JPS5996216A - Manufacture of high strength steel with superior sulfide cracking resistance - Google Patents

Manufacture of high strength steel with superior sulfide cracking resistance

Info

Publication number
JPS5996216A
JPS5996216A JP20578682A JP20578682A JPS5996216A JP S5996216 A JPS5996216 A JP S5996216A JP 20578682 A JP20578682 A JP 20578682A JP 20578682 A JP20578682 A JP 20578682A JP S5996216 A JPS5996216 A JP S5996216A
Authority
JP
Japan
Prior art keywords
steel
less
content
cracking resistance
sulfide cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20578682A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Yasuo Otani
大谷 泰夫
Teruo Kaneko
金子 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20578682A priority Critical patent/JPS5996216A/en
Publication of JPS5996216A publication Critical patent/JPS5996216A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the sulfide cracking resistance and yield strength of a steel contg. prescribed percentages of C, Si, Mn, P, S, Cr, Mo, Ti, Al and B by heat treating the steel under prescribed conditions. CONSTITUTION:A steel consisting of, by weight, 0.15-0.45% C, 0.05-0.8% Si, 0.3-1.7% Mn, <=0.015% P, <=0.01% Si, 0.2-1.5% Cr, 0.05-0.8% Mo, 0.005- 0.05% Ti, 0.01-0.1% Al, 0.0005-0.003% B and the balance Fe and satisfying Ti(%)<3.5XN(%) and 2.5XB(%)-1.5X10<-3N(%)<3XB(%)+1.2X10<-2> is refined. The steel is rapidly heated to (the Ac3 point+30 deg.C) or above in a short time and quenched. The heat treatment is repeated once or more to make the austenite grains fine up to ASTM grain size No.10 or above. The steel is then tempered at the Ac1 point or below.

Description

【発明の詳細な説明】 この発明は、降伏強度: 701(gf/rrui以上
の高強度を有するとともに、湿潤硫化水素環境において
優れた耐硫化物割れ性を発揮し、特に油井やガス井で使
用される機械構造部材、例えば油井管やラインパイプ、
さらには油井・ガス井の周囲に使用される装置用部材と
して用いるのに好適な油井用鋼の製造法に関するもので
ある。
Detailed Description of the Invention This invention has a high yield strength of 701 gf/rrui or more and exhibits excellent sulfide cracking resistance in a humid hydrogen sulfide environment, and is particularly suitable for use in oil and gas wells. mechanical structural parts, such as oil country tubular goods and line pipes,
Furthermore, the present invention relates to a method for producing oil well steel suitable for use as a member for equipment used around oil and gas wells.

近年、エネルギー事情の悪化に対処するため、新たな油
田やガス田の開発が盛んに行われるようになってきてお
り、従来放置されていたところの、深層にして、しかも
油やガスが硫化水素(H2S)で汚染されたいわゆるサ
ワーと呼ばれる環境下にある油田やガス田にまで開発の
目が向けられるようになってきた。従って、近年の石油
や天然ガスの生産分野(lこおいては、深井戸における
原油やガスの圧力、或いは鋼材の自重による引張り荷重
に耐え、さらにサワー環境で使用しても十分に所望性能
を発揮する、高強度でしかも硫化物割れに対して強い抵
抗力を有した鋼製品に関する要望が益々強くなってきて
いる。
In recent years, new oil and gas fields have been actively developed in order to cope with the deteriorating energy situation, and oil and gas are now being developed in deep layers, where they were previously left unattended. Development efforts are now turning to oil and gas fields that are contaminated with sour gas (H2S). Therefore, in recent years in the field of oil and natural gas production (l), it has become possible to withstand the pressure of crude oil or gas in deep wells, or the tensile load due to the weight of steel, and also to maintain the desired performance even when used in sour environments. There is an increasing demand for steel products that exhibit high strength and have strong resistance to sulfide cracking.

ところで、4111の耐硫化物割れ性を胃める手段につ
いては、1950年頃から種々の研究が進められており
、現在では、例えばN A CE StandardM
 R−01−’75 (1977Revision )
に示された硬度〔強度つの上限以下に鋼の強度を抑える
ことが、イσ;ら化物割れの防止に最も有効であるとの
認r1°& )下ニ、コhK基ツ< r L −s O
J (降伏強すの下限が800.00 psi (!5
’ 6.2 kgf/mt7 ) 〕がAPI規格に加
−えられてユーザーの要望に応えてきた。
By the way, various studies have been conducted since around 1950 on ways to improve the sulfide cracking resistance of 4111, and currently, for example, N A CE Standard M
R-01-'75 (1977Revision)
[It is recognized that suppressing the strength of steel below the upper limit of strength is the most effective way to prevent granite cracking. s O
J (lower limit of yield strength is 800.00 psi (!5
'6.2 kgf/mt7)] has been added to the API standard to meet user requests.

ところが、上述のように世界のエネルギー事情は酸性深
井戸の開発を活発化させており、深井戸用の油井管に低
強度品を用いるとその必要肉厚が必然的に厚くなり、経
済性或いは作業性の点で著しい不利を招くことがら、「
L−80」よりも一層強度が高く、かつ耐硫化物割れ性
に優れた鋼材が要求されるようにな9、特に最近におい
ては、降伏強すノ下限が90000 psi (63,
3kgf/m+Dを越す高強度油井管に対する要望も大
きくなっている。
However, as mentioned above, the world's energy situation is accelerating the development of acidic deep wells, and if low-strength oil country tubing is used for deep wells, the required wall thickness will inevitably increase, making it difficult to improve economic efficiency or Because it causes a significant disadvantage in terms of workability,
There is a growing demand for steel materials that are even stronger than "L-80" and have excellent sulfide cracking resistance.9 Especially recently, the lower limit of yield strength has been increased to 90,000 psi (63,
Demand for high-strength oil country tubular goods exceeding 3 kgf/m+D is also increasing.

