JPS6372856A - Low-alloy steel having satisfactory resistance to stress corrosion cracking - Google Patents

Low-alloy steel having satisfactory resistance to stress corrosion cracking

Info

Publication number
JPS6372856A
JPS6372856A JP21639786A JP21639786A JPS6372856A JP S6372856 A JPS6372856 A JP S6372856A JP 21639786 A JP21639786 A JP 21639786A JP 21639786 A JP21639786 A JP 21639786A JP S6372856 A JPS6372856 A JP S6372856A
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
alloy steel
low
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21639786A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiwara
藤原 和雄
Yasushi Torii
康司 鳥井
Takenori Nakayama
武典 中山
Mutsuhiro Miyagawa
宮川 睦啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21639786A priority Critical patent/JPS6372856A/en
Publication of JPS6372856A publication Critical patent/JPS6372856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a low-alloy steel causing no stress corrosion cracking even in a severe environment by specifying the amounts of C, Mn, P, S, Ni, Cr, etc., in the compsn. of a low-alloy steel and adding a specified amount of at least one among Al, Ti, etc. CONSTITUTION:The compsn. of a low-alloy steel is composed of, by weight, <=0.40% C, >0.15-1.00% Si, <=0.01% P, <=0.030% S, >0.60-1.00% Mn, <=4.00% Ni, 0.50-2.50% Cr, 0.25-4.00% Mo, <=0.30% V, 0.001-0.50% at least one among Al, Ti, Nb, B, W and Ce and the balance Fe with impurities. The low-alloy steel has ASTM grain size No. >=4 with respect to the old austenite grain size. When the low-alloy steel is used, stress corrosion cracking can be prevented even in a severe environment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、蒸気タービン等の材料として使用される低合
金鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to low alloy steel used as a material for steam turbines and the like.

〈従来の技術〉 一般に、高温高圧(略300℃、 70kg/cm”)
の水蒸気で駆動される蒸気タービンの材料には、広い温
度範囲にわたる優れた強度と靭性が要求され、この特性
を満たす材料として強靭鋼であるバナジウム添加のクロ
ムモリブデン鋼やニッケルクロムモリブデン鋼が使用さ
れている。この鋼は、周知の如く焼戻し脆性に敏感なり
ロムあるいはニッケルクロム強靭鋼に微細炭化物析出元
素であるモリブデンやバナジウムを添加して、高焼戻し
温度における軟化の抑制即ち焼戻し抵抗の増大を図った
もので上記用途に好適な鋼材である。
<Conventional technology> Generally, high temperature and high pressure (approximately 300℃, 70kg/cm")
Materials for steam turbines that are driven by steam are required to have excellent strength and toughness over a wide temperature range, and vanadium-added chromium-molybdenum steel and nickel-chromium-molybdenum steel, which are strong steels, are used as materials that meet these characteristics. ing. As is well known, this steel is sensitive to tempering brittleness, and is made by adding molybdenum and vanadium, which are elements that precipitate fine carbides, to ROM or nickel-chromium strong steel to suppress softening at high tempering temperatures, that is, to increase tempering resistance. This is a steel material suitable for the above uses.

〈発明が解決しようとする問題点〉 ところが、近年、欧米の原子力発電所や火力発電所を中
心にこのバナジウム添加のクロムモリブデン鋼やニッケ
ルクロムモリブデン鋼を用いた低圧蒸気タービンやその
周辺機器類に、応力腐食割れが多発していることか明ら
かになり、大きな問題となっている。この応力腐食割れ
は、たとえばディスクを例にすると主にディスクとシャ
フトを固着するキーの溝部やブレードとディスクの溶接
部に生じ、その原因は蒸気中の不純物であるNaがこれ
らの部分の隙間にNaOHとして濃縮し、タービン稼動
時の高負荷応力と相俟って結晶粒界に沿う割れを生ぜし
めるためといわれている。また、011−環境下で応力
を受ける炭素鋼に、粒界型の応力腐食割れが生じること
は以前から知られている。このような現状に鑑み、苛酷
な使用環境下でも優れた耐応力腐食割れ性を示す低合金
鋼の開発が強く望まれているのである。
<Problems to be solved by the invention> However, in recent years, vanadium-added chromium-molybdenum steel and nickel-chromium-molybdenum steel have been used in low-pressure steam turbines and their peripheral equipment, mainly in nuclear power plants and thermal power plants in Europe and the United States. It has become clear that stress corrosion cracking is occurring frequently and is becoming a major problem. For example, in the case of a disk, this stress corrosion cracking mainly occurs in the groove of the key that fixes the disk and shaft, and in the weld between the blade and the disk, and is caused by Na, an impurity in the steam, entering the gaps between these parts. This is said to be because it condenses as NaOH and, together with the high load stress during turbine operation, causes cracks along grain boundaries. Further, it has long been known that intergranular stress corrosion cracking occurs in carbon steel subjected to stress in a 011- environment. In view of this current situation, there is a strong desire to develop low alloy steel that exhibits excellent stress corrosion cracking resistance even under harsh usage environments.

