JPS62278251A - Low-alloy steel excellent in stress corrosion cracking resistance - Google Patents

Low-alloy steel excellent in stress corrosion cracking resistance

Info

Publication number
JPS62278251A
JPS62278251A JP11955086A JP11955086A JPS62278251A JP S62278251 A JPS62278251 A JP S62278251A JP 11955086 A JP11955086 A JP 11955086A JP 11955086 A JP11955086 A JP 11955086A JP S62278251 A JPS62278251 A JP S62278251A
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
alloy steel
low
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11955086A
Other languages
Japanese (ja)
Inventor
Kazutoshi Shimogoori
下郡 一利
Kazuo Fujiwara
藤原 和雄
Yasushi Torii
康司 鳥井
Kiyoshi Sugie
杉江 清
Takenori Nakayama
武典 中山
Mutsuhiro Miyagawa
宮川 睦啓
Kikuo Morita
森田 喜久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11955086A priority Critical patent/JPS62278251A/en
Publication of JPS62278251A publication Critical patent/JPS62278251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a low-alloy steel excellent in stress corrosion cracking resistance and suitable for steam turbine material, by adding specific alloy contents to an Ni-Cr-Mo low-alloy steel and also by limiting respective contents of Si, Mn, and P to specific ranges. CONSTITUTION:The low-alloy steel used as a material for steam turbines driven by high-temp. and high-pressure steam has a composition containing, by weight, <=0.40% C, <=0.15% Si, <=0.60% Mn, <=0.010% P, <=0.030% S, 0.50-4.00% Ni 0.50-2.50% Cr, 0.25-4.00% Mo, and <=0.30% V, satisfying the compositional relations in Si+Mn+2P<=0.75%, and further containing either or both of 0.001-0.50%, in total, of at least one element among Al, Ti, Nb, W, B, and Ce and 0.003-0.015% Sn. Moreover, the above steel is an Ni-Cr-Mo low-alloy steel excellent in stress corrosion cracking resistance having a structure in which old austenite grain size is regulated to >=4 by ASTM grain size number.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、蒸気タービン等の材料として使用さノ1、不
妊仝全迎−説1どは二1..ゲルクロ人モ11ブデン綱
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is used as a material for steam turbines, etc. .. Concerning the 11th class of Gelcuronians.

〈従来の技術〉 一般に、高温高圧(略300°C,70kg/cm’)
の水蒸気で駆動される蒸気タービンの材料には、広い温
度範囲にわたる優れた強度と靭性が要求され、この特性
をAたす材料として強靭鋼であるバナジウム添加のニッ
ケルクロムモリブデン鋼が使用されている。この鋼は、
周知の如く焼戻し脆性に敏感なニッケルクロム強靭鋼に
微細炭化物叶出元素であるモリブデンやバナジウムを添
加して、高焼戻し温度における軟化の抑制即ち焼戻し抵
抗の増大を図ったもので上記用途に好適な鋼材である。
<Conventional technology> Generally, high temperature and high pressure (approximately 300°C, 70kg/cm')
Materials for steam turbines that are driven by steam are required to have excellent strength and toughness over a wide temperature range, and vanadium-added nickel-chromium-molybdenum steel, which is a strong steel, is used as a material that achieves these characteristics. . This steel is
As is well known, fine carbide-producing elements such as molybdenum and vanadium are added to nickel-chromium strong steel, which is sensitive to tempering brittleness, to suppress softening at high tempering temperatures, that is, to increase tempering resistance, and it is suitable for the above applications. It is made of steel.

〈発明が解決しようとする問題点〉 ところが、近年、欧米の原子力発電所を中心にこのバナ
ジウム添加のニッケルクロムモリブデン鋼を用いた低圧
蒸気タービンやその周辺機器類に、応力腐食割れが多発
していることが明らかになり、大きな問題となっている
。この応力腐食割れは、主にディスクとシャフトを固着
するキーの溝部やブレードとディスクの接合部に生じ、
その原因は蒸気中の不純物であるNaがこれらの部分の
隙間にNaOHとして濃縮し、タービン稼動時の高負荷
応力と相俟って結晶粒界に沿う割れを生ぜしめるためと
いわれている。また、OH−環境下で応力を受ける炭素
鋼に、粒界型の応力腐食割れが生じることは以前から知
られている。このような現状に鑑み、苛酷な使用環境下
でも優れた耐応力腐食割れ性を有するニッケルクロムモ
リブデン鋼の開発が強く望まれているのである。
<Problems to be solved by the invention> However, in recent years, stress corrosion cracking has been occurring frequently in low-pressure steam turbines and their peripheral equipment that use vanadium-added nickel-chromium-molybdenum steel, mainly in nuclear power plants in Europe and the United States. It has become clear that this is the case, and it has become a big problem. This stress corrosion cracking occurs mainly in the groove of the key that secures the disc and shaft, and in the joint between the blade and disc.
The reason for this is said to be that Na, which is an impurity in the steam, concentrates as NaOH in the gaps between these parts, which, together with the high load stress during turbine operation, causes cracks along grain boundaries. Furthermore, it has long been known that intergranular stress corrosion cracking occurs in carbon steel subjected to stress in an OH environment. In view of this current situation, there is a strong desire to develop nickel-chromium molybdenum steel that has excellent stress corrosion cracking resistance even under harsh usage environments.

そこで、本発明の目的は、応力腐食割れ感受性を低下さ
せる適正な合金組成と微量添加元素およびまたは顕微鏡
組織を有し、苛酷な環境下でも割れを生じることなく使
用できる綱を提供することである。
Therefore, an object of the present invention is to provide a steel that has an appropriate alloy composition, trace addition elements, and/or microscopic structure that reduces stress corrosion cracking susceptibility, and that can be used in harsh environments without cracking. .

く問題点を解決するための手段〉 発明者らは、ニッケルクロムモリブデン鋼の応力腐食割
れ感受性と合金組成、微量添加元素および顕微鏡組織と
の組み合わせ条件を明らかにすべく上記各因子を種々変
化させた各供試鋼について応力腐食割れ試験を行ない、
その試験結果を詳細に解析して本発明を構成したもので
ある。
Means for Solving the Problems> The inventors variously changed each of the above factors in order to clarify the combination conditions of the stress corrosion cracking susceptibility of nickel chromium molybdenum steel, alloy composition, trace addition elements, and microscopic structure. A stress corrosion cracking test was conducted on each sample steel.
The present invention was constructed by analyzing the test results in detail.

本発明の耐応力腐食割れ性に浸れた第1の低合金鋼は、
C50,40%、Si・60.15%、Mn:60.6
0%、P:60.010%、S:50.030%、Ni
:0.50〜4゜00%、Cr:o、50〜2.50%
、Mo:0.25〜4.00%、■・50.30%を含
み、上記Si、Mn、Pが(Si+Mn+20P)≦0
.75%なる関係を満たし、(i )Al1. T i
、Nb。
The first low alloy steel with stress corrosion cracking resistance of the present invention is
C50, 40%, Si 60.15%, Mn: 60.6
0%, P: 60.010%, S: 50.030%, Ni
:0.50~4゜00%, Cr:o, 50~2.50%
, Mo: 0.25 to 4.00%, ■ 50.30%, and the above Si, Mn, and P are (Si+Mn+20P)≦0
.. 75%, and (i) Al1. Ti
, Nb.

W、B、Ceの少なくとら一種を合計で0.001〜0
.50%、(ii )S n:o、003〜0.015
%、の二群のうち少なくとも一群を含有し、残部Feお
よび不可避的不純物からなることを特徴とする。
At least one of W, B, and Ce in total from 0.001 to 0
.. 50%, (ii) Sn:o, 003-0.015
%, and the remainder consists of Fe and unavoidable impurities.

また、本発明の耐応力腐食割れ性に浸れた第2の低合金
鋼は、C0≦040%、Si:60.15%、Mn≦0
.60%、P 60.010%、S、50.030%、
Ni・0゜50−4.00%、Cr:0.50〜2.5
0%、Mo:0.25〜4.00%、■・50.30%
を含み、(i)Al、Ti、Nb、W、B。
In addition, the second low alloy steel with the stress corrosion cracking resistance of the present invention has C0≦040%, Si: 60.15%, Mn≦0.
.. 60%, P 60.010%, S, 50.030%,
Ni・0゜50-4.00%, Cr:0.50-2.5
0%, Mo: 0.25-4.00%, ■・50.30%
(i) Al, Ti, Nb, W, B.