従って、前記API規格のr L −80J 、J: 
、りもf萌Jνの商いケーシング管用鋼についても種々
の研究がなさ、tt、当初、高強度を比較的容易に実現
するマルテンサイト鎖が注目されたが、ケーシングとし
て使用する場合には比較的厚肉材とすることが多く、そ
の製造にあたってはシームレス製管法が採用されるので
、管内面からの焼入れが極めて困難でおって、製品の全
肉厚にわたって均一なマルテンサイト組織を得ることが
できず、ベイナイト組織が憾内面に生じてしまうことを
避は得なかった。そして、このベイナイト組織は、鋼の
耐食性に好結果をもたらさないので、結局は良好な耐食
性を確保できないと言う問題が依然として残るものでお
一つだ。
Therefore, r L −80J, J of the API standard:
, There has been no research on the steel for casing pipes of Rimo f Moe Jν.At first, attention was focused on martensitic chains, which relatively easily achieve high strength, but when used as casings, it is relatively difficult to use martensitic chains. They are often made of thick-walled materials and a seamless pipe manufacturing method is used to manufacture them, making it extremely difficult to harden the pipe from the inside, making it difficult to obtain a uniform martensitic structure over the entire wall thickness of the product. Unfortunately, it was inevitable that a bainite structure would occur on the inner surface. This bainite structure does not bring good results to the corrosion resistance of steel, so one problem that remains is that good corrosion resistance cannot be ensured after all.

そこで、焼入れ性向上元素たるBを添加し、さらにBを
有効に活用するためにT1をも添加した鋼を急速加熱β
゛L入れし、1湧強度と耐食性とを兼ね備えだ付和を得
ることも試みられたが、このような悶強度鋼においては
、依然として十分に満足できる耐食性を実現することが
できなかった。即ち、耐食性の確認のためには、第」、
乃至2図に示したようなシェルタイブの試験方法が、多
数の現場における実績との対比による研究の積み重ねの
結果開発されており、この試験によって測定されるV゛
υれ限界値(33c値)が、式、 をi’i!44足すれば割れの発生がないとされている
けれども、高強度鋼においてはこのような厳しい基準を
if”T1足するものはなかったのである。
Therefore, we added B, an element that improves hardenability, and in order to make effective use of B, we added T1 to the steel.
Attempts have also been made to obtain a combination of spring strength and corrosion resistance by adding 1L, but it has still not been possible to achieve sufficiently satisfactory corrosion resistance in such a steel with high tensile strength. In other words, in order to confirm corrosion resistance,
The shell-type test method shown in Figures 2 and 2 has been developed as a result of repeated research by comparing the actual results at many sites, and the V゛υ deviation limit value (33c value) measured by this test is , expression, i'i! It is said that if 44 is added, cracks will not occur, but there was no high-strength steel that met such a strict standard.

なお、シェルタイブ試験法とは、第1図に示されるよう
な、長さ方向の中央部にキリ孔を設けた試験片lに、第
2図に示す如く、3点支持曲げでその中央部に応力を伺
加し、腐食液中に浸偵して割れ率が50%となる見掛け
の応力を測定し、これを硫化物割れ限界応力値(以下、
Sc値と言う)とするものであり、第2図において、2
は直径4mmのガラス丸棒、3は荷重(応力)を付加す
るためのボルトである。
In addition, the shell type test method is as shown in Fig. 1, in which a test piece L is provided with a drilled hole in the center of its length, and as shown in Fig. The apparent stress at which the cracking rate is 50% is measured by adding stress and dipping into the corrosive liquid, and this is calculated as the sulfide cracking limit stress value (hereinafter referred to as
Sc value), and in Figure 2, 2
is a glass round rod with a diameter of 4 mm, and 3 is a bolt for applying load (stress).

また、これらの材料自身の改良の他に、鋼材をコーティ
ングしたり、腐食環境にインヒビターを注入する等の方
法も講じられているが、いずれも十分な成果を期待する
ことはできなかった。
In addition to improving these materials themselves, methods such as coating the steel material and injecting inhibitors into the corrosive environment have also been taken, but none of these methods have been able to produce satisfactory results.

本発明者等は、上述のような観点から、 Sc値が、式
、Sc上(S M Y S / 0.75 ) X 1
0−’を満たすとともに、降伏強度が? OkgfAn
―以」二の高強度を備え、サワー環境下で使用される油
井管としても十分に、満足できる性能を持つ鋼材を得る
べく研究を行ったところ、 高強度鋼材において、前記所定値以上のSc値を満たし
、かつ70 kgf/mm以上の高強度を実現するには
、 ■ 1rliii材組織がマルテン°サイト組織である
こと、■ オーステナイトの結晶粒度がA S T M
 Aで10以」二の氷曲才立であること、 ■ 焼入れ・性向上のために添加しだBを含む粗大なカ
ーバイド(ボロカー・ぐイド)が結晶粒界に析出してい
ないこと。
From the above-mentioned viewpoint, the present inventors have determined that the Sc value is determined by the formula, Sc (S MY S / 0.75) X 1
0-' and the yield strength? OkgfAn
- We conducted research to obtain a steel material with the following high strength and satisfactory performance as oil country tubular goods used in sour environments. In order to satisfy this value and achieve high strength of 70 kgf/mm or more, ■ the 1rliiii material structure must be a martensite structure, ■ the austenite grain size must be A S T M
The grain must have a hardness of A of 10 or more; ■ Coarse carbide containing B added to improve hardening and properties must not be precipitated at grain boundaries.