そこで、本発明の目的は、応力腐食割れ感受性を低下さ
せる添加元素および/または顕微鏡組織を有し、苛酷な
環境下でも割れを生じることなく使用できる低合金鋼を
提供することである。
Therefore, an object of the present invention is to provide a low-alloy steel that has additive elements and/or microstructures that reduce stress corrosion cracking susceptibility and can be used in harsh environments without cracking.

く問題点を解決するための手段〉 発明者らは、クロムモリブデン鋼やニッケルクロムモリ
ブデン鋼に応力腐食割れ感受性と微m添加元素および顕
微鏡組織との組み合わせ条件を明らかにすべく上記各因
子を種々変化させた各供試鋼について応力腐食割れ試験
を行ない、その試験結果に基づき本発明を構成したらの
である。
Means for Solving Problems〉 The inventors investigated various factors mentioned above in order to clarify the combination conditions of stress corrosion cracking susceptibility, micro-added elements, and microscopic structure of chromium-molybdenum steel and nickel-chromium-molybdenum steel. A stress corrosion cracking test was conducted on each of the changed test steels, and the present invention was constructed based on the test results.

本発明の耐応力腐食割れ性に良好な第1の低合金鋼は、
C:60.40重量%、Si:60.15〜1.00%
(0,15%を含まず)、Mn:0.60〜1.00%
(0,60%を含まず)、P:50.010%、S:6
0.030%、Ni:≦4.00%、Cr:0.50〜
2.50%、Mo:0.25〜4.00%、V:≦0.
30%を含有し、さらにA(、Ti、Nb、B。
The first low alloy steel with good stress corrosion cracking resistance of the present invention is
C: 60.40% by weight, Si: 60.15-1.00%
(excluding 0.15%), Mn: 0.60-1.00%
(excluding 0.60%), P: 50.010%, S: 6
0.030%, Ni:≦4.00%, Cr:0.50~
2.50%, Mo: 0.25-4.00%, V:≦0.
Contains 30% of A(, Ti, Nb, B.

W、Ceの少なくとも一種を合計で0.001%〜0.
50%含有し、残部Feおよび不可避的不純物からなる
ことを特徴とする。
The total amount of at least one of W and Ce is 0.001% to 0.00%.
It is characterized by containing 50% of Fe, with the remainder consisting of Fe and unavoidable impurities.

また、本発明の耐応力腐食割れ性に良好な第2の低合金
鋼は、C:60.40%、Si:60.15〜1.00
%(0,15%を含まず)、Mn:≦0.60〜1.0
0%(0,60%を含まず)、P:≦0.oto%、S
:60.030%、Ni:54.00%、Cr:0.5
(1−2,50%、Mo:0.25〜4.00%、v:
≦0.30%を含有し、(i)ALTi、Nb、W。
Further, the second low alloy steel having good stress corrosion cracking resistance of the present invention has a carbon content of 60.40% and a Si content of 60.15 to 1.00%.
% (excluding 0.15%), Mn: ≦0.60 to 1.0
0% (excluding 0.60%), P:≦0. oto%, S
:60.030%, Ni:54.00%, Cr:0.5
(1-2,50%, Mo: 0.25-4.00%, v:
≦0.30%, (i) ALTi, Nