JPS6033312A - Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength - Google Patents

Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Info

Publication number
JPS6033312A
JPS6033312A JP14012783A JP14012783A JPS6033312A JP S6033312 A JPS6033312 A JP S6033312A JP 14012783 A JP14012783 A JP 14012783A JP 14012783 A JP14012783 A JP 14012783A JP S6033312 A JPS6033312 A JP S6033312A
Authority
JP
Japan
Prior art keywords
strength
steel
tempering
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14012783A
Other languages
Japanese (ja)
Other versions
JPH0559176B2 (en
Inventor
Kunihiko Kobayashi
邦彦 小林
Sadao Hasuno
貞夫 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14012783A priority Critical patent/JPS6033312A/en
Publication of JPS6033312A publication Critical patent/JPS6033312A/en
Publication of JPH0559176B2 publication Critical patent/JPH0559176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain the titled oil well pipe having the strength and toughness equal or superior to those of the case where high-priced alloy components are added, by quenching and tempering the steel of a specific composition having the zero or the minimum limit of additional amount of high-priced alloy components such as molybdenum or the like. CONSTITUTION:The steel of 0.20-0.35wt% C, 0.10-0.50% Si, 1.0-1.6% Mn, 0.3% max. P, 0.02% max. S, 0.2-1.0% Cr, 0.02-0.08% V, 0.02-0.10% Al, 0.005-0.050% Ti and 0.0005-0.0050% B, containing 0.10-0.30% Ni and/or 0.015-0.034% Nb when required, and remainder Fe is quenched from a temperature of not less than Ac3 point after hot rolling and successively tempered at 450-580 deg.C. Thereby, high strength oil-well pipe of 80kg/mm.<2> min. in 0.6% yield strength can be manufactured.

Description

【発明の詳細な説明】 本発明は0.6%耐力80kg/mm2以上の高強度油
井管の製造方法に係り、詳しくは、M0等の高価な合金
成分を添加せず、添加したとしてもこれら合金成分の添
加量は最小限にとどめて、焼入れ、焼戻すことにより、
高価な合金成分を添加した場合と同等若しくはそれ以上
の強度と靭性を有する油井管が製造できる方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having a 0.6% yield strength of 80 kg/mm2 or more. By minimizing the amount of alloying components added and quenching and tempering,
The present invention relates to a method for producing oil country tubular goods having strength and toughness equal to or greater than those obtained by adding expensive alloy components.

一般に、深い油井の掘削に用いられる高強度の油井管(
たとえば0.6%耐力77kg/mm2以上)はMoな
どの高価な合金元素を加えた成分系の鋼を焼入れ焼戻す
ことにより製造されている場合が多い。この方法では、
通常600℃附近で焼戻しが行なわれ、焼戻し抵抗を高
めて強度を確保するためにMo等の高価な合金成分の添
加が必要であり、この点が経済性から大きな欠点であっ
た。
Generally, high-strength oil country tubing (oil country tubing) used for drilling deep oil wells (
For example, steel with a 0.6% yield strength of 77 kg/mm2 or more is often manufactured by quenching and tempering steel containing an expensive alloying element such as Mo. in this way,
Tempering is usually carried out at around 600°C, and in order to increase the tempering resistance and ensure strength, it is necessary to add expensive alloy components such as Mo, which is a major disadvantage from an economic point of view.

更に、この方法では焼戻しが600℃附近の如く高く、
焼戻し脆性領域に入るため、靭性の点からも好ましくな
かった。
Furthermore, with this method, the tempering temperature is as high as around 600℃;
Since it fell into the tempered brittle region, it was also unfavorable from the viewpoint of toughness.

本発明は上記欠点の解決を目的とし、具体的には、Mo
等の高価な合金成分を添加せず、添加したとしてもその
添加量は最小限にとどめた成分系の鋼を、焼入れ焼戻し
を行ない、しかも、この焼戻しは靭性の点からも好まし
い比較的低温の領域において行なって、安価でかつ秀れ
た特性を有する高強度油井管を製造する方法を折案する
The present invention aims to solve the above-mentioned drawbacks, and specifically, Mo.
The steel is quenched and tempered without the addition of expensive alloying components, and even if it is added, the amount thereof is kept to a minimum. In this field, we develop a method for manufacturing high-strength oil country tubular goods at low cost and with excellent properties.

すなわち、本発明方法は、重量パーセントでC0.20
〜0.35%、Si0.10〜0.50%、Mn1.0
〜1.6%、P0.03%以下、S0.02%以下、C
r0.2〜1.0%、V0.02〜0.08%、Al0
.02〜0.10%、Ti0.005〜0.050%、
B0.0005〜0.0050%、を含み、残部がFe
及び不可避的不純物より成る鋼を熱間加工後AC3点以
上の温度より焼入れ、続いて450℃以上580℃以下
の温度で焼戻すことを特徴とする。
That is, the method of the present invention achieves C0.20 in weight percent.
~0.35%, Si0.10-0.50%, Mn1.0
~1.6%, P0.03% or less, S0.02% or less, C
r0.2-1.0%, V0.02-0.08%, Al0
.. 02-0.10%, Ti0.005-0.050%,
Contains B0.0005-0.0050%, the balance is Fe
After hot working, the steel containing unavoidable impurities is quenched at a temperature of AC3 or higher, and then tempered at a temperature of 450°C or higher and 580°C or lower.

また、本発明方法は、重量パーセントでC0.20〜0
.35%、Si0.10〜0.50%、Mn1.0〜1
.6%、P0.03%以下、S0.02%以下、Cr0
.2〜1.0%、V0.02〜0.08%、Al0.0
2〜0.10%、Ti0.005〜0.050%、B0
.0005〜0.0050%を含むとともにNi0.1
0〜0.30%若しくはNb0.015〜0.035%
の一種又は2種を含み、残部がFe及び不可避的不純物
より成る鋼を熱間加工後Ac3点以上の温度より焼入れ
、続いて450℃以上580℃以下の温度で焼戻すこと
を特徴とする。
In addition, the method of the present invention has C0.20 to 0 in weight percent.
.. 35%, Si0.10-0.50%, Mn1.0-1
.. 6%, P0.03% or less, S0.02% or less, Cr0
.. 2-1.0%, V0.02-0.08%, Al0.0
2-0.10%, Ti0.005-0.050%, B0
.. Contains 0.0005 to 0.0050% and Ni0.1
0-0.30% or Nb0.015-0.035%
A steel containing one or two of the above, with the remainder consisting of Fe and unavoidable impurities, is quenched at a temperature of Ac 3 or higher after hot working, and then tempered at a temperature of 450°C or higher and 580°C or lower.

以下、本発明方法について詳しく説明する。The method of the present invention will be explained in detail below.

まず、油井に使用される高強度油井管は上記の如く0.
6%耐力77kg/mm2以上が要求されている。この
ような高強度の油井管の製造は鋼成分系にMo、Nbな
どの合金成分を添加するとともにこの成分系の鋼を焼入
れ焼戻し処理により製造できる。しがし、この成分系は
高価であり、本発明方法ではこのような高価な合金成分
を添加することなく添加してもその量を少なくし、しか
も適切な条件で焼戻することにより材質的にも、経済的
にも秀れた油井管を製造する。
First, high-strength oil country tubular goods used in oil wells have a 0.
A 6% yield strength of 77 kg/mm2 or more is required. Such high-strength oil country tubular goods can be manufactured by adding alloy components such as Mo and Nb to the steel composition system and then quenching and tempering the steel of this composition system. However, this component system is expensive, and the method of the present invention reduces the amount of such expensive alloy components even if they are added without adding them, and also improves the material properties by tempering under appropriate conditions. The company manufactures oil country tubular goods that are both economical and excellent.

すなわち、従来例によって焼入れ焼戻しで油井管を製造
する場合は通常600℃付近で焼戻しを行ない、焼戻し
抵抗性をあげて強度を確保するために、Moや、Cr、
■などを添加する必要がある。この点につき、本発明者
らは高価な合金元素を低減し、とくに、Moを添加する
ことなく、しかも材質の劣化を生じさせることなく油井
管を製造する方法について研究を行った。この結果、強
化元素としてMoを添加することなくCrおよびVを添
加し、450〜580℃の比較的低い温度領域で焼戻し
をすれば、油井管として必要な強度、とくに、0.6%
耐力80kg/mm2以上を得られるほか、いわゆる焼
戻し脆化領域(600℃付近)を避けることができるの
で、靭性も良い油井管を製造できることを見出し、この
知見にもとずいて、本発明方法は成立したものである。
That is, when manufacturing oil country tubular goods by quenching and tempering according to conventional methods, the tempering is usually performed at around 600°C, and in order to increase the tempering resistance and ensure strength, Mo, Cr,
It is necessary to add things such as ■. In this regard, the present inventors have conducted research on a method of manufacturing oil country tubular goods by reducing the amount of expensive alloying elements, especially without adding Mo, and without causing deterioration of the material. As a result, if Cr and V are added without adding Mo as reinforcing elements and tempered at a relatively low temperature range of 450 to 580°C, the strength necessary for oil country tubular goods, especially 0.6%
It has been discovered that in addition to obtaining a yield strength of 80 kg/mm2 or more, it is possible to avoid the so-called tempering embrittlement region (near 600°C), so it is possible to manufacture oil country tubular goods with good toughness.Based on this knowledge, the method of the present invention has been developed. It has been established.

そこで、各成分の範囲を限定した理由がら示すと、次の
通りである。
The reasons for limiting the range of each component are as follows.

Cは鋼材の強度に最も影響する元素であり、0.20%
以下では目標の強度が得られず、0.35%以上では焼
割れ感受性を著しく高めるので下限を0.20%、上限
を0.35%に制限した。
C is the element that most affects the strength of steel, and is 0.20%
If it is less than 0.35%, the target strength cannot be obtained, and if it is more than 0.35%, the susceptibility to quench cracking increases significantly, so the lower limit was set to 0.20% and the upper limit was set to 0.35%.

Siは鋼の脱酸に必要な元素で0.10%以上は必要で
あるが多すぎると靭性を害するので下限を0.10%、
上限を0.50%とした。
Si is an element necessary for deoxidizing steel, and 0.10% or more is necessary, but too much will impair toughness, so the lower limit is 0.10%.
The upper limit was set at 0.50%.

Mは鋼の焼入性を上げて強化に有効な元素であり、最低
1.0%は必要であり、多すぎると割れ感受性を高める
ので上限を1.6%とした。
M is an element effective in increasing the hardenability of steel and strengthening it, and requires a minimum content of 1.0%. Too much M increases cracking susceptibility, so the upper limit was set at 1.6%.

Pは鋼中に必然的に含まれる不純物であって焼戻し脆性
の原因ともなり、靭性に有害である。
P is an impurity inevitably contained in steel, which causes temper brittleness and is harmful to toughness.

0.03%を超すと箸しく靭性が劣化するので上限を0
.030%と制限した。
If it exceeds 0.03%, the toughness deteriorates, so set the upper limit to 0.
.. It was limited to 0.030%.

SはPと同様に鋼中に不純物として含まれており、脆性
の原因ともなるので上限を0.02%にした。
Like P, S is contained in steel as an impurity and causes brittleness, so the upper limit was set at 0.02%.

Crは焼入性を高めて高強度を実現する為に不可欠であ
り、0.2%以下では効果がないので下限を0.2%と
し、1.0%を超えると割れ感受性が高くなり、靭性も
劣化するので上限を1.0%とした。
Cr is essential to improve hardenability and achieve high strength, and if it is less than 0.2% it is ineffective, so the lower limit is set at 0.2%, and if it exceeds 1.0%, cracking susceptibility increases. Since toughness also deteriorates, the upper limit was set at 1.0%.

■は焼戻し時の析出硬化によって強度を高める為に不可
欠であり、又、焼戻し後の強度を安定して得るのに有効
であり0.02%以上では効果がなく、0.08%を超
えると割れ発生の原因となるので下限を0.02%、上
限を0.08%と制限した。
(3) is essential for increasing strength through precipitation hardening during tempering, and is also effective for stably obtaining strength after tempering; if it exceeds 0.02%, it is ineffective; if it exceeds 0.08%, Since this may cause cracking, the lower limit was set at 0.02% and the upper limit was set at 0.08%.

Alは脱酸材としても使用され、0.02%以下では脱
酸効果がなく、0.1%以上では靭性低下を招くので下
限を0.02%、上限を0.1%とした。
Al is also used as a deoxidizing material, and if it is less than 0.02%, it has no deoxidizing effect, and if it is more than 0.1%, it causes a decrease in toughness, so the lower limit was set to 0.02% and the upper limit was set to 0.1%.

Tiは鋼中のNを固定してBの焼入性向上効果を発揮さ
せる為に必要であり、0.005%以下では効果がなく
、又0.05%以上添加すると靭性を著しく劣化させる
ので下限を0.005%、上限を0.05%に制限した
Ti is necessary to fix N in steel and exhibit the hardenability improvement effect of B, and if it is less than 0.005%, it has no effect, and if it is added more than 0.05%, it will significantly deteriorate the toughness. The lower limit was set to 0.005% and the upper limit was set to 0.05%.

Bは上記の如く焼入性向上効果を示し、この効果は0.
0005〜0.005%の範囲が顕著であるので、この
範囲に限定した。
As mentioned above, B shows the effect of improving hardenability, and this effect is 0.
Since the range of 0.0005% to 0.005% is significant, it is limited to this range.

なお、上記成分系において、Ni若しくはNbの一種ま
たは二種を添加でき、Niはその添加により靭性が向上
し、その効果を得るためには少なくとも0.10%程度
心要であるので、下限は0.10%とした。上限は経済
性から0.30%とした。また、Nbは強度ならびに靭
性を向上させ、有効な成分であり、この点から下限は0
.015%とし、上限は経済性から0.035%とした
In addition, in the above component system, one or two types of Ni or Nb can be added, and the addition of Ni improves toughness, and in order to obtain this effect, the lower limit is at least 0.10%. It was set to 0.10%. The upper limit was set at 0.30% for economic reasons. In addition, Nb improves strength and toughness and is an effective component, and from this point of view the lower limit is 0.
.. 0.015%, and the upper limit was set at 0.035% for economic reasons.

以上の通りの成分系の鋼は熱間加工後AC3点以上の温
度より焼入れし、続いて、450℃以上580℃以下の
温度の如く低温領域で焼戻す。そこで、この焼戻し処理
温度を比較的低温領域とする制限の理由について示すと
次の通りである。
After hot working, the steel having the composition system as described above is quenched at a temperature of AC3 or higher, and then tempered at a low temperature range of 450° C. or higher and 580° C. or lower. The reasons for limiting the tempering temperature to a relatively low temperature range are as follows.

すなわち、後記の第1表のDに示す組成の鋼をAc3点
以上の温度からの焼入れと焼戻しを行なって、この際の
焼戻し温度と強度(0.6%耐力)ならびに衝撃試験に
おける破面遷移温度との関係をめると、第1図の通りで
あった。
That is, the steel with the composition shown in D in Table 1 below was quenched and tempered from a temperature of Ac 3 or higher, and the tempering temperature and strength (0.6% proof stress) and fracture surface transition in the impact test were determined. The relationship with temperature was as shown in Figure 1.

第1図に見られる如く、焼戻し温度が580℃を超える
と目標とする強度(0.6%耐力80kg/mm2)が
得られず、更に焼戻し脆性領域に入るために靭性が劣る
。また焼戻し温度が450℃より低いと焼入れで生成さ
れたマルテンサイトへ中でのCの析出が不十分なために
、靭性が非常に悪い。
As seen in FIG. 1, when the tempering temperature exceeds 580°C, the target strength (0.6% yield strength 80 kg/mm2) cannot be obtained, and furthermore, the tempering temperature falls into the brittle region, resulting in poor toughness. Furthermore, if the tempering temperature is lower than 450°C, the precipitation of C in the martensite produced by quenching is insufficient, resulting in very poor toughness.

要するに、本発明方法では鋼が上記の通りの成分系であ
るため、目標の強度を実現し、かつ靭性が良好となる焼
戻し温度領域が通常にりやや低目の温度域に存在するの
であり、このような理由より焼戻し温度の下限を450
℃、上限を580℃と制限した。尚、焼入れ方法につい
ては通常の再加熱焼入れ、あるいは近年発展を遂げてい
る面接焼入れなどの方法があるが、本発明方法ではその
何れであっても実現できる。
In short, in the method of the present invention, since the steel has the above-mentioned compositional system, the tempering temperature range in which the target strength is achieved and good toughness is achieved usually exists in a slightly lower temperature range. For this reason, the lower limit of the tempering temperature is set at 450.
℃, and the upper limit was set at 580℃. As for the quenching method, there are conventional reheating quenching methods and surface quenching methods that have been developed in recent years, and the method of the present invention can implement any of these methods.

次に、実施例について説明する。Next, examples will be described.

第1表に示すA〜Gの7種の化学成分の鋼を、第2表に
示す焼入れ条件により焼入れし、続いて、第2表に示す
焼戻し条件で焼戻しを行なって、第2表の備考に示す油
井管をつくった。これら油井管の機械的性質をめたとこ
ろ、第2表の通りであった。
Steels having seven types of chemical composition, A to G shown in Table 1, were quenched under the quenching conditions shown in Table 2, and then tempered under the tempering conditions shown in Table 2. The oil country tubular goods shown in the figure were made. The mechanical properties of these oil country tubular goods were as shown in Table 2.

第1表で鋼A、BはCr、Moを含む成分系、鋼CはV
、Nb等による強化を画った成分系である。鋼D、Eは
本発明に含まれる成分がら成り、鋼Eは同じく請求範囲
(2)に含まれる成分を有している。また、焼入れ法は
通常の再加熱焼入れおよび近年発展の著しい直接焼入れ
についても比較をしている。
In Table 1, steels A and B have compositions containing Cr and Mo, and steel C has V
This is a component system that is reinforced with , Nb, etc. Steels D and E consist of components included in the present invention, and steel E also includes components included in claim (2). Furthermore, the quenching methods are compared between ordinary reheating quenching and direct quenching, which has been significantly developed in recent years.

第1表、第2表に示す如く、本発明方法ではMoを含ま
ない成分系であるが、温度領域で焼戻しを施せば、いず
れの焼入方法でも80kg/mm2以上の0.6%耐力
とCrMo鋼A、Bと同等の切欠靭性を示すことが明ら
かである。
As shown in Tables 1 and 2, although the method of the present invention uses a component system that does not contain Mo, if tempering is performed in the temperature range, any quenching method can achieve a yield strength of 0.6% of 80 kg/mm2 or more. It is clear that the notch toughness is equivalent to that of CrMo steels A and B.

このように本発明方法によれば、Moの如き高価な元素
を節約できる経済効果並びに最適焼戻し処理温度が通常
のCrMo鋼の場合よりも100℃程度下がり、それに
伴った燃料を節減できる経済的効果は極めて大きく、高
強度で靭性の秀れた油井管材料の経済的生産に寄与する
ところが大である。
As described above, the method of the present invention has the economic effect of saving expensive elements such as Mo, as well as the economic effect of reducing the optimum tempering temperature by about 100°C compared to the case of ordinary CrMo steel, thereby saving fuel. is extremely large and greatly contributes to the economical production of oil country tubular materials with high strength and excellent toughness.

第1表(化学成分) 第2表(機械的性質)Table 1 (chemical components) Table 2 (mechanical properties)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る成分系における焼戻し温度と強度
ならびに靭性との関係を示すグラフである。 特許出願人 川崎製鉄株式会社 代 理 人 弁理士 松 下 義 勝 弁護士 副 島 文 雄
FIG. 1 is a graph showing the relationship between tempering temperature, strength, and toughness in the component system according to the present invention. Patent applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Attorney Vice Fumiyu Shima

Claims (1)

【特許請求の範囲】 1)重量パーセントでC0.2〜0.35%、Si0.
10〜0.50%、Mn1.0〜1.6%、P0.03
%以下、S0.02%以下、Cr0.2〜1.0%、V
0.02〜0.08%、Al0.02〜0.10%、T
i0.005〜0.050%、B0.0005〜0.0
050%、を含み、残部がFe及び不可避的不純物より
成る鋼を熱間加工後Ac3点以上の温度より焼入れ、続
いて450℃以上580℃以下の温度で焼戻すことを特
徴とする0.6%耐力80kg/mm2以上の高強度油
井管の製造方法。 2)重量パーセントでC0.20〜0.35%、Si0
.10〜0.50%、Mn1.0〜1.6%、P0.0
3%以下、S0.02%以下、CR0.2〜1.0%、
V0.02〜0.08%、Al0.02〜0.10%、
Ti0.005〜0.050%、B0.0005〜0.
0050%を含むとともにNi 0.10〜0.30%
若しくはNb0.015〜0.035%の一種又は2種
を含み、残部がFe及び不可避的不純物より成る鋼を熱
間加工後Ac3点以上の温度より焼入れ、続いて450
℃以上580℃以下の温度で焼戻すことを特徴とする0
.6%耐力80kg/mm2以上の高強度油井管の製造
方法。
[Claims] 1) C0.2-0.35% by weight, Si0.
10-0.50%, Mn1.0-1.6%, P0.03
% or less, S0.02% or less, Cr0.2-1.0%, V
0.02-0.08%, Al0.02-0.10%, T
i0.005~0.050%, B0.0005~0.0
0.6 characterized in that the steel containing 0.050% and the remainder consisting of Fe and unavoidable impurities is quenched at a temperature of Ac 3 or higher after hot working, and then tempered at a temperature of 450°C or higher and 580°C or lower. A method for producing high-strength oil country tubular goods having a % proof stress of 80 kg/mm2 or more. 2) C0.20-0.35% in weight percent, Si0
.. 10-0.50%, Mn1.0-1.6%, P0.0
3% or less, S0.02% or less, CR0.2-1.0%,
V0.02-0.08%, Al0.02-0.10%,
Ti0.005~0.050%, B0.0005~0.
0.050% and Ni 0.10-0.30%
Alternatively, steel containing 0.015 to 0.035% of Nb or 0.035% and the remainder consisting of Fe and unavoidable impurities is quenched at a temperature of Ac 3 or higher after hot working, followed by 450%
0 characterized by tempering at a temperature of ℃ to 580℃
.. A method for manufacturing high-strength oil country tubular goods having a 6% yield strength of 80 kg/mm2 or more.
JP14012783A 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength Granted JPS6033312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14012783A JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14012783A JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Publications (2)

Publication Number Publication Date
JPS6033312A true JPS6033312A (en) 1985-02-20
JPH0559176B2 JPH0559176B2 (en) 1993-08-30

Family

ID=15261523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14012783A Granted JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Country Status (1)

Country Link
JP (1) JPS6033312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873960A (en) * 1994-10-20 1999-02-23 Sumitomo Metal Industries, Ltd. Method and facility for manufacturing seamless steel pipe
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873960A (en) * 1994-10-20 1999-02-23 Sumitomo Metal Industries, Ltd. Method and facility for manufacturing seamless steel pipe
US6024808A (en) * 1996-04-19 2000-02-15 Sumitomo Metal Industries, Ltd. Seamless steel pipe manufacturing method and equipment

Also Published As

Publication number Publication date
JPH0559176B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US4814141A (en) High toughness, ultra-high strength steel having an excellent stress corrosion cracking resistance with a yield stress of not less than 110 kgf/mm2
US6248187B1 (en) Corrosion resisting steel and corrosion resisting oil well pipe having high corrosion resistance to carbon dioxide gas
US4062705A (en) Method for heat treatment of high-toughness weld metals
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
JPH05287455A (en) Martensitic stainless steel for oil well
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
JPS6033312A (en) Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength
JP2986601B2 (en) High-strength, tough steel for high-temperature pressure vessels
JPS5819438A (en) Production of steel pipe having high strength and high toughness
JPS61272351A (en) Steel pipe for oil well having high toughness as well as high strength
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPS5974221A (en) Production of high strength seamless steel pipe
JPS645098B2 (en)
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JP2752505B2 (en) High strength low alloy oil well steel with excellent low temperature toughness and sulfide stress corrosion cracking resistance
JPH0387317A (en) Production of steel tube or square steel tube having low yield ratio
JPS5996216A (en) Manufacture of high strength steel with superior sulfide cracking resistance
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JPS6358892B2 (en)
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
JPS62177124A (en) Manufacture of steel pipe for thermal well having low rate of creep deformation