall, and the inner porous reaction tube. In addition, a nozzle tube with a plurality of nozzles formed along the tube axis is provided at appropriate intervals, and a flange is provided along the tube axis to create a space between the internal porous reaction tube and the external reaction tube. A reduced-pressure OVD characterized by being divided into two chambers, in which a reaction gas and a gear gas are fed into one chamber, and the gas flowing out into the other chamber along the surface of each sea urchin is discharged from an exhaust port. Device.
JP14056983A 1983-08-02 1983-08-02 Vacuum cvd apparatus Pending JPS6033352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14056983A JPS6033352A (en) 1983-08-02 1983-08-02 Vacuum cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14056983A JPS6033352A (en) 1983-08-02 1983-08-02 Vacuum cvd apparatus

Publications (1)

Publication Number Publication Date
JPS6033352A true JPS6033352A (en) 1985-02-20

Family

ID=15271729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14056983A Pending JPS6033352A (en) 1983-08-02 1983-08-02 Vacuum cvd apparatus

Country Status (1)

Country Link
JP (1) JPS6033352A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235521A (en) * 1985-08-09 1987-02-16 Hitachi Ltd Surface processor
JPH01139767A (en) * 1987-11-25 1989-06-01 Nec Corp Reduced-pressure vapor growth apparatus
US4900525A (en) * 1986-08-25 1990-02-13 Gte Laboratories Incorporated Chemical vapor deposition reactor for producing metal carbide or nitride whiskers
US5023712A (en) * 1989-03-07 1991-06-11 Mitsubishi Denki K.K. Tracking distance-measuring equipment system with means for setting a window and means for sampling image signals at predetermined time intervals
DE4107177A1 (en) * 1990-03-20 1991-09-26 Mitsubishi Electric Corp VEHICLE / VEHICLE DISTANCE MEASURING DEVICE
JPH0441941A (en) * 1990-06-01 1992-02-12 Mitsubishi Electric Corp Follow-up driving control device for vehicle
JPH0468478A (en) * 1990-07-10 1992-03-04 Mitsubishi Electric Corp Picture processor
JPH04110755U (en) * 1991-03-02 1992-09-25 株式会社エステツク Work holder for chemical vapor deposition equipment
US5168355A (en) * 1990-09-04 1992-12-01 Mitsubishi Denki K.K. Apparatus for detecting distance between cars
US5177462A (en) * 1990-03-28 1993-01-05 Mitsubishi Denki K.K. Car interval control apparatus
US5303019A (en) * 1991-12-09 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Inter-vehicle distance measuring device
US5381173A (en) * 1991-08-28 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Inter-car distance detecting device for tracking a car running ahead
CN103451624A (en) * 2012-05-30 2013-12-18 北大方正集团有限公司 Deposition furnace tube and method for depositing thin films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364676A (en) * 1976-11-22 1978-06-09 Hitachi Ltd Treating apparatus in gas phase
JPS5534690A (en) * 1978-09-04 1980-03-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Low pressure gas phase growing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364676A (en) * 1976-11-22 1978-06-09 Hitachi Ltd Treating apparatus in gas phase
JPS5534690A (en) * 1978-09-04 1980-03-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Low pressure gas phase growing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235521A (en) * 1985-08-09 1987-02-16 Hitachi Ltd Surface processor
JPH0682642B2 (en) * 1985-08-09 1994-10-19 株式会社日立製作所 Surface treatment equipment
US4900525A (en) * 1986-08-25 1990-02-13 Gte Laboratories Incorporated Chemical vapor deposition reactor for producing metal carbide or nitride whiskers
JPH01139767A (en) * 1987-11-25 1989-06-01 Nec Corp Reduced-pressure vapor growth apparatus
US5023712A (en) * 1989-03-07 1991-06-11 Mitsubishi Denki K.K. Tracking distance-measuring equipment system with means for setting a window and means for sampling image signals at predetermined time intervals
DE4107177A1 (en) * 1990-03-20 1991-09-26 Mitsubishi Electric Corp VEHICLE / VEHICLE DISTANCE MEASURING DEVICE
DE4107177C2 (en) * 1990-03-20 1993-10-28 Mitsubishi Electric Corp Vehicle / vehicle distance measuring device
US5177462A (en) * 1990-03-28 1993-01-05 Mitsubishi Denki K.K. Car interval control apparatus
JPH0441941A (en) * 1990-06-01 1992-02-12 Mitsubishi Electric Corp Follow-up driving control device for vehicle
JPH0468478A (en) * 1990-07-10 1992-03-04 Mitsubishi Electric Corp Picture processor
US5168355A (en) * 1990-09-04 1992-12-01 Mitsubishi Denki K.K. Apparatus for detecting distance between cars
JPH04110755U (en) * 1991-03-02 1992-09-25 株式会社エステツク Work holder for chemical vapor deposition equipment
US5381173A (en) * 1991-08-28 1995-01-10 Mitsubishi Denki Kabushiki Kaisha Inter-car distance detecting device for tracking a car running ahead
US5303019A (en) * 1991-12-09 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Inter-vehicle distance measuring device
CN103451624A (en) * 2012-05-30 2013-12-18 北大方正集团有限公司 Deposition furnace tube and method for depositing thin films

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
JP3819660B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP4873820B2 (en) Semiconductor device manufacturing equipment
US6863732B2 (en) Heat treatment system and method
KR930011414B1 (en) Method of manufacturing silicon nitride film
JP4045689B2 (en) Heat treatment equipment
JPS6033352A (en) Vacuum cvd apparatus
WO1981003348A1 (en) Process and apparatus for chemical vapor deposition of films on silicon wafers
JPS60245231A (en) Method of depositing borophossilidate glass
JPH01220434A (en) Heat treating furnace
JP2002009072A (en) Method and apparatus for forming silicon nitride film
JPH0456314A (en) Manufacture of semiconductor substrate
JPH09148259A (en) Lateral reactor
JP2001156063A (en) Method and apparatus for manufacturing semiconductor device
US5489446A (en) Device for forming silicon oxide film
JPS6168393A (en) Hot wall type epitaxial growth device
US5766785A (en) Method and apparatus for manufacturing a semiconductor device
JPS626682Y2 (en)
JP2727106B2 (en) Film formation method
JPS6052578A (en) Formation of silicon nitride film
JPH04154117A (en) Low pressure cvd system
KR20010036268A (en) Method for forming a metallic oxide layer by an atomic layer deposition
JP2001156067A (en) Method of manufacturing,semiconductor device
JPH07147246A (en) Low pressure vapor growth method and device therefor
JPH01306568A (en) Hot wall type vacuum cvd device