Ceの少なくとも一種を合計で0.001〜0.50%
、(ii)Sn・0.003〜0015%、の二群のう
ち少なくとも一群を含有し、残部Feおよび不可避的不
純物からむ不鼾)−1,1;−旧ナース子士Iト姑照拉
庁がA8TM結晶粒度番号4以上であることを特徴とす
る。
At least one type of Ce in total from 0.001 to 0.50%
, (ii) containing at least one of the two groups of Sn 0.003-0015%, with the balance being Fe and unavoidable impurities) -1,1; is characterized by having an A8TM crystal grain size number of 4 or more.

以下、本発明の化学成分およびA S T M結晶粒度
番号の限定理由について述べる。
The chemical components of the present invention and the reason for limiting the ASTM grain size number will be described below.

Cは、強度確保のための元素であるが、応力腐食割れ感
受性を増大させ、また含有量が0.4%を超えると他の
合金元素との関連で靭性を劣化させるので、両低合金鋼
共に0.40%を上限とした。
C is an element to ensure strength, but it increases stress corrosion cracking susceptibility, and if the content exceeds 0.4%, it deteriorates toughness in relation to other alloying elements, so both low alloy steels The upper limit for both was set at 0.40%.

Sは、熱間加工性を著しく劣化させる元素であり、熱間
鍛造時の割れを防止するという観点から両低合金鋼共に
0.030%を上限とした。
S is an element that significantly deteriorates hot workability, and from the viewpoint of preventing cracking during hot forging, the upper limit was set at 0.030% for both low alloy steels.

NiおよびCrは強度上昇、焼入性改善、靭性向上に不
可欠な成分元素で、共に050%以上の添加を必要とし
、焼入性と靭性に関してより優れた性能を得るためには
Niは3.25%以上、Crは125%以上とすること
が望ましいが、含有量か夫々4.00%および2.50
%を超えると鋼の変態特性が大きく変化し、優れた靭性
を得るための熱処理に長時間を要するため実用的でない
。よって、両低合金鋼共にN1含有量を0.5(1−4
,00%、Cr含有量を0.50〜250%の範囲に夫
々限定するが、特に低圧夕一ビンなどの機器材料として
用いる場合には、Ni:3゜25〜4.00%、Cr:
1.25〜2.50%とすることが好ましい。
Ni and Cr are essential elements for increasing strength, improving hardenability, and improving toughness, and both require addition of 0.50% or more.In order to obtain better performance in terms of hardenability and toughness, Ni should be added at 3. It is desirable that the content is 25% or more, and Cr is 125% or more, but the content is 4.00% and 2.50%, respectively.
%, it is not practical because the transformation characteristics of the steel change significantly and a long time is required for heat treatment to obtain excellent toughness. Therefore, the N1 content of both low alloy steels is 0.5 (1-4
, 00%, Cr content is limited to a range of 0.50 to 250%, respectively, but especially when used as a material for equipment such as a low-pressure fuel bottle, Ni: 3° 25 to 4.00%, Cr:
It is preferably 1.25 to 2.50%.

Moは、旧γ粒界の耐食性を向上させ粒界型の応力腐食
割れ感受性を著しく減少させるとともに、焼戻し時に微
細炭化物として粒内に析出し、焼戻し脆化防止と強度上
昇に大きく寄与する。このような効果を得るには、0.
25%以上の添加が必要であるが、含有量が400%を
超えると上記効果が飽和するとともに靭性が劣化し始め
る。また、必要以上の添加は不経済でもある。よって、
両低合金鋼共にMo含有量を0.25%〜4.00%の
範囲に限定した。
Mo improves the corrosion resistance of prior γ grain boundaries and significantly reduces susceptibility to intergranular stress corrosion cracking, and also precipitates in the grains as fine carbides during tempering, greatly contributing to preventing temper embrittlement and increasing strength. To obtain such an effect, 0.
It is necessary to add 25% or more, but if the content exceeds 400%, the above effects are saturated and the toughness begins to deteriorate. Moreover, adding more than necessary is also uneconomical. Therefore,
The Mo content of both low alloy steels was limited to a range of 0.25% to 4.00%.

■は、結晶の細粒化および析出硬化作用によって順の強
度を上昇せしめる有効な元素であり、必要に応じて添加
されるが、含有量が0.30%を”超えるとその効果が
飽和するため、両低合金鋼共に0゜30%を上限とした
■ is an effective element that increases the strength of the material through crystal grain refinement and precipitation hardening action, and is added as necessary, but its effect is saturated when the content exceeds 0.30%. Therefore, the upper limit was set at 0°30% for both low alloy steels.

Si、PおよびMnは、粒界型の応力腐食割れ感受性に
大きく関与し、本発Q4mにおいて結晶粒度やTi、A
(2,Nb、W、B、Ce、Snの微量添加に関連して
相捕的に制限すべき重要な元素である。
Si, P and Mn are greatly involved in grain boundary type stress corrosion cracking susceptibility, and in this Q4m, grain size, Ti, A
(2, Nb, W, B, Ce, is an important element that should be limited in a complementary manner in connection with the addition of small amounts of Sn.

Siは、製鋼時は脱酸のために必要な元素であるが、0
15%を超えて含有させると旧γ粒界の耐食性が劣化し
、粒界型の応力腐食割れ感受性が著しく増大するので、
両低合金鋼共に0.15%を上限とした。
Si is an element necessary for deoxidation during steelmaking, but 0
If the content exceeds 15%, the corrosion resistance of prior γ grain boundaries deteriorates, and the susceptibility to grain boundary stress corrosion cracking increases significantly.
The upper limit was set to 0.15% for both low alloy steels.

Pは、旧γ粒界に偏析してその耐食性を劣化させ、粒界
応力腐食割れ感受性を増大させるとともに焼戻し脆性を
助長する不純物元素である。JIS規格のクロムモリブ
デン鋼およびニッケルクロムモリブデン鋼では、焼戻し
脆性の観点から含有量が0.030%以下に制限されて
いるが、応力腐食割れ低減のためにはさらに制限する必
要があり、両低合金鋼共にPの含有量は0.010%以
下とした。
P is an impurity element that segregates at prior γ grain boundaries, deteriorates its corrosion resistance, increases intergranular stress corrosion cracking susceptibility, and promotes temper brittleness. In chromium molybdenum steel and nickel chromium molybdenum steel according to JIS standards, the content is limited to 0.030% or less from the viewpoint of tempering brittleness, but it is necessary to further limit the content to reduce stress corrosion cracking. The P content in both alloy steels was 0.010% or less.

さらに、Mnは、製鋼時の脱酸、脱靴のため添加される
が、含有量が060%を超えると、Pの上記拉界偏折を
助長して応力腐食割れ感受性が著しく増大するとともに
、応力腐食割れに対してSiおよびPと複合的に作用す
ること、ならびにその適正範囲が後述する結晶粒度の大
きさやTi、Af2゜Nb、W、B、Ce、Snの微量
添加に大きく関係することが発明者らによる独自の研究
の結果から明らかとなった。即ち、応力腐食割れ防止の
立場からMn含有量を両低合金鋼について0.60%以
下に限定するとともに、結晶粒度調整を行わない第1の
低合金鋼では、Si、PおよびMnの含有量が(Si+
Mn+20P)5075%なる関係を満たす、即ち含有
Mn重量%と含有SiN量%と含有2重量%の20倍と
の合計が0,75%以下になるようにこれらの含有量を
厳しく制限する必要かある。
Furthermore, Mn is added for deoxidation and shoe removal during steel manufacturing, but if the content exceeds 0.60%, it promotes the above-mentioned polarization of P and significantly increases stress corrosion cracking susceptibility. It acts in combination with Si and P on stress corrosion cracking, and its appropriate range is greatly related to the grain size and the addition of small amounts of Ti, Af2°Nb, W, B, Ce, and Sn, which will be described later. This has become clear from the results of original research by the inventors. That is, from the standpoint of preventing stress corrosion cracking, the Mn content is limited to 0.60% or less for both low alloy steels, and the Si, P and Mn contents of the first low alloy steel, which is not subjected to grain size adjustment, are is (Si+
Is it necessary to strictly limit these contents so that the relationship of Mn + 20P) 5075% is satisfied, that is, the sum of the Mn weight % content, the SiN content %, and 20 times the content 2 weight % is 0.75% or less? be.

一方、応力腐食割れ感受性低減の信頼性をさらに高める
べく顕微鏡組織の影響を詳細に検討したところ、応力腐
食割れ感受性は旧オーステナイト結晶粒径にも依存し、
ASTM結晶粒度番号(JIS  G 0511相当)
3以下では十分な信頼性を得ることが出来ないことがわ
かっ1こ。従って、Si。
On the other hand, in order to further increase the reliability of reducing stress corrosion cracking susceptibility, we investigated in detail the influence of the microscopic structure, and found that stress corrosion cracking susceptibility also depends on prior austenite grain size.
ASTM grain size number (equivalent to JIS G 0511)
It was found that sufficient reliability could not be obtained with a value of 3 or less. Therefore, Si.

P 、Mnの合計量調整を行わない第2の低合金鋼につ
いては旧オーステナイト結晶粒度番号を4以上に限定し
た。
For the second low alloy steel in which the total amount of P and Mn was not adjusted, the prior austenite grain size number was limited to 4 or more.

ALTi、Nb、Ce、W、BおよびSnは、いずれら
旧γ粒界の耐食性を向上させ、粒界型の応力腐食割れ感
受性の低減に大きく寄与する不可欠な添加元素である。
ALTi, Nb, Ce, W, B, and Sn are all essential additive elements that improve the corrosion resistance of prior γ grain boundaries and greatly contribute to reducing the susceptibility to intergranular stress corrosion cracking.

そして、このような効果を得るには、前6晋の元素、即
ち、A12.T i、Nb、 Ce、W、Bにおいてこ
れら元素の一種以上を合計で0.001%以上添加する
必要があるが、添加量の合計が050%を超えると靭性
が著しく劣化する。よって、これらの元素の合計添加量
をo、oot〜0.50%の範囲に限定した。一方、後
1者、即ち、Snの場合には、0.003%以上の添加
により前6者の添加と同等の効果が得られるが、001
5%を超えると焼戻し脆性を助長し、靭性を著しく劣化
させる。よって、Snの含有量は0.003〜0.01
5%の範囲に限定した。
In order to obtain such an effect, it is necessary to use the elements of the 6th century, ie A12. It is necessary to add one or more of these elements in Ti, Nb, Ce, W, and B in a total amount of 0.001% or more, but if the total amount of addition exceeds 0.050%, the toughness will significantly deteriorate. Therefore, the total addition amount of these elements was limited to a range of o,oot to 0.50%. On the other hand, in the case of the latter one, that is, Sn, the same effect as the former six can be obtained by adding 0.003% or more;
When it exceeds 5%, tempering brittleness is promoted and toughness is significantly deteriorated. Therefore, the content of Sn is 0.003 to 0.01
It was limited to a range of 5%.

ただし、応力腐食割れ低減のためには、これら微量元素
の添加と共に(Si+Mn”、20P)の範囲の制限、
あるいは結晶粒度の制限か前述の夫々第1の低合金鋼お
よび第2の低合金鋼の如く必要である。
However, in order to reduce stress corrosion cracking, in addition to adding these trace elements, it is necessary to limit the range of (Si + Mn'', 20P),
Alternatively, it is necessary to limit the grain size as in the first low alloy steel and the second low alloy steel described above.

なお、特許請求の範囲第2項の低合金鋼の如く、上記両
制限を満たせば、より優れた耐応力腐食割れ性が得られ
、また、特許請求の範囲第3項の低合金鋼の如く、前者
の制限をより厳しくすれば、一層の応力腐食割れ低減に
対する信頼性が得られることが実験、研究結果から判明
している。
In addition, as in the case of the low-alloy steel of claim 2, if both of the above limitations are satisfied, better stress corrosion cracking resistance can be obtained, and as in the case of the low-alloy steel of claim 3, It has been found from experimental and research results that if the former restriction is made stricter, reliability in reducing stress corrosion cracking can be obtained even further.

〈発明の効果〉 本発明の低合金鋼は、優れた耐応力腐食割れ性を具備す
べく最適の合金元素を最適の成分比率範囲で含有し、お
よび、または適切な顕微鏡組織(結晶粒度)を有してい
るので、NaOH,OH−などの腐食環境下で高負荷応
力を受ける部材に使用されても応力腐食割れを生ずる可
能性が小さい。
<Effects of the Invention> The low alloy steel of the present invention contains optimal alloying elements in an optimal component ratio range in order to have excellent stress corrosion cracking resistance, and/or has an appropriate microscopic structure (crystal grain size). Therefore, the possibility of stress corrosion cracking occurring is small even when used in a member that is subjected to high load stress in a corrosive environment such as NaOH or OH-.