の3つの条件が欠かせないものであることを見出し、こ
の3条件を満足した厚肉鋼材を得るには、(a)  j
liω材組成が、低Pで、しかもB及びT1を添加した
焼入れ性の良好なものであること、(b)  通常、B
添加鋼は焼入れ性を最大限に利用するために含有NをT
1で固定するが、この場合、確かにJ3’5入れ性は非
常に向」ニするけれども、結晶粒が細粒とならなくなる
。従って、オーステナイトの結晶粒を細粒とするだめに
は、T1で固定されないNを残す必要があり、Tiの添
加量を、式、Tj、(%)<3.5XN(%) を711〜足するように調整する必要があること(以下
係は重量係とする〕、 (C)  オーステナイI・の細粒化を図るためには、
焼入れ11−1に急速加熱することが必要であり、しが
も極厚肉品等では所望の結晶粒を得るために2回り、上
のか′L入れ処理を繰返す必要があること、(d)  
鋼中に、式、 N(%l> 2.5 X B(%l−1,5X 10−
”を満すNが存在していれば、粗大なボロカーバイドが
析出しなくなってjl;4j材の耐食性を劣化させない
こと、 (e)鋼中のN量が、式、 N(%)(3×8(%)+1.2X10を満たせばBの
焼入性効果を発揮させて耐食性が上がること。
It was discovered that the following three conditions are essential, and in order to obtain a thick steel material that satisfies these three conditions, (a) j
The liω material composition is low in P and has good hardenability with the addition of B and T1; (b) Usually, B
In addition steel, the content of N is reduced to T to maximize hardenability.
In this case, the J3'5 insertion property is certainly very good, but the crystal grains are no longer fine. Therefore, in order to make the austenite crystal grains fine, it is necessary to leave N that is not fixed at T1, and the amount of Ti added is determined by the formula, Tj, (%) < 3.5XN (%). (C) In order to make Austenai I. finer,
It is necessary to heat rapidly in quenching 11-1, and in order to obtain the desired crystal grains for extremely thick-walled products, it is necessary to repeat the upper curving process twice, (d)
In steel, the formula N(%l>2.5X B(%l-1,5X 10-
If there is N that satisfies the following, coarse borocarbide will not precipitate and the corrosion resistance of the material will not deteriorate. (e) The amount of N in the steel is expressed by the formula, If ×8 (%) + 1.2X10 is satisfied, the hardenability effect of B will be exhibited and corrosion resistance will increase.

以上(a)〜(elに示す如き知見を得るに至ったので
ある。
The findings shown in (a) to (el) have been obtained above.

この発明は、」−記知見に基づいてなされたものであっ
て、C:○15〜0.45%、Si:0.05〜080
%、 Mn: 0.30〜1.70%、P:0.015
%卯、下、S:0.01.0%以下、 Cr: 0.2
0〜1.50% 、   Mo’、   0. 0 5
 〜080 % 、   Tj:   0.0 0 5
 〜0.050%、 Afl : 0.01〜0.10
 %、  B:O,0O05〜0. OO30%を含有
するか、或いはさらに、Nb:001〜0.10%、 
 V : 0.01〜O1O%、Cu:0.10〜05
0係のうちの1種以上をも含有するとともに、式、 Tl(%)’<3.5xN(係)、及び、25X B(
%)−1,5X 10− (N(%に3XB(%)+1
.2X10−”。
This invention was made based on the findings, C: ○15-0.45%, Si: 0.05-080%.
%, Mn: 0.30-1.70%, P: 0.015
% Rabbit, bottom, S: 0.01.0% or less, Cr: 0.2
0-1.50%, Mo', 0. 0 5
~080%, Tj: 0.0 0 5
~0.050%, Afl: 0.01~0.10
%, B:O,0O05~0. Contains 30% OO, or further contains Nb: 001-0.10%,
V: 0.01~O1O%, Cu: 0.10~05
It also contains one or more of the coefficients 0 and 25X B(
%)-1,5X 10- (N(% to 3XB(%)+1
.. 2X10-”.

を満足し、Fe及び不可避不純物:残り、から成る鋼に
、〔AC3点+30℃〕以上の温度域まで急速短時間加
熱後焼入れるという処理を1回以上施してオーステナイ
ト結晶粒度をA ’S T M A 10以上に微細化
し、その後、AC7点以下の温度に焼戻すことによって
、耐硫化物割れ性に優れ、しかも降伏強度、70に9f
/ma以」二を有する6+hiを製造することに特徴を
有するものである。
Steel consisting of Fe and unavoidable impurities (remaining) is subjected to a process of rapid short-term heating to a temperature range of [AC 3 points + 30°C] or higher and quenching at least once to reduce the austenite grain size to A'S T. M
It is characterized in that it produces 6+hi having a value of /ma or less.

つぎに、この発明において、鋼の組成成分量。Next, in this invention, the amount of compositional components of steel.

焼入れの際の加熱温度、及びオーステナイト結晶粒1度
をそれぞれ上記のように限定した理由を説明する。
The reason why the heating temperature during quenching and the degree of austenite grain size are limited as described above will be explained.

A1組成成分 a)  C C成分は、鋼の焼入れ性増加1強度増加、セして細粒化
に有効な元素であるが、その含有量が0.15%を下回
ると強度低下及び焼入れ外方化を来たし、従って所望強
度に対して低温での焼戻しを余儀なくされる上、繰返し
の急速加熱焼入れ処理によってもASTIV4A10以
上の細粒組織を得ることが困難となって硫化物割れ感受
性が大となり、一方0.45%を越えて含有させると、
焼入れ時の焼割れ感受性を増大させ、また急速加熱する
際にオーステナイト中への均一な固溶が困難となること
に加えて、Bの焼入れ性増大効果を極めて小さくするこ
とから、その含有量を0.15〜0.4.5係と定めた
A1 Composition component a) C The C component is an element that is effective in increasing the hardenability, increasing the strength, and refining the grains of steel. However, if its content is less than 0.15%, the strength decreases and the hardening process deteriorates. Therefore, it is necessary to temper at a low temperature to achieve the desired strength, and it is difficult to obtain a fine grain structure of ASTIV4A10 or higher even with repeated rapid heating quenching treatments, resulting in increased susceptibility to sulfide cracking. On the other hand, if the content exceeds 0.45%,
In addition to increasing the susceptibility to quench cracking during quenching and making it difficult to form a uniform solid solution in austenite during rapid heating, B's hardenability increasing effect is extremely small. It was set as 0.15 to 0.4.5.

b)  、Si $1はjJlYjの脱酸成分として有効な元素であるほ
か、強度及び焼入れ性を増大させる作用があるが、その
含有量が005%未満では前記作用に所望の効果を得る
ことができず、一方0.80係を越えて含有させると、
硫化物割れ感受性を増大し、さらに靭性劣化が著しくな
ることから、その含有量を0.05〜0.80%と定め
た。
b) Si $1 is an effective element as a deoxidizing component of jJlYj and also has the effect of increasing the strength and hardenability, but if its content is less than 0.005%, the desired effect cannot be obtained in the above effect. On the other hand, if the content exceeds 0.80,
Since sulfide increases susceptibility to cracking and significantly deteriorates toughness, its content is set at 0.05 to 0.80%.

C)  Mn Mn成分には、焼入れ性を増大し、強度及び靭性をも改
善する作用があるが、その含有量が0.30%未満では
前記作用に所望の効果が得られず、一方170%を越え
て含有させると、偏析帯を形成して靭性の劣化、硫化物
割れ感受性の増大、及び焼割れ感受性の増加をもたらす
ようになることから、その含有量を0.30〜1.70
%と定めた。
C) Mn The Mn component has the effect of increasing hardenability and improving strength and toughness, but if its content is less than 0.30%, the desired effect cannot be obtained; If the content exceeds 0.30 to 1.70, segregation bands will be formed resulting in deterioration of toughness, increased susceptibility to sulfide cracking, and increased susceptibility to quench cracking.
%.

d)  P P分は、鋼の硫化物割れ感受性を増大する不純物元素で
あるか、その含有量が0015%を越えると所望のSc
値を辻成することができなくなることから、その含有量
をO,O’15%以下と定めた。
d) P The P content is an impurity element that increases the sulfide cracking susceptibility of steel, or if its content exceeds 0.015%, the desired Sc
Since the values cannot be reached, the content is set at 15% or less of O and O'.

e)  S 靭性の向上、及び耐硫化物割れ性の向上のために、不純
物元素である8分は可及的に少なくするのが望ましいが
、鋼の製造コストとのバランスを考慮して、その含有量
を0.010%以下と定めた。
e) S In order to improve toughness and sulfide cracking resistance, it is desirable to reduce the impurity element 8 as much as possible, but considering the balance with the manufacturing cost of steel, The content was set at 0.010% or less.

f)  Cr Cr成分には、耐腐食性を向上させるとともに、焼入れ
性と焼戻し軟化抵抗性を増大させる作用があるが、その
含有量が0.20%未満では前記作用に所望の効果を1
4)ることかできず、一方1.50%を越えて含有させ
ると、急速加熱する際にオーステナイト中への均一な固
溶が困難と在るほか、靭性の劣化、及び焼割れ感受性の
増大をも来たすことから、その含有量を0.20 = 
1.50 %と定めた。
f) Cr The Cr component has the effect of improving corrosion resistance as well as increasing hardenability and temper softening resistance, but if its content is less than 0.20%, the desired effect is not achieved.
4) On the other hand, if the content exceeds 1.50%, it will be difficult to form a uniform solid solution in austenite during rapid heating, as well as deterioration of toughness and increased susceptibility to quench cracking. Since it also causes the content, the content is 0.20 =
It was set at 1.50%.

g)  M。g) M.

Mo成分には、鋼の焼入れ性及び強度を上昇させ、土た
焼戻しi(φ、化抵抗を増大させるとともに、靭性の改
善をなす作用があるが、その含有量が0.05%未満で
は前記作用に所望の効果を得ることができず、一方08
0%を越えて含有させても、それ以上の向上効果が得ら
れないばかりでなく、急速加熱の際にオーステナイト中
への均一な固溶が困難となることから、その含有量を0
.05〜08゜裂と定めた。
The Mo component has the effect of increasing the hardenability and strength of steel, increasing the resistance to hardening, and improving toughness, but if its content is less than 0.05%, the above-mentioned The desired effect cannot be obtained in the action, while 08
Even if the content exceeds 0%, not only will no further improvement effect be obtained, but also it will be difficult to achieve a uniform solid solution in austenite during rapid heating, so the content should be reduced to 0%.
.. The fissure was determined to be 05-08°.

h)  Ti Ti成分には、jll中NをTiNとして固定し、共存
するBの焼入れ性の効果を十分に発揮せしめる作用があ
るが、その含有量が0.005%未満では前記作用に所
望の効果を得ることができず、一方、○050飴を越え
て含有させると鋼の靭性が劣化するようになることから
、その含有量をO,OO5〜0050饅と定めた。
h) Ti The Ti component has the effect of fixing N in the jll as TiN and fully exhibiting the hardenability effect of the coexisting B, but if its content is less than 0.005%, the desired effect may not be achieved. On the other hand, if the content exceeds ○050, the toughness of the steel deteriorates, so the content was set as O,OO5~0050.

