JPH01139767A - Reduced-pressure vapor growth apparatus - Google Patents

Reduced-pressure vapor growth apparatus

Info

Publication number
JPH01139767A
JPH01139767A JP29635587A JP29635587A JPH01139767A JP H01139767 A JPH01139767 A JP H01139767A JP 29635587 A JP29635587 A JP 29635587A JP 29635587 A JP29635587 A JP 29635587A JP H01139767 A JPH01139767 A JP H01139767A
Authority
JP
Japan
Prior art keywords
gas
partition plate
reaction furnace
reactor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29635587A
Other languages
Japanese (ja)
Other versions
JPH0776427B2 (en
Inventor
Makoto Morita
信 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62296355A priority Critical patent/JPH0776427B2/en
Publication of JPH01139767A publication Critical patent/JPH01139767A/en
Publication of JPH0776427B2 publication Critical patent/JPH0776427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control the generation of particles and to uniformize the thickness and quality of a film by providing a partition plate furnished with a gas injection port and a gas outlet and a gas inlet pipe for introducing a gas into the space formed by a gas injection partition plate and the side wall of a reaction furnace in the reaction furnace. CONSTITUTION:A semiconductor substrate 104 set on a boat 105 is heated by a heater 114 in the reaction furnace 102, and a gas M is introduced into the gas inlet pipe 106 pierced with many holes from a gas inlet 107. Meanwhile, gaseous oxygen is introduced into the space N formed by the partition plate 108 provided with a gas injection port 109 and the reaction furnace 102 from a gas inlet 110. As a result, the gases respectively introduced from the inlets 107 and 110 are uniformly mixed and uniformly supplied over the whole requisite region in the reaction furnace 102, and a uniform thin film is formed on the substrate 104. The gas in the reaction furnace 102 is discharged from a gas outlet 112 provided in the partition plate 111, and further discharged from a gas outlet 113 to the outside of the reaction furnace 102.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は減圧気相成長装置に関し、特に成膜工程におい
て高い工程処理能力を有し、膜厚、膜質等の均一性が良
好で、かつ、パーティクル発生の少ない減圧気相成長装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduced-pressure vapor phase growth apparatus, which has high process throughput especially in the film forming process, has good uniformity in film thickness, film quality, etc. , relates to a reduced pressure vapor phase growth apparatus that generates few particles.

[従来の技術] 従来、この種の減圧気相成長装置としては、第3図(a
)、 (b)に示されるような様式がある。301は前
蓋、302は反応炉、303は後蓋、304は半導体基
板、305は半導体基板304を設置するボート、30
6はガス導入口、307はガス排出口、308は円筒状
ガス導入管、309はガス噴出口、310は円筒状ガス
排気管、311はガス排気口である。
[Prior Art] Conventionally, this type of reduced pressure vapor phase growth apparatus is shown in Fig. 3 (a).
), (b). 301 is a front lid, 302 is a reactor, 303 is a rear lid, 304 is a semiconductor substrate, 305 is a boat on which the semiconductor substrate 304 is installed, 30
6 is a gas inlet, 307 is a gas outlet, 308 is a cylindrical gas inlet pipe, 309 is a gas outlet, 310 is a cylindrical gas exhaust pipe, and 311 is a gas exhaust port.

第3図(a)において、ガス導入口306より反応炉3
02内にガスが導入され、一定圧力保持するように、ガ
ス排出口307よりガスは排出される。このことにより
、ガス導入口306から、ガス排出口307に向けて−
様なガスの流れを作り出し、A。
In FIG. 3(a), the reactor 3 is connected to the gas inlet 306.
Gas is introduced into the chamber 02 and is discharged from the gas outlet 307 so as to maintain a constant pressure. As a result, from the gas inlet 306 to the gas outlet 307 -
A.

B、Cとして図示された領域において、半導体基板30
4上に薄膜を形成していた。
In the regions illustrated as B and C, the semiconductor substrate 30
A thin film was formed on 4.

一方、第3図(b)においては、ガスをガス導入管30
8より反応炉302の内部まで導入したのち、ガス噴出
口309より反応炉302内に導入している。
On the other hand, in FIG. 3(b), gas is introduced into the gas introduction pipe 30.
After the gas is introduced into the reactor 302 through the gas outlet 309, the gas is introduced into the reactor 302 through the gas outlet 309.

導入されたガスは、ガス排気口311.ガス排気管31
0を通り、ガス排出口307より反応炉302外へ排出
される。この場合には、ガス導入管308からガス排気
管310の方向にガスの流れを作り出し、D、E、Fと
して図示された領域において、半導体基板304上に薄
膜を形成していた。
The introduced gas flows through the gas exhaust port 311. gas exhaust pipe 31
0 and is discharged from the reactor 302 through the gas discharge port 307. In this case, a gas flow was created from the gas inlet pipe 308 toward the gas exhaust pipe 310, and a thin film was formed on the semiconductor substrate 304 in regions shown as D, E, and F.

[発明が解決しようとする問題点] 上述した従来の減圧気相成長装置は、以下に述べるよう
な種々の欠点を有している。
[Problems to be Solved by the Invention] The conventional reduced pressure vapor phase growth apparatus described above has various drawbacks as described below.

第1として、第3図(a)に示すような様式では、ガス
の流れを半導体基板304の面に対して垂直になるよう
に作るために、A、B、Cとして図示された領域におい
て、Aにおけるガス消費量が多いため、Aの接方にあた
るB、Cではガス不足になりやすい。このため、バッチ
内および半導体基板304の表面内の膜厚、膜質の均一
性を向上あるいは維持することが困難である。
First, in the manner shown in FIG. 3(a), in order to make the gas flow perpendicular to the plane of the semiconductor substrate 304, in the regions shown as A, B, and C, Since the amount of gas consumed at A is large, B and C, which are tangential to A, tend to run out of gas. Therefore, it is difficult to improve or maintain the uniformity of film thickness and film quality within the batch and within the surface of the semiconductor substrate 304.

第2として、第3図(b)に示すような様式では、ガス
の流れを半導体基板304の面に対し平行となるように
するため、第3図(a)に示された様式の問題、すなわ
ち、半導体基板設置位置に依るバッチ内不均−性の発生
という問題は少ない。しかし、ガス導入管308、ある
いは、ガス排気管310近傍のガス濃度は高いが、ガス
導入管308.ガス排気管310から遠い所ではガス濃
度が薄くなる。その結果、半導体基板304上に薄膜を
成長させても、ガス導入管308.ガス排気管310近
傍のガス濃度の高い所では膜厚が厚くなるなどの現象が
発生し、膜厚、膜質共に均一性が悪いという欠点がある
Second, in the format shown in FIG. 3(b), in order to make the gas flow parallel to the surface of the semiconductor substrate 304, there is a problem in the format shown in FIG. 3(a). That is, there is little problem of intra-batch non-uniformity caused by the placement position of the semiconductor substrate. However, although the gas concentration near the gas introduction pipe 308 or the gas exhaust pipe 310 is high, the gas introduction pipe 308. The gas concentration becomes thinner at a location far from the gas exhaust pipe 310. As a result, even if a thin film is grown on the semiconductor substrate 304, the gas introduction tube 308. In areas where the gas concentration is high near the gas exhaust pipe 310, phenomena such as an increase in film thickness occur, and there is a drawback that the uniformity of both film thickness and film quality is poor.

第3として、第3図(a)、 (b)に示す様式の共通
の欠点であるが、薄膜の堆積に寄与するガス、例えばシ
リコン酸化膜(Si02)では、S ! H4と02が
用いられるが、このガスは反応炉302に導入する前に
混合される場合、S i H4と02は半導体基板30
4の表面上で反応する前に気相中において反応してSi
O2となり、その一部はパーティクルとして半導体基板
表面に付着する。SiH4と02は非常に反応性が高い
為、S ! H4と02の長時間の混在はパーティクル
の発生が多くなるという問題がある。このパーティクル
は薄膜堆積時にピンホール等の発生原因となり、これは
デバイス信頼性の低下および製品歩留り低下をひきおこ
す一因となっている。
Third, a common drawback of the systems shown in FIGS. 3(a) and 3(b) is that in a gas that contributes to the deposition of a thin film, such as a silicon oxide film (Si02), S! If H4 and 02 are used and the gases are mixed before being introduced into the reactor 302, S i H4 and 02 are
Before reacting on the surface of 4, Si reacts in the gas phase.
This becomes O2, and some of it adheres to the surface of the semiconductor substrate as particles. Since SiH4 and 02 are very reactive, S! There is a problem in that the coexistence of H4 and 02 for a long time increases the generation of particles. These particles cause pinholes and the like to occur during thin film deposition, which is one of the causes of lower device reliability and product yield.

本発明の目的は前記問題点を解消した減圧気相成長装置
を提供することにおる。
An object of the present invention is to provide a reduced pressure vapor phase growth apparatus that eliminates the above-mentioned problems.

[発明の従来技術に対する相違点] 上述した従来の減圧気相成長装置に対し、本発明は薄膜
の堆積に寄与するガスを独立して反応炉内に導入でき、
さらに、反応炉内では均一にガスを供給でき、均一に排
気できるので、反応炉内のガス濃度は極めて均一性が向
上し、その結果、反応炉内においてガスの不要な反応に
よるパーティクルの発生を抑えることかできると同時に
、半導体基板上に堆積する膜の膜厚、膜質の均一性向上
ができるという相違点を有する。
[Differences between the invention and the prior art] In contrast to the above-mentioned conventional reduced pressure vapor phase growth apparatus, the present invention can independently introduce a gas that contributes to thin film deposition into the reactor.
Furthermore, since gas can be supplied uniformly and exhausted uniformly within the reactor, the gas concentration within the reactor is extremely uniform, and as a result, the generation of particles due to unnecessary gas reactions within the reactor is prevented. The difference is that the film thickness and quality of the film deposited on the semiconductor substrate can be improved in uniformity at the same time.

し問題点を解決するための手段] 本発明は薄膜を堆積すべき半導体基板を設置する手段と
、反応炉内に薄膜を形成する元素を含むガスを導入する
手段と、該ガスを排気する手段と、該反応炉を加熱する
手段とを有する減圧気相成長装置において、該反応炉内
に該反応炉側壁と平行に多数の開孔を有する一対の仕切
り板を設け、−方の仕切り板をガス導入用に、他方の仕
切り板をガス排気用に用い、さらにガス導入用仕切り板
と該反応炉側壁とからなる空間内に多数の開孔を有する
ガス導入管を設けたことを特徴とする減圧気相成長装置
である。
Means for Solving the Problem] The present invention provides means for installing a semiconductor substrate on which a thin film is to be deposited, means for introducing a gas containing an element for forming a thin film into a reactor, and means for exhausting the gas. and a means for heating the reactor, wherein a pair of partition plates having a large number of openings are provided in the reactor in parallel with the side wall of the reactor, and the - side partition plate is The other partition plate is used for gas introduction, and the other partition plate is used for gas exhaust, and a gas introduction pipe having a large number of holes is provided in the space formed by the gas introduction partition plate and the side wall of the reactor. This is a reduced pressure vapor phase growth device.

[実施例] 以下、本発明の実施例について図面を参照して説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

(実施例1) 第1図(a)は本発明の減圧気相成長装置における反応
炉の断面図である。また、第1図(b)は第1図(a)
のX−Y線断面図である。101は前蓋、102は反応
炉、103は後蓋、104は半導体基板、105は半導
体基板104を設置するボート、106は本発明の特徴
である多数の開孔が設けられたガス導入管、107は反
応ガスの1部をガス導入管106へ導くガス導入口、1
08は本発明の特徴であるガス噴出口109が設けられ
た仕切り板、110は反応ガスのガス導入口、111は
本発明の特徴である、ガス排気口112が設けられた仕
切り板、113はガス排出口、114はヒーターである
(Example 1) FIG. 1(a) is a sectional view of a reactor in a reduced pressure vapor phase growth apparatus of the present invention. Also, Fig. 1(b) is similar to Fig. 1(a).
FIG. 101 is a front lid, 102 is a reactor, 103 is a rear lid, 104 is a semiconductor substrate, 105 is a boat on which the semiconductor substrate 104 is installed, 106 is a gas introduction pipe provided with a large number of holes, which is a feature of the present invention, Reference numeral 107 denotes a gas introduction port for introducing a portion of the reaction gas into the gas introduction pipe 106;
08 is a partition plate provided with a gas outlet 109, which is a feature of the present invention; 110 is a gas inlet for a reaction gas; 111 is a partition plate provided with a gas exhaust port 112, which is a feature of the present invention; The gas outlet 114 is a heater.