〈実施例〉 以下、本発明の有効性を実施例により詳細に説明する。<Example> Hereinafter, the effectiveness of the present invention will be explained in detail with reference to Examples.

末尾に掲げた第1表は、応力腐食割れ試験に供した供試
鋼の化学成分と旧γ結晶粒度を示している。これらの供
試鋼は、成分を調整して高周波誘導電気炉で溶解後、造
塊し、25mm厚さに熱間鍛造し、次いで、オーステナ
イト化温度まで加熱してから水焼入れし、その後620
℃まで加熱して1時間保持してから4°C/分の速度で
冷却する焼戻し処理を施して製造された。なお、結晶粒
度は焼入れ温度(加熱温度)およびその保持時間を調節
することにより種々変化させた。こうして製造された供
試鋼から機械加工により第1図に示す如き厚さ1.5m
mX幅15mmX長さ65+++mの短冊状試験片Tを
製作した。
Table 1 listed at the end shows the chemical composition and prior γ crystal grain size of the test steel subjected to the stress corrosion cracking test. These test steels were melted in a high-frequency induction electric furnace after adjusting their composition, then formed into ingots, hot forged to a thickness of 25 mm, heated to an austenitizing temperature, water quenched, and then 620 mm thick.
It was manufactured by subjecting it to a tempering process in which it was heated to a temperature of 10°C, held for 1 hour, and then cooled at a rate of 4°C/minute. The grain size was varied by adjusting the quenching temperature (heating temperature) and the holding time. The sample steel manufactured in this way was machined to a thickness of 1.5 m as shown in Figure 1.
A strip-shaped test piece T having a width of 15 mm and a length of 65+++ m was manufactured.

応力腐食割れ試験は、上記供試鋼でなる試験片をS O
S 316製の4点曲げ定荷重試験冶具Jに装着し、供
試鋼の0.2%の耐力の60%(試験I)または100
%(試験■)に相当する曲げ応力をボルトBのねじ込み
で負荷するとと乙に、5US310S製オートクレーブ
A内の150℃の30%NaOH水溶液に一週間または
3遇間(試験■、ただし、負荷応力100%)浸漬して
行ない(第2図参照)、その後の試験片断面の光学顕微
鏡観察により割れの発生の有無および割れ深さを測定し
た。
In the stress corrosion cracking test, a test piece made of the above test steel was
It is attached to a four-point bending constant load test jig J made of S316, and the yield strength of 0.2% of the test steel is 60% (test I) or 100%.
% (test ■) is applied by screwing bolt B, and the bending stress corresponding to After that, the cross section of the test piece was observed with an optical microscope to determine the presence or absence of cracks and the depth of the cracks.

上記応力腐食割れ試験の結果を同じく第1表に示す。表
の試験■の結果から明らかなように、特許請求の範囲i
X 2項および第3項を包含する特許請求の範囲第1項
および特許請求の範囲第4項に相当する本発明鋼(No
、1〜44)は、応力腐食割れを全く発生していない。
The results of the above stress corrosion cracking test are also shown in Table 1. As is clear from the results of test ■ in the table, claim i
X The steel of the present invention (No.
, 1 to 44) did not cause stress corrosion cracking at all.

これに対して、本特許請求の範囲外にある比較鋼(No
、45〜59)は、いずれも粒界型の応力腐食割れを発
生している。このことから、本発明の意図するMn、S
i、P;Jの制限、(Si+Mn+20P’)Iの制限
、あるいは結晶粒度の制限が応力腐食割れ防止に極めて
有効であることが分かる。
In contrast, comparative steel (No.
, 45 to 59) all caused intergranular stress corrosion cracking. From this, it can be seen that Mn, S as intended by the present invention
It can be seen that limiting i, P; J, limiting (Si+Mn+20P')I, or limiting crystal grain size is extremely effective in preventing stress corrosion cracking.