1)AQ A66分は、鋼の脱酸を安定化するために添加されるも
のであるが、その含有量が0.01 %未満ではその効
果が小さく、一方0.10%を越えて含有させても脱酸
効果はそれ以」−の向]−をみせず、しかも介在物によ
る疵の発生や靭性の劣化を来たゴーようになることか1
ら、その含有量を0.01〜0.10係と定めた。
1) AQ A66 is added to stabilize the deoxidation of steel, but if its content is less than 0.01%, its effect will be small; on the other hand, if it is contained in excess of 0.10%, However, the deoxidizing effect does not show any further deoxidation effect, and furthermore, it may cause cracks due to inclusions and deterioration of toughness.
The content was determined to be between 0.01 and 0.10.

J)B ■3構成は、微量の7d’>加で焼入れ性を向」ニさせ
、強度、靭性、及び耐硫化物割れ性をも改善する作用を
有しているが、その含有量がO,OOO5%未満では前
記作用に所望の効果を得ることができず、一方、O,、
0030%を越えて含有させてもそれ以上の効果の向上
は望めず、逆に靭性が劣化するようになる場合もあるこ
とから、その含有量をO,OOO5〜O,OO30%と
定めた。
J) B ■3 composition has the effect of improving hardenability with a small amount of 7d' addition, and also improving strength, toughness, and sulfide cracking resistance, but if the content is O , OOO less than 5%, the desired effect cannot be obtained; on the other hand, O, .
Even if the content exceeds 0.030%, no further improvement in the effect can be expected, and on the contrary, the toughness may deteriorate. Therefore, the content was set at 5% to 30%.

k)Nb、及びV Nb及び■成分には、いずれもオーステナイト粒を微細
化し、また焼戻し軟化抵抗を増大する作用があるので、
特にこれらの特性を向上させる場合に必要に応じて含有
させるものであるが、その含有量′がいずれも0.0.
1%未満では前記作用に所望の効果を得ることができず
、一方0.10%を越えて含有させると靭性劣化を招く
ようになることから、それぞれの含有量を0.01〜0
10%と定めた。
k) Nb and V Nb and component (2) both have the effect of refining austenite grains and increasing temper softening resistance.
In particular, it is added as necessary to improve these properties, but the content 'is 0.0.
If the content is less than 1%, the desired effect cannot be obtained, while if the content exceeds 0.10%, toughness will deteriorate.
It was set at 10%.

l)   C1ユ Cu成分には、鋼の水素吸収を抑えて耐硫化物割れ性を
向上させる作用があるので、耐硫化物割れ性をより向上
させたい場合に必要に応じて含有させるものであるが、
その含有量が0.10%未満では前記作用に所望の効果
を得ることができず、一方050係を越えて含有させる
と熱間加工性が劣化するようになることから、その含有
量を010〜0.50%と定めた。
l) The C1 Cu component has the effect of suppressing hydrogen absorption of steel and improving sulfide cracking resistance, so it is included as necessary when it is desired to further improve sulfide cracking resistance. but,
If the content is less than 0.10%, the desired effect cannot be obtained, while if the content exceeds 0.10%, hot workability will deteriorate. It was set at ~0.50%.

なお、先に説明したように、Ti含有量(%)が3、5
 X N(%)以上であるとT1で固定されないフリー
のNが少くなって所望の細粒組織を得ることができなく
なり、まだ、T1添加したB処理鋼においては、Nの含
有量(%)が2.5 X B (%)−1,5X10以
下であると粗大々ボロカーバイドが析出し、ASTM7
ii10以上の細粒鋼が得られたとしても耐食性が劣化
してしまって所望の特性を具備したfJ:(jが得られ
なくなシ、更にNの含有量(鉤が3×B(%)+12×
1丁2以上であるとBの焼入性向」二作用が得られず耐
食性力嘗客ちることから、 Ti(%)< 3.5 X r、r (%l、及び、2
、5  X  B (%l −1,5X  I  O<
N(%)<3XB(%)+1.2×ユO2なる制限を設
けた。
In addition, as explained earlier, when the Ti content (%) is 3 or 5
If it is more than X N (%), the amount of free N that is not fixed by T1 will decrease, making it impossible to obtain the desired fine-grained structure, and the N content (%) will still be lower in B-treated steel with T1 added. If it is less than 2.5 x B (%) - 1.5 x 10, coarse borocarbide will precipitate and ASTM7
ii Even if a fine-grained steel with a grain size of 10 or more is obtained, the corrosion resistance deteriorates and fJ: (j cannot be obtained), and the N content (the hook is 3 x B (%) +12×
If it is more than 2, the hardening tendency of B cannot be obtained and the corrosion resistance will be reduced. Therefore, Ti (%) < 3.5
,5X B (%l −1,5X I O<
A restriction was set: N(%)<3XB(%)+1.2×YO2.

B・ 加熱温度 加熱温度が(Ac3点+30℃〕未/i14では、この
発明の方法における如き急速短時間加熱法によっては鋼
材組織を均一完全にオーステナイト化することが困難で
るることから、焼入れの際の加熱温度をCAc3点+3
0℃〕以上と定めメこ。
B. Heating temperature: When the heating temperature is (Ac3 points + 30°C) or less than /i14, it is difficult to uniformly and completely austenite the steel structure using the rapid short-time heating method as in the method of this invention. Increase the heating temperature by CAc3 points +3
0℃] or above.

急速加熱の方法は、誘導加熱法や直接通電加熱法等が採
用できるが、通常は高周波誘導加熱法を用いるのが一般
的である。この場合、U肉品ではc:6い周波数を用い
た高速加熱が可能であるが、厚肉品では加熱速度が低く
なると共に温度勾配が大きくなるため、周波数を低くす
る必要があり、昇’l+A 4度はどうしても低くなる
。いずれにしろ、通常1〜12j5℃/ secの加熱
速度が適用できるが、j’l:rl成分によっても異な
るものの、1〜bの比較的ゆっくりした昇温速度の場合
には2度、或いはそれ以上の繰返し焼入れをすることに
よシ、安定して、かつ整粒のJ11zlO以下の細粒が
得られるので望ましい。
As a method for rapid heating, an induction heating method, a direct current heating method, or the like can be employed, but it is common to use a high frequency induction heating method. In this case, high-speed heating using a c:6 frequency is possible for U-thick products, but for thick-walled products, the heating rate becomes lower and the temperature gradient becomes larger, so it is necessary to lower the frequency. l+A 4th degree is inevitably lower. In any case, a heating rate of 1 to 12j5℃/sec can usually be applied, but in the case of a relatively slow heating rate of 1 to b, a heating rate of 2 degrees or less may be applied, although it varies depending on the j'l:rl component. By repeating the above-described quenching process, it is possible to stably and uniformly obtain fine grains of J11zlO or less, which is desirable.

C,オーステナイト結晶粒度 オーステナイト結晶粒度がASTMAIO未満の粗粒に
なると耐硫化物割れ性が極端に悪くなることから、該粒
度をA S T M j6.10以上と定めた。
C. Austenite grain size If the austenite grain size becomes coarse grains less than ASTM AIO, the sulfide cracking resistance becomes extremely poor, so the grain size was determined to be ASTM j6.10 or more.

このように、この発明の方法は、所定成分で構成された
鋼を溶製した後、通常の方法によって厚根、棒鋼、釦、
lご[等に加工し、これを誘導加熱法や直接通電加熱法
等の急速短時間加熱法により、CAc3点+30℃〕以
上の温度まで加熱して組織を完全にオーステナイト化し
た後、適轟な冷却媒体によって焼入れする処理を少なく
とも1回以上繰返し、合金元素をオーステナイト中に均
一に固溶させて、かつオーステナイト結晶粒度をAST
M扁1o以上の超細粒組織とし、続いて、焼入れによっ
て生成したマルテンサイトを十分に焼戻しすることによ
って耐硫化物割れ性を付与するのである。即ち、Ac1
点以下の温度に焼戻しすることによって、それぞれの用
途に適した701曽f/m77以上の強度と耐硫化物割
れ性の優れた鋼を製造するもので、この11.゛背晶焼
戻し処理が、焼入れによって生成したマルテンサイトの
内部応力除去やセメンタイI・の球状化をfx L、鋼
に所望の性能を現出するのである。
As described above, the method of the present invention is to melt steel composed of predetermined components and then process it into steel bars, bars, buttons, etc. by the usual method.
1, etc., and heat it to a temperature of CAc 3 points + 30°C or higher using a rapid short-time heating method such as induction heating or direct current heating to completely change the structure to austenite. The quenching treatment with a cooling medium is repeated at least once to uniformly dissolve the alloying elements in the austenite and reduce the austenite grain size to AST.
Sulfide cracking resistance is imparted by creating an ultra-fine grain structure with an M diameter of 1o or more, and then sufficiently tempering the martensite generated by quenching. That is, Ac1
By tempering the steel to a temperature below 11.0, a steel with a strength of 701 sof/m77 or higher and excellent resistance to sulfide cracking, which is suitable for each use, is manufactured. ``The back crystal tempering process relieves the internal stress of martensite generated by quenching and spheroidizes cementite I, thereby giving the steel the desired performance.

ついで、この発明を実施例により比紋例と対比しながら
説明する。
Next, the present invention will be explained with reference to examples and in comparison with comparative examples.

実施例 まず、通常の方法によって第]−表に示される如き成分
組成の鋼A〜゛Pを溶製した。鋼A〜王は、この発明の
範囲内の組成を有しているものであり、鋼J−Tは第1
表中の※印を付した点において本発明の範囲からは外れ
だ組成のものである。
EXAMPLE First, steels A to P having the compositions shown in Table 1 were melted by a conventional method. Steel A to King have compositions within the scope of this invention, and Steel J-T has the composition within the scope of this invention.
The points marked with * in the table have compositions that are outside the scope of the present invention.

つぎに、これらを第2表に示される条件にて焼入れし、
Ac、点−25℃の温度でわ1と戻しを行った。
Next, these were quenched under the conditions shown in Table 2,
Ac, reconstitution was carried out at a temperature of -25°C.

このような処理を施した各鋼について、オーステナイト
粒度番号(ASTMA)、強度、及び耐食性を測定し、
その結果を第2表に併せて示した。
For each steel treated in this way, the austenite grain size number (ASTMA), strength, and corrosion resistance were measured,
The results are also shown in Table 2.

なお、耐食性については、各個から第1図に示したよう
な試験片を切り出し、第2図に示したような試験片支持
具にて該試験片を支持し、腐食液組成:05%CH3C
OOCH3C00H−4−2200−3200pp、温
度:20℃、浸油時間:20日間の条件での試験にてS
c値を測定し、その値で示した。そして、第2表中の※
印は、本発明の条件から外れた条件であることを示すも
のである。
Regarding corrosion resistance, a test piece as shown in Fig. 1 was cut out from each piece, and the test piece was supported with a test piece support as shown in Fig. 2, and a corrosive liquid composition: 05% CH3C
S in a test under the conditions of OOCH3C00H-4-2200-3200pp, temperature: 20℃, oil immersion time: 20 days.
The c value was measured and expressed as that value. And in Table 2 *
The mark indicates that the conditions deviate from the conditions of the present invention.

第2表に示される結果からも、Qrtjの成分組成及び
熱処理条件が本発明の範囲内の試験Mf号l−9のもの
は、A S T M77θ]、0以上の超細粒オーステ
ナイト結晶粒を生じ、強度並びに耐硫化物割れ性が極め
てすぐれているのに対して、成分J↓成、 tub入れ
時の加熱温度、及び加熱手段のいす、l′1.かが本発
明の範囲から外れている試験番号10〜26のものは、
強度にそれほどの差がないとしても、耐硫化物割れ性が
格段に劣っていることが明白である。
From the results shown in Table 2, the test Mf No. 1-9, whose Qrtj component composition and heat treatment conditions are within the scope of the present invention, has ultrafine austenite crystal grains of 0 or more. However, the composition of the component J↓, the heating temperature when inserting the tube, the chair of the heating means, and the l'1. Test numbers 10 to 26, which are outside the scope of the present invention, are
Even if there is not that much difference in strength, it is clear that the sulfide cracking resistance is significantly inferior.

上述のように、この発明によれば、降伏強度が’70 
kgf/mr4以」二という極めて高い強度を有してい
るとともに、摩れだ耐硫化物割れ性をも兼ね備えた調料
を、比較的fiil単容易に製造することができ、サワ
ー環境下の油田或いはガス田開発の大きな問題点を解決
して、エネルギー資源開発等に対する多大な貢献が可能
となるなど、工業上有用な効果かも/こらされるのであ
る。
As mentioned above, according to the present invention, the yield strength is '70
It is relatively easy to produce a preparation that has an extremely high strength of 4 kgf/mr or more and is resistant to abrasion and sulfide cracking, and can be used in oil fields under sour environments or It may/will have industrially useful effects, such as solving major problems in gas field development and making it possible to make a significant contribution to energy resource development.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシェルタイブ耐食試験片の例を示すもので、′
第1図(a)はその正面図、第1図(b)はその側iJ
′11図であり、第2図は試験片を試験片支持具に支持
した状態を示す概略構成図である。 図面において、 ] 試験片、     2・・ガラス丸棒、3 応力刊
加ボルト。 出願人  住友金属工業株式会社
Figure 1 shows an example of a shell type corrosion resistance test piece.
Figure 1(a) is its front view, Figure 1(b) is its side iJ.
11, and FIG. 2 is a schematic configuration diagram showing a state in which a test piece is supported on a test piece support. In the drawings: ] Test piece, 2. Glass round bar, 3. Stressed bolt. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 け)C:O,15〜045 %。 Si:0.05〜080%。 Mu  :  0.3 0 〜1.70  % 。 F):0.015チ以下。 S:0.0IO%以下。 Cr: 0.20〜1.50%。 Mo:005〜0.80%。 T1.0005〜0.050%。 AC3001〜010%。 B:O,0O05〜O,OO30チ。 を含有するとともに、式、 ’I’i(%)(3,5XN(鉤。 3 及び、 2.5xB(%)−15x1o (N(%に3
xB(%)−1−1,2x1o−2を満足し。 Fe及び不可避不純物:残り。 から成る鋼(以上重量多)に、[Ac3点+50℃]以
上の温度域まで急速短時間加熱後焼入れるという処理を
1回以上施してオーステナイト結晶粒度をA S T 
M A 10以上に微細化し、その後、AC。 点以下の温度に焼戻しすることを特徴とする、耐硫化物
割れ性の優れた高強度鋼の製造方法。 (2)  C: 0.15〜045%。 Si:0.05〜0.80%。 Mn、’0.30〜1.70%。 P:0.015%以下。 S:0.010%以下。 Cr : 0.20〜1.50%。 Mo: 0.05〜0.80%。 Ti:0.005〜0.050%。 AQ : 0.01〜010%。 8.00005〜O,OO30%。 を含有するとともに、 Nl):O,Ol 〜010 %。 V : 001〜0.10  %。 Cu:0.10〜050 %。 のうちの1種以上をも含有し、さらに、式、T、H,(
%)(3,5X ’N (%)。 及び、2.5XB(%)−1,5X 10 <N(%)
(3XB(%)j−1゜2X10  。 を614足し、 Fe及び不可避不純物:残り。 から成る鋼(以上重量係、)に、〔AC3点+30℃〕
以」二の温度域まで急速短時間加熱後焼入れるという処
理を1回以上施してオーステナイト結晶粒度をAS’T
M/)’10以上に微細化し、その後、Ac。 点板下の温度に焼戻しすることを特徴とする、耐硫化物
割れ性の優れた高強度鋼の製造方法。
[Claims] K) C: O, 15-045%. Si: 0.05-080%. Mu: 0.30 to 1.70%. F): 0.015 inch or less. S: 0.0IO% or less. Cr: 0.20-1.50%. Mo: 005-0.80%. T1.0005-0.050%. AC3001-010%. B: O,0O05~O,OO30chi. and the formula 'I'i (%) (3,5
xB(%)-1-1, 2x1o-2 is satisfied. Fe and inevitable impurities: Remaining. The austenite grain size is changed by applying one or more times of rapid short-term heating to a temperature range of [Ac 3 points + 50°C] or higher, followed by quenching, to a steel (with a weight greater than or equal to the above).
Miniaturization to M A 10 or more, then AC. A method for producing high-strength steel with excellent sulfide cracking resistance, which is characterized by tempering to a temperature below 100 ml. (2) C: 0.15-045%. Si: 0.05-0.80%. Mn, '0.30-1.70%. P: 0.015% or less. S: 0.010% or less. Cr: 0.20-1.50%. Mo: 0.05-0.80%. Ti: 0.005-0.050%. AQ: 0.01-010%. 8.00005~O, OO30%. and Nl):O,Ol ~010%. V: 001-0.10%. Cu: 0.10-050%. It also contains one or more of the following, and further has the formula, T, H, (
%) (3,5X 'N (%). And 2.5XB (%) - 1,5X 10 <N (%)
(Add 614 of 3XB (%) j-1゜2X10. Fe and unavoidable impurities: the rest.) To the steel (weight ratio), [AC 3 points + 30℃]
The austenite grain size is changed to AS'T by performing rapid heating to a temperature range of 2 or more times and then quenching.
M/) '10 or more, and then Ac. A method for producing high-strength steel with excellent sulfide cracking resistance, which is characterized by tempering to a temperature below the dot plate.
JP20578682A 1982-11-24 1982-11-24 Manufacture of high strength steel with superior sulfide cracking resistance Pending JPS5996216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20578682A JPS5996216A (en) 1982-11-24 1982-11-24 Manufacture of high strength steel with superior sulfide cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20578682A JPS5996216A (en) 1982-11-24 1982-11-24 Manufacture of high strength steel with superior sulfide cracking resistance

Publications (1)

Publication Number Publication Date
JPS5996216A true JPS5996216A (en) 1984-06-02

Family

ID=16512646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20578682A Pending JPS5996216A (en) 1982-11-24 1982-11-24 Manufacture of high strength steel with superior sulfide cracking resistance

Country Status (1)

Country Link
JP (1) JPS5996216A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619519A (en) * 1984-06-25 1986-01-17 Sumitomo Metal Ind Ltd Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JPS61163215A (en) * 1985-01-11 1986-07-23 Kawasaki Steel Corp Manufacture of extremely thick and high strength seamless steel pipe superior in sour resistance
CN100351418C (en) * 2004-07-26 2007-11-28 住友金属工业株式会社 Steel product for oil country tubular good
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
CN104498830A (en) * 2014-12-30 2015-04-08 南阳汉冶特钢有限公司 Novel alloy structure steel and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619519A (en) * 1984-06-25 1986-01-17 Sumitomo Metal Ind Ltd Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JPS61163215A (en) * 1985-01-11 1986-07-23 Kawasaki Steel Corp Manufacture of extremely thick and high strength seamless steel pipe superior in sour resistance
JPH0156125B2 (en) * 1985-01-11 1989-11-29 Kawasaki Steel Co
CN100351418C (en) * 2004-07-26 2007-11-28 住友金属工业株式会社 Steel product for oil country tubular good
JP2011246798A (en) * 2009-06-24 2011-12-08 Jfe Steel Corp High-strength seamless steel tube for oil well with excellent resistance to sulfide stress cracking, and method for producing the same
EP2447386A1 (en) 2009-06-24 2012-05-02 JFE Steel Corporation High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same
JP2015038247A (en) * 2009-06-24 2015-02-26 Jfeスチール株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well and method for producing the same
US9234254B2 (en) 2009-06-24 2016-01-12 Jfe Steel Corporation High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
CN104498830A (en) * 2014-12-30 2015-04-08 南阳汉冶特钢有限公司 Novel alloy structure steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
CN101353765A (en) Steel for CT80 grade coiled tubing, and manufacturing method and use thereof
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JPS6086209A (en) Manufacture of steel having high resistance against crack by sulfide
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS5996216A (en) Manufacture of high strength steel with superior sulfide cracking resistance
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS58136715A (en) Production of steel for oil well
JPS6086208A (en) Manufacture of steel having high resistance against cracks by sulfide
JPS609825A (en) Production of tough and hard steel
JPS6052521A (en) Manufacture of steel having superior resistance to sulfide cracking
JPS616208A (en) Manufacture of low-alloy high-tension steel having superior resistance to sulfide stress corrosion cracking
JPS5974221A (en) Production of high strength seamless steel pipe
JPS6160822A (en) Manufacture of high strength steel having superior resistance to delayed fracture
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPS61223164A (en) High strength steel for oil well having superior resistance to sulfide stress corrosion cracking
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JP2541389B2 (en) Method of manufacturing low yield ratio high strength steel
JPS5996217A (en) Manufacture of steel with superior sulfide cracking resistance
JPS6046317A (en) Preparation of steel excellent in sulfide cracking resistance