JPH01306568A - Hot wall type vacuum cvd device - Google Patents

Hot wall type vacuum cvd device

Info

Publication number
JPH01306568A
JPH01306568A JP13703688A JP13703688A JPH01306568A JP H01306568 A JPH01306568 A JP H01306568A JP 13703688 A JP13703688 A JP 13703688A JP 13703688 A JP13703688 A JP 13703688A JP H01306568 A JPH01306568 A JP H01306568A
Authority
JP
Japan
Prior art keywords
gas
tube
reaction
inner tube
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13703688A
Other languages
Japanese (ja)
Inventor
Toshiharu Akimoto
秋元 利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13703688A priority Critical patent/JPH01306568A/en
Publication of JPH01306568A publication Critical patent/JPH01306568A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the thickness of films and the concn. of an impurity uniform by introducing a doping gas to be added to formed films into an inner tube through plural openings which become gradually smaller toward the downstream side in the wall of the tube so that the partial pressure of the gas can be made uniform. CONSTITUTION:A double-walled reaction tube consisting of an outer tube 1 and an inner tube 2 is used as a reaction chamber and heating means 31-33 are arranged around the chamber. Holders 7 holding substrates 8 such as Si wafers on which films are formed, a baffer 6 and a pipe (gas nozzle) 5 for introducing a reactive gas are arranged in order toward the throat in the inner tube 2 and a doping gas to be added to formed films is fed to the gap 9 between the outer and inner tubes 1, 2. Plural openings which become gradually smaller in area toward the downstream side are pierced is inlets 11-14 for introducing the gas into the inner tube 2 in the wall of the tube 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反応室内の半導体基板などを反応室の外側か
ら加熱してPSGIIIIのような不純物を含む酸化膜
を低温で基板上に形成するホントウオール型減圧CVD
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention heats a semiconductor substrate or the like in a reaction chamber from outside the reaction chamber to form an oxide film containing impurities such as PSGIII on the substrate at a low temperature. True wall type low pressure CVD
Regarding equipment.

〔従来の技術〕[Conventional technology]