減圧気相成長法により、シリコン酸化膜を堆積させるに
は、一般には、モノシランガス(S ! H4)と酸素
ガス(02)の反応によりSiO2を半導体基板上に生
じせしめることにより行なっているが、本実施例でもS
 i H4と02によりシリコン酸化膜を堆積する場合
について説明する。第1図(a)においてボート105
に設置された半導体基板104はヒーター114により
加熱される。ガス導入口107よりガス導入管10B中
へモノシランガス(S ! H4)を第1図(b)にM
として図示された領域、即ち、ガス導入管106の内部
へ導入する。一方、別のガス導入口110より仕切り板
10Bと反応炉102により形成される空間部分、即ち
第1図(b)にNとして図示された領域、即ち、反応炉
102と仕切り板109とからなる空間へ酸素ガス(0
2)を独立して導入する。このことによりモノシランガ
ス(S ! H4)と酸素ガス(02)との不要な反応
を抑止できる。これら2種類のガスは各々ガス導入口1
07.110から独立して導入されるが、第1図(b)
においてNとして図示された領域で均一に混合されるこ
とにより、反応炉102中の必要領域の全域にわたり均
一に供給できる。
Depositing a silicon oxide film by low pressure vapor phase growth is generally done by producing SiO2 on a semiconductor substrate through a reaction between monosilane gas (S!H4) and oxygen gas (02), but this method In the example, S
The case of depositing a silicon oxide film using iH4 and 02 will be explained. In FIG. 1(a), the boat 105
The semiconductor substrate 104 placed on the substrate is heated by a heater 114. Monosilane gas (S!H4) is introduced from the gas inlet port 107 into the gas inlet pipe 10B as shown in FIG. 1(b).
The gas is introduced into the region shown in the figure, that is, into the interior of the gas introduction pipe 106. On the other hand, from another gas inlet 110, the space formed by the partition plate 10B and the reaction furnace 102, that is, the area shown as N in FIG. Oxygen gas (0
2) is introduced independently. This makes it possible to suppress unnecessary reactions between the monosilane gas (S!H4) and the oxygen gas (02). These two types of gas each have gas inlet 1.
Although introduced independently from 07.110, Fig. 1(b)
By uniformly mixing in the area shown as N in the figure, it is possible to uniformly supply the entire necessary area in the reactor 102.

したがって反応炉102中のガスは成分、密度が均一な
状態で拡散していき、かつ、モノシランガス(S ! 
H4)と酸素ガス(02)との不要な反応を抑えること
ができるので、半導体基板104上へは、パーティクル
が少なく、かつ、均一な薄膜が堆積する。
Therefore, the gas in the reactor 102 diffuses with uniform composition and density, and the monosilane gas (S!
Since unnecessary reactions between H4) and oxygen gas (02) can be suppressed, a uniform thin film with fewer particles is deposited on the semiconductor substrate 104.

反応炉102.ボート105.仕切り板108.111
゜ガス導入管106の材質は石英ガラスが望ましいが、
他の部分の材質は問わない。また、仕切り板108゜1
11の形状は平面に限定されず適当に曲率を有していて
もよい。
Reactor 102. Boat 105. Partition plate 108.111
゜The material of the gas introduction pipe 106 is preferably quartz glass, but
The materials of other parts do not matter. In addition, the partition plate 108°1
The shape of 11 is not limited to a plane, but may have an appropriate curvature.

次に、反応炉102中のガスは仕切り板111に設けら
れたガス排気口112より排気され、ガス排出口113
より反応炉102外へ排出される。
Next, the gas in the reactor 102 is exhausted from the gas exhaust port 112 provided on the partition plate 111, and then
It is discharged to the outside of the reactor 102.

本実施例では、モノシランガス(S ! H4)と酸素
ガス(02)により、シリコン酸化膜(SiO2)を堆
積させる場合について説明したが、モノシランガス(S
 ! H4)にホスフィンガス(PH3>を混合したも
のを使用すると、燐ガラス(PSG)膜の堆積にも使用
でき、この場合にもパーティクル発生が少なく、膜厚・
膜質等の均一性は良好でおる。
In this example, a case has been described in which a silicon oxide film (SiO2) is deposited using monosilane gas (S!H4) and oxygen gas (02).
! If a mixture of phosphine gas (PH3) and H4) is used, it can also be used to deposit phosphor glass (PSG) films, and in this case too, there are fewer particles, and the film thickness and thickness can be reduced.
The uniformity of the film quality etc. is good.

(実施例2) 第2図は本発明の実施例2を示す断面図である。(Example 2) FIG. 2 is a sectional view showing a second embodiment of the present invention.

本発明の減圧気相成長装置は第1図(a)においてボー
ト105と図示された箇所を高周波電力が印加できるよ
うにすればプラズマCVD装置として利用できる。第2
図において、201はボート202と電極203を固定
するための固定具、204は半導体基板、205は高周
波電源である。圧力は約1 torr、周波数は50K
llZ〜13.56)iHzにしてプラズマを発生させ
、半導体基板204上に薄膜を堆積させる。
The low-pressure vapor phase growth apparatus of the present invention can be used as a plasma CVD apparatus if high-frequency power can be applied to the portion shown as boat 105 in FIG. 1(a). Second
In the figure, 201 is a fixture for fixing the boat 202 and the electrode 203, 204 is a semiconductor substrate, and 205 is a high frequency power source. Pressure is approximately 1 torr, frequency is 50K
llZ~13.56) Generate plasma at iHz and deposit a thin film on the semiconductor substrate 204.

本実施例によりモノシランガス(SiHa)と酸素ガス
(02)を用いて、プラズマシリコン酸化膜を堆積させ
たところ、パーティクルが少なく、膜厚・膜質が均一性
良く堆積できた。この実施例ではプラズマを利用してい
るために堆積温度の低温化(約250℃〜350℃)が
可能となり、半導体集積回路装置の製造工程において、
アルミ・アルミ配線間の層間絶縁膜堆積に使用できると
いう利点がある。
According to this example, when a plasma silicon oxide film was deposited using monosilane gas (SiHa) and oxygen gas (02), there were few particles and the film thickness and quality were deposited with good uniformity. In this example, since plasma is used, the deposition temperature can be lowered (approximately 250°C to 350°C), and in the manufacturing process of semiconductor integrated circuit devices,
It has the advantage that it can be used for interlayer insulating film deposition between aluminum and aluminum wiring.

[発明の効果] 以上説明したように本発明は反応炉内の2ケ所に、各々
ガス噴出口とガス排気口が設けられた仕切り板と、ガス
噴出口仕切り板と反応炉側壁とからなる空間内に反応ガ
スを独立して導入するためのガス導入管を有することに
より、パーティクル発生の抑止とバッチ内および半導体
基板表面内の膜厚、膜質の不均一性を改善でき、成膜工
程における歩留りの向上とコストダウンが図れる。また
、製造された半導体装置の安定性、信頼性を向上できる
効果がある。
[Effects of the Invention] As explained above, the present invention provides a space consisting of a partition plate provided with a gas outlet and a gas exhaust port at two locations in a reactor, respectively, and a gas outlet partition plate and a side wall of the reactor. By having a gas introduction tube to independently introduce reactive gases into the film, it is possible to suppress particle generation and improve the non-uniformity of film thickness and quality within the batch and on the surface of the semiconductor substrate, thereby increasing the yield in the film forming process. This will improve performance and reduce costs. Further, there is an effect that the stability and reliability of the manufactured semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の減圧気相成長装置にあける反応
炉の断面図、第1図(b)は第1図(a)のX−Y線断
面図、第2図は本発明の実施例2におけるボート部分の
断面図、第3図(a)、 (b)は従来の減圧気相成長
装置の反応炉の断面図である。 101・・・前i       102・・・反応炉1
03・・・後!       104・・・半導体基板
105・・・ボート106ガス導入管 107・・・ガス導入口   10B・・・仕切り板1
09・・・ガス噴出口   110・・・ガス導入口1
11・・・仕切り板    112・・・ガス排気口1
13・・・ガス排出口   114・・・ヒーター20
1・・・固定具     202・・・ボート203・
・・電極      204・・・半導体基板205・
・・高周波電源   301・・・前蓋302・・・反
応炉     303・・・後蓋304・・・半導体基
板   305・・・ボート306・・・ガス導入口 
  307・・・ガス排出口308・・・ガス導入管 
  309・・・ガス噴出口310・・・ガス排気管 
  311・・・ガス排気口(b) へ=「  1 − 第2図 (a) (b) 第3図
FIG. 1(a) is a cross-sectional view of a reactor provided in the reduced pressure vapor phase growth apparatus of the present invention, FIG. 1(b) is a cross-sectional view taken along the X-Y line of FIG. 1(a), and FIG. FIGS. 3(a) and 3(b) are cross-sectional views of a boat portion in Example 2, and FIGS. 3(b) are cross-sectional views of a reactor of a conventional reduced pressure vapor phase growth apparatus. 101...Previous i 102...Reactor 1
03... later! 104...Semiconductor substrate 105...Boat 106 Gas introduction pipe 107...Gas introduction port 10B...Partition plate 1
09...Gas outlet 110...Gas inlet 1
11... Partition plate 112... Gas exhaust port 1
13... Gas discharge port 114... Heater 20
1... Fixture 202... Boat 203.
・Electrode 204 ・Semiconductor substrate 205 ・
...High frequency power supply 301...Front cover 302...Reactor 303...Rear cover 304...Semiconductor substrate 305...Boat 306...Gas inlet
307...Gas outlet 308...Gas inlet pipe
309...Gas outlet 310...Gas exhaust pipe
311... To gas exhaust port (b) = "1 - Figure 2 (a) (b) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)薄膜を堆積すべき半導体基板を設置する手段と、
反応炉内に薄膜を形成する元素を含むガスを導入する手
段と、該ガスを排気する手段と、該反応炉を加熱する手
段とを有する減圧気相成長装置において、該反応炉内に
該反応炉側壁と平行に多数の開孔を有する一対の仕切り
板を設け、一方の仕切り板をガス導入用に、他方の仕切
り板をガス排気用に用い、さらにガス導入用仕切り板と
該反応炉側壁とからなる空間内に多数の開孔を有するガ
ス導入管を設けたことを特徴とする減圧気相成長装置。
(1) means for installing a semiconductor substrate on which a thin film is to be deposited;
In a reduced pressure vapor phase growth apparatus having a means for introducing a gas containing an element that forms a thin film into a reactor, a means for exhausting the gas, and a means for heating the reactor, A pair of partition plates having a large number of openings are provided parallel to the reactor side wall, one partition plate is used for gas introduction and the other partition plate is used for gas exhaust, and the partition plate for gas introduction and the reactor side wall are provided. 1. A reduced pressure vapor phase growth apparatus characterized in that a gas introduction pipe having a large number of openings is provided in a space consisting of.
JP62296355A 1987-11-25 1987-11-25 Low pressure vapor phase growth equipment Expired - Lifetime JPH0776427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62296355A JPH0776427B2 (en) 1987-11-25 1987-11-25 Low pressure vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62296355A JPH0776427B2 (en) 1987-11-25 1987-11-25 Low pressure vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH01139767A true JPH01139767A (en) 1989-06-01
JPH0776427B2 JPH0776427B2 (en) 1995-08-16