また、試験Tの条件を応力について厳しくした試験■に
おいてら特許請求の範囲第2項および第3項に相当する
jll(No、16〜No、37)については、応力腐
食割れが発生しておらず、(Mr++Si+20P)量
の制限と結晶粒度の制限を同時に行うことは応力腐食割
れの信頼性をさらに高めるものであることが分かる。
In addition, in test (2) in which the conditions of test T were made stricter regarding stress, stress corrosion cracking did not occur for jll (No. 16 to No. 37) corresponding to claims 2 and 3. First, it can be seen that limiting the amount of (Mr++Si+20P) and limiting the grain size at the same time further increases the reliability of stress corrosion cracking.

さらに、本実施例において、最も厳しい試験条件である
試験■においては、No、35〜N044に相当する閏
、即ち、(Si+Mn+20P)≦050かッA力腐食
割れを発生させていない。即ち、この条件が本発明にお
いて見出した応力腐食割れ防止上の最も有効な制限であ
ることが明らかである。
Furthermore, in the present example, in test (3), which is the most severe test condition, no force corrosion cracking corresponding to No. 35 to No. 044, that is, (Si+Mn+20P)≦050, occurred. That is, it is clear that this condition is the most effective limit for preventing stress corrosion cracking found in the present invention.

−以下余白 −-Margin below-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の応力腐食割れ試験の試験片への応力負
荷状況を示す図、第2図は第1図の試験片の浸漬状況を
示す図である。
FIG. 1 is a diagram showing the stress load situation on the test piece in the stress corrosion cracking test of the example, and FIG. 2 is a diagram showing the immersion situation of the test piece in FIG. 1.

Claims (4)

【特許請求の範囲】[Claims] (1)C:≦0.40重量%(以下重量%)、Si:≦
0.15%、Mn:≦060%、P:≦0.010%、
S:≦0.030%、Ni:0.50〜4.00%、C
r:0.50〜2.50%、Mo:0.25〜4.00
%、V:≦0.30%を含み、上記Si、Mn、Pが(
Si+Mn+20P)≦0.75%なる関係を満たし、
さらに下記の(i)群および(ii)群の少なくとも一
群を含有し、 (i)Al、Ti、Nb、W、B、Ceの少なくとも一
種を合計で0.001〜0.50% (ii)Sn:0.003〜0.015% 残部Feおよび不可避的不純物からなることを特徴とす
る耐応力腐食割れ性に優れた低合金鋼。
(1) C:≦0.40% by weight (hereinafter referred to as “weight%”), Si:≦
0.15%, Mn:≦060%, P:≦0.010%,
S:≦0.030%, Ni:0.50-4.00%, C
r: 0.50-2.50%, Mo: 0.25-4.00
%, V: ≦0.30%, and the above Si, Mn, P are (
Si+Mn+20P)≦0.75%,
Furthermore, it contains at least one of the following groups (i) and (ii), (i) at least one of Al, Ti, Nb, W, B, and Ce in a total of 0.001 to 0.50% (ii) Sn: 0.003 to 0.015% A low alloy steel with excellent stress corrosion cracking resistance characterized by the balance being Fe and unavoidable impurities.
(2)上記特許請求の範囲第1項に記載の低合金鋼にお
いて、旧オーステナイト結晶粒度がASTM結晶粒度番
号4以上であることを特徴とする耐応力腐食割れ性に優
れた低合金鋼。
(2) The low alloy steel according to claim 1, which has excellent stress corrosion cracking resistance, characterized in that the prior austenite grain size is ASTM grain size number 4 or more.
(3)上記特許請求の範囲第1項または第2項に記載の
低合金鋼において、Si、Mn、Pが(Si+Mn+2
0P)≦0.50%なる関係を満たすこと特徴とする耐
応力腐食割れ性に優れた低合金鋼。
(3) In the low alloy steel according to claim 1 or 2, Si, Mn, and P are (Si+Mn+2
A low alloy steel with excellent stress corrosion cracking resistance, characterized by satisfying the relationship: 0P)≦0.50%.
(4)C:≦0.40%、Si:≦0、15%、Mn:
≦0.60%、P:≦0.010%、S:≦0.030
%、Ni:0.50〜4.00%、Cr:0.50〜2
.50%、Mo:0.25〜4.00%、V:≦0.3
0%を含み、さらに下記の(i)群、および(ii)群
の少なくとも一群を含有し、 (i)Al、Ti、Nb、W、B、Ceの少なくとも一
種を合計で0.001〜0.50% (ii)Sn:0.003〜0.015% 残部Feおよび不可避的不純物からなるとともに、旧オ
ーステナイト結晶粒度がASTM結晶粒度番号4以上で
あることを特徴とする耐応力腐食割れ性に優れた低合金
鋼。
(4) C:≦0.40%, Si:≦0, 15%, Mn:
≦0.60%, P:≦0.010%, S:≦0.030
%, Ni: 0.50-4.00%, Cr: 0.50-2
.. 50%, Mo: 0.25-4.00%, V: ≦0.3
0%, and further contains at least one of the following groups (i) and (ii), and (i) at least one of Al, Ti, Nb, W, B, and Ce in total from 0.001 to 0. .50% (ii) Sn: 0.003 to 0.015% The balance consists of Fe and unavoidable impurities, and the stress corrosion cracking resistance is characterized by that the prior austenite grain size is ASTM grain size number 4 or higher. Superior low alloy steel.
JP11955086A 1986-05-23 1986-05-23 Low-alloy steel excellent in stress corrosion cracking resistance Pending JPS62278251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11955086A JPS62278251A (en) 1986-05-23 1986-05-23 Low-alloy steel excellent in stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11955086A JPS62278251A (en) 1986-05-23 1986-05-23 Low-alloy steel excellent in stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPS62278251A true JPS62278251A (en) 1987-12-03