第2図は、従来よ(知られているホントウオール型低温
酸化膜形成用減圧CVD装置のガス導入口4反9管およ
びガス排気口部の断面概略図である。この装置を用いて
PSG成膜を行う場合、まず、二重石英反応管部1,2
を三つの領域に分かれた抵抗加熱ヒータ31.32.3
3によりあらかじめ300〜400℃のpsc膜生成温
度に固定しておく。但しaft MN整として、炉口側
(上流)の炉温は炉央の温度より約7%程度低めに、炉
奥側(下流)の炉温は約7%高めに設定しておく。これ
は後述するように炉口部41.42より導入されるCV
D用反応ガスが上流から順々に消費され、下流に行くに
従い反応ガス分圧が低下し、CVD膜の堆積速度が、そ
のままでは徐々に減少してしまう所を、反応温度を次第
に上昇させることによって補償しているのである0次に
1 mbar程度の減圧下で充分窒素パージされた内管
1の中へ炉口上部41からは酸素(Oりとヘリウムガス
を、炉口下部42からはガスノズル5を経由してモノシ
ラン(S1114)とホスフィン(PHs)を導入する
。拡散定数は圧力に反比例するので、減圧下においては
常圧時に比べ反応ガスは迅速に拡散し、反応管内に均一
に供給され、膜厚の均一性は向上する。さらにヘリうム
ガスは平均自由行程が大きいキャリアガスなので、他の
不活性ガスでモノシランを希釈する場合に比べより均一
な膜厚が得られる。ガスノズル5から出た反応性のガス
流はO□と反応を開始するのだが、反応ガスの流れは石
英バッファ6を設けているため、特に内管2の内壁とバ
ッファおよび石英支持体7との間の狭い空隙を高速で通
過する。この特別な工夫をすることによりはじめて、支
持体7に支持されたシリコンウェハ8面上にほぼ均一に
反応ガスの供給を行うことが出来るのである。なぜなら
、−船釣に低温領域での減圧CVD方式においてはSl
l+4−02系のガスを用いると、SIH*およびPH
,が08と橿めて反応しl < 300℃程度で既に酸
化が進んでしまうため、反応室などに工夫を凝らさない
と、炉の入口側や出口側、および反応室の壁等に反応生
成物である5iO1がフレーク状に形成されたりするこ
とが多発するので、それを極力避け、ウェハ表面のみで
有効に反応が行われるようにしなければならないからで
ある。
FIG. 2 is a schematic cross-sectional view of the gas inlet 4 x 9 pipes and the gas exhaust port of a conventional (known) real wall type low-pressure CVD device for forming a low-temperature oxide film. This device is used to form PSG. When performing the membrane, first, the double quartz reaction tube parts 1 and 2
Resistance heater divided into three areas 31.32.3
3, the psc film formation temperature is fixed in advance at 300 to 400°C. However, for aft MN adjustment, the furnace temperature on the furnace opening side (upstream) is set to be about 7% lower than the temperature at the hearth center, and the furnace temperature on the furnace back side (downstream) is set to be about 7% higher. This is due to the CV introduced from the furnace mouth 41, 42 as described later.
By gradually increasing the reaction temperature, the reaction gas for D is consumed sequentially from the upstream, and the partial pressure of the reaction gas decreases as it goes downstream, and the deposition rate of the CVD film would gradually decrease if left as it was. Oxygen (O) and helium gas are supplied from the upper part of the furnace mouth 41 into the inner tube 1, which has been sufficiently purged with nitrogen under a reduced pressure of about 1 mbar, and a gas nozzle is supplied from the lower part of the furnace mouth 42. Monosilane (S1114) and phosphine (PHs) are introduced via 5. Since the diffusion constant is inversely proportional to pressure, the reaction gas diffuses more quickly under reduced pressure than at normal pressure, and is uniformly supplied into the reaction tube. , the uniformity of the film thickness is improved.Furthermore, since helium gas is a carrier gas with a large mean free path, a more uniform film thickness can be obtained than when monosilane is diluted with other inert gases. The reactive gas flow starts to react with O□, but since the quartz buffer 6 is provided, the flow of the reactive gas is particularly affected by the narrow gap between the inner wall of the inner tube 2 and the buffer and the quartz support 7. By using this special technique, it is possible to supply the reaction gas almost uniformly onto the surface of the silicon wafer 8 supported by the support 7. In the low pressure CVD method in the low temperature region, Sl
When l+4-02 series gas is used, SIH* and PH
, reacts as the temperature increases to 08°C, and oxidation has already progressed at about l < 300°C. Therefore, unless the reaction chamber is carefully designed, reaction products will form on the inlet and outlet sides of the furnace, as well as on the walls of the reaction chamber. This is because 5iO1 is frequently formed into flakes, and this must be avoided as much as possible so that the reaction can take place effectively only on the wafer surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べたような工夫をすれば、鏡かにCVD故化膜化
膜厚ッチ内均−性に関しては、非常に良好で再現性も良
い。しかし不純物のりんの濃度のバッチ内均−性に関し
ては未だ問題があり、制御するのは難しいのが実情であ
る。言い換えると5il14+(h→510. +2 
It、の反応は、上述した工夫により炉内でほぼ均一に
起こすことができ、酸化膜(Slow)は均一に堆積す
る。しかしながら2PL+40□−PJs +311.
0の反応は上述した工夫をしても制御性良く炉内で均一
に起こすことが出来ず、例えぼりん濃度(pzos)に
ついていうと、上流から下mに沿って徐々に波打つよう
に減少するなど、制御性の点で問題があった。
If the above-mentioned measures are taken, the uniformity within the thickness of the CVD-degraded film will be very good and the reproducibility will be good. However, there is still a problem with the uniformity of the concentration of phosphorus as an impurity within a batch, and the reality is that it is difficult to control it. In other words, 5il14+(h→510. +2
The reaction of It can occur almost uniformly in the furnace by the above-mentioned measures, and the oxide film (Slow) is deposited uniformly. However, 2PL+40□-PJs +311.
Even with the above-mentioned measures, the 0 reaction cannot be caused uniformly in the furnace with good controllability; for example, the phosphorus concentration (pzos) gradually decreases in waves from the upstream to the bottom. There were problems with controllability.

本発明の課題は、ホットウォール型低温酸化膜形成用減
圧CVD装置の上記のような反応室の構造の工夫により
急激な酸化を抑止して成膜後の膜厚に関してはバ・ノチ
内で均一に形成すると共に、膜内に添加される、例えぼ
りんのような不純物の濃度についてまでもバッチ内で均
一にすることにある。
The object of the present invention is to suppress rapid oxidation by devising the structure of the reaction chamber of the hot wall type low-pressure CVD apparatus for forming a low-temperature oxide film, and to achieve a uniform film thickness within the coating. In addition to forming the film, it is also necessary to make the concentration of impurities such as eborin, which are added into the film, uniform within the batch.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明の装置は、外側に
加熱手段を備えた反応室が2重反応管よりなり、内管内
に成膜される基体の支持体、気流阻止体および反応ガス
の一部分の導入管が炉口に向けて111aに配置された
、外管と内管の間隙が反応ガスのうち生成膜に添加され
る不純物を含む他の部分の通路であり、内管の管壁に面
積が炉口から遠ざかるにつれて次第に小さくなる複数の
開口が前記反応ガスの他の部分の導入口として開けられ
たものとする。
In order to achieve the above object, the apparatus of the present invention has a reaction chamber equipped with a heating means on the outside, which consists of a double reaction tube, and a support for a substrate to be formed into a film, a gas flow blocker, and a reaction gas inside the inner tube. A part of the introduction pipe is placed at 111a toward the furnace mouth, the gap between the outer pipe and the inner pipe is a passage for the other part of the reaction gas containing impurities added to the produced film, and the inner pipe It is assumed that a plurality of openings are formed in the wall, the area of which gradually decreases as the distance from the furnace mouth increases, as an inlet for introducing the other portion of the reaction gas.

〔作用〕[Effect]

外管の内管の間隙の通路を介して内管の開口から反応管
に入り、別に反応管に導入された反応ガスと反応する不
純物を含む反応ガスの他の部分の分圧は、開口の面積が
下流に行くに従って小さくなるため次第に高くなり、反
応による不純物を含むガスの分圧の減少を補償するため
、生成膜の不純物濃度をもバッチ内で均一になる。
The partial pressure of the other part of the reaction gas containing impurities that enters the reaction tube from the opening of the inner tube through the passage in the gap of the inner tube of the outer tube and reacts with the reaction gas separately introduced into the reaction tube is equal to that of the opening. Since the area becomes smaller as it goes downstream, it gradually becomes higher, and in order to compensate for the decrease in the partial pressure of the gas containing impurities due to the reaction, the impurity concentration of the produced film becomes uniform within the batch.

〔実施例〕〔Example〕

第1図は本発明の一実施例のホントウオール型低温酸化
膜形成用減圧CVD装置の反応管付近の断面概略図で、
第2図と共通の部分は同一の符号が付されている。この
装置においても二重石英反応管の内管2内に炉口上部4
1から導入されるガスと炉1」下部42からガスノズル
5を経由して導入されるガスは、内管2の内壁と石英バ
ッファ6および石英支持体7との間の狭い空隙を高速で
通過する。この際S I It 、とOlの反応は均一
に起こる。しかし、ドーピングガスすなわちPH,はノ
ズル5からは導入されない、そして、内管1と外管2の
間の空隙9をドーピングガスの通路とし、内管内への導
入は、上流から下流に沿って開口面積が、例えば指数関
数的に減少するように、等間隔に内管表面上に複数個開
口されたガス導入口11,12,13.14より行う。
FIG. 1 is a schematic cross-sectional view of the vicinity of a reaction tube of a real wall type low-pressure CVD apparatus for forming a low-temperature oxide film according to an embodiment of the present invention.
Components common to those in FIG. 2 are given the same reference numerals. In this device as well, the upper part of the furnace mouth 4 is placed inside the inner tube 2 of the double quartz reaction tube.
1 and the gas introduced from the lower part 42 of the furnace 1 via the gas nozzle 5 pass through the narrow gap between the inner wall of the inner tube 2 and the quartz buffer 6 and quartz support 7 at high speed. . At this time, the reaction between S I It and Ol occurs uniformly. However, the doping gas, PH, is not introduced from the nozzle 5, and the gap 9 between the inner tube 1 and the outer tube 2 is used as a path for the doping gas, and the doping gas is introduced into the inner tube through an opening along the upstream to downstream direction. This is carried out through a plurality of gas inlet ports 11, 12, 13, and 14 that are opened on the surface of the inner tube at equal intervals so that the area decreases, for example, exponentially.

−例として、薄膜堆積時のガスの導入量を、S I 1
14は550 ”! / mln+Ozは130 a7
 / win、 lleは3000@17 sin、 
PH3は180 lIl / win とした時には、
内管内圧力を1.5a+bar、外管内圧力を2000
mbarにすれば、内管内を外管内に対してほぼ完全な
負圧に出来るので、前記導入口より開口面積に比例して
P](、が内管2内に導入され、そうすることにより0
!との反応も内管内で均一に起こすことが出来、P I
+ 、ガス分圧もS目14ガス分圧とともに炉内で均一
となる。そして結果として、シリコンウェハ8上に堆積
薄膜中の不純物t1度、すなわちP2O,がバッチ内で
均一なりん含有率71IIO1%のPSG膜が得られる
。もちろん膜厚も均一になっている。
- As an example, the amount of gas introduced during thin film deposition is S I 1
14 is 550”! / mln+Oz is 130 a7
/ win, lle is 3000 @ 17 sin,
When PH3 is 180 lIl / win,
The pressure inside the inner tube is 1.5a+bar, and the pressure inside the outer tube is 2000.
If the pressure is set to mbar, the inside of the inner tube can be made to have an almost completely negative pressure than the inside of the outer tube, so P]
! The reaction with P I can also occur uniformly within the inner tube.
+, the gas partial pressure becomes uniform in the furnace along with the Sth 14 gas partial pressure. As a result, a PSG film having a phosphorus content of 71IIO1% is obtained on the silicon wafer 8, with the impurity t1 degree, that is, P2O, in the thin film deposited on the silicon wafer 8 being uniform within the batch. Of course, the film thickness is also uniform.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、生成膜に添加すべき不純物を含むガス
を、内管に形成された、面積が下流に向かうにつれて小
さくなる開口部を介して導入することにより、内管内で
のそのガスの分圧を上流から下流にかけて均一に出来る
ので、バッチ内で均一な膜厚および不純物濃度を持つC
VDI#が形成出来、例えばMO5IC等の層間絶縁膜
としてのPSGTf3.等の薄膜形成の制御性が向上し
、それにより良品率が向上するという効果がある。
According to the present invention, a gas containing impurities to be added to the produced film is introduced through an opening formed in the inner tube, the area of which decreases as it goes downstream. Since the partial pressure can be made uniform from upstream to downstream, C has a uniform film thickness and impurity concentration within the batch.
VDI# can be formed, for example PSGTf3. as an interlayer insulating film of MO5IC etc. This has the effect of improving the controllability of thin film formation, such as, and improving the yield rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の反応管付近の断面図、第2
図は従来装置の反応する部分の断面図である。 1:外管、2;内管、31,32,33 :ヒータ、5
:ガスノズル、6;石英バッファ、7;石英支持体、8
:シリコンウェハ、11,12.13.14  :ガス
導入口。 パ。 代理人)し埋−L 山 口  巌 、
Figure 1 is a cross-sectional view of the vicinity of the reaction tube in one embodiment of the present invention;
The figure is a sectional view of a reacting part of a conventional device. 1: Outer tube, 2; Inner tube, 31, 32, 33: Heater, 5
: Gas nozzle, 6; Quartz buffer, 7; Quartz support, 8
: Silicon wafer, 11, 12.13.14 : Gas inlet. Pa. Agent) Shibu-L Iwao Yamaguchi,

Claims (1)

【特許請求の範囲】[Claims] (1)外側に加熱手段を備えた反応室が2重反応管から
なり、内管内に成膜される基体の支持体、気流阻止体お
よび反応ガスの一部分の導入管が炉口に向けて順に配置
された、外管と内管の間隙が反応ガスのうち生成膜に添
加される不純物を含む他の部分の通路であり、内管の管
壁に面積が炉口から遠ざかるにつれて次第に小さくなる
複数の開口が前記反応ガスの他の部分の導入口として開
けられたことを特徴とするホットウォール型減圧CVD
装置。
(1) The reaction chamber is equipped with a heating means on the outside and consists of a double reaction tube, in which the support for the substrate to be formed into a film, the gas flow blocker, and the inlet tube for a portion of the reaction gas are arranged in order toward the furnace mouth. The gap between the outer tube and the inner tube is a passage for other parts of the reaction gas containing impurities that are added to the produced film, and the inner tube wall has a plurality of holes whose area gradually decreases as it moves away from the furnace mouth. Hot wall type reduced pressure CVD characterized in that the opening is opened as an inlet for the other part of the reaction gas.
Device.
JP13703688A 1988-06-03 1988-06-03 Hot wall type vacuum cvd device Pending JPH01306568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13703688A JPH01306568A (en) 1988-06-03 1988-06-03 Hot wall type vacuum cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13703688A JPH01306568A (en) 1988-06-03 1988-06-03 Hot wall type vacuum cvd device

Publications (1)

Publication Number Publication Date
JPH01306568A true JPH01306568A (en) 1989-12-11

Family

ID=15189352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13703688A Pending JPH01306568A (en) 1988-06-03 1988-06-03 Hot wall type vacuum cvd device

Country Status (1)

Country Link
JP (1) JPH01306568A (en)

Similar Documents

Publication Publication Date Title
JP2930960B2 (en) Atmospheric pressure chemical vapor deposition apparatus and method
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
JP4045689B2 (en) Heat treatment equipment
US6506691B2 (en) High rate silicon nitride deposition method at low pressures
JP3265042B2 (en) Film formation method
US6500734B2 (en) Gas inlets for wafer processing chamber
JPH03287770A (en) Single wafer processing atmospheric cvd device
JPH0786174A (en) Film deposition system
KR100246119B1 (en) Forming method of doped thin film
JPS6033352A (en) Vacuum cvd apparatus
JPH01140712A (en) Cvd system
US4651673A (en) CVD apparatus
JPH09148259A (en) Lateral reactor
JPH01306568A (en) Hot wall type vacuum cvd device
CN114959649A (en) Substrate processing equipment and method
JPS59159980A (en) Vapor growth device
US5766785A (en) Method and apparatus for manufacturing a semiconductor device
CN111696848B (en) Film forming equipment and film forming method
JPS63199412A (en) Vapor growth device
JP2004140320A (en) Chemical vapor deposition apparatus
JPH0669138A (en) Low pressure vapor phase epitaxial growth system
JPH05121337A (en) Method for gas reaction on solid surface
JP2008028409A (en) Heat treatment method
JPS62208637A (en) Vapor growth
JPH04139820A (en) Vertical low pressure cvd apparatus