Family

ID=17832477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62296355A Expired - Lifetime JPH0776427B2 (en) 1987-11-25 1987-11-25 Low pressure vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0776427B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033352A (en) * 1983-08-02 1985-02-20 Kokusai Electric Co Ltd Vacuum cvd apparatus
JPS62235471A (en) * 1986-04-04 1987-10-15 Canon Inc Deposited film forming device by plasma cvd method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033352A (en) * 1983-08-02 1985-02-20 Kokusai Electric Co Ltd Vacuum cvd apparatus
JPS62235471A (en) * 1986-04-04 1987-10-15 Canon Inc Deposited film forming device by plasma cvd method

Also Published As

Publication number Publication date
JPH0776427B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US4846102A (en) Reaction chambers for CVD systems
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
JPH0831454B2 (en) Method for manufacturing semiconductor device
JPH02114530A (en) Thin film formation device
US5261960A (en) Reaction chambers for CVD systems
US5096534A (en) Method for improving the reactant gas flow in a reaction chamber
JPS63187619A (en) Plasma cvd system
JPH02234419A (en) Plasma electrode
JPH01140712A (en) Cvd system
US5044315A (en) Apparatus for improving the reactant gas flow in a reaction chamber
JPS62139876A (en) Formation of deposited film
JPH0456314A (en) Manufacture of semiconductor substrate
JPH01139767A (en) Reduced-pressure vapor growth apparatus
CA1333786C (en) Process for producing patterns in dielectric layers formed by plasma enhanced chemical vapor deposition (pecvd)
JPS59159980A (en) Vapor growth device
JPH05251359A (en) Vapor silicon epitaxial growth device
JPH0766139A (en) Chemical vapor deposition system
JP2848755B2 (en) Plasma CVD equipment
JPH02184022A (en) Cvd electrode
JPH04279022A (en) Semiconductor manufacturing device
JP2723053B2 (en) Method and apparatus for forming thin film
JPH02200784A (en) Cvd electrode
US5175019A (en) Method for depositing a thin film