Family

ID=14764084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11955086A Pending JPS62278251A (en) 1986-05-23 1986-05-23 Low-alloy steel excellent in stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS62278251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255344A (en) * 1987-04-13 1988-10-21 Japan Steel Works Ltd:The Extra high purity shaft material for turbine rotor
JPH04362155A (en) * 1991-06-10 1992-12-15 Japan Steel Works Ltd:The High purity steel for integrated high and low pressure turbine rotor
US6755920B2 (en) * 2001-03-06 2004-06-29 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, heat treatment method therefor, and turbine rotor comprising the same
CN103131955A (en) * 2013-03-01 2013-06-05 河南理工大学 Medium carbon multiple elements low alloy wear resisting steel and production method
CN107345288A (en) * 2017-06-29 2017-11-14 张家港海锅新能源装备股份有限公司 A kind of manufacture method of nuclear power generating equipment steel and its forging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255344A (en) * 1987-04-13 1988-10-21 Japan Steel Works Ltd:The Extra high purity shaft material for turbine rotor
JPH0372697B2 (en) * 1987-04-13 1991-11-19 Japan Steel Works Ltd
JPH04362155A (en) * 1991-06-10 1992-12-15 Japan Steel Works Ltd:The High purity steel for integrated high and low pressure turbine rotor
US6755920B2 (en) * 2001-03-06 2004-06-29 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, heat treatment method therefor, and turbine rotor comprising the same
CN103131955A (en) * 2013-03-01 2013-06-05 河南理工大学 Medium carbon multiple elements low alloy wear resisting steel and production method
CN107345288A (en) * 2017-06-29 2017-11-14 张家港海锅新能源装备股份有限公司 A kind of manufacture method of nuclear power generating equipment steel and its forging
CN107345288B (en) * 2017-06-29 2018-09-18 张家港海锅新能源装备股份有限公司 A kind of manufacturing method of nuclear power generating equipment steel and its forging

Similar Documents

Publication Publication Date Title
EP1873270B1 (en) Low alloy steel
CN102453843B (en) Ferrite heat resistant steel
EP0411515B1 (en) High strength heat-resistant low alloy steels
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH05287455A (en) Martensitic stainless steel for oil well
EP0789785B1 (en) Ferritic heat-resistant steel having excellent high temperature strength and process for producing the same
EP0225425B1 (en) Low alloy steel having good stress corrosion cracking resistance
JP4396561B2 (en) Induction hardening steel
US4820486A (en) Low alloy steel having good stress corrosion cracking resistance
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JPS5935427B2 (en) Roll materials used in continuous casting equipment
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4026228B2 (en) Martensitic heat resistant steel
EP1087028A1 (en) High-chromium containing ferrite based heat resistant steel
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPS61235543A (en) Low alloy steel excelling in stress corrosion cracking resistance
JP3775371B2 (en) Low alloy steel
JPS6238426B2 (en)
JPS6362848A (en) Low-alloy heat-resistant steel having high strength
JPS6372856A (en) Low-alloy steel having satisfactory resistance to stress corrosion cracking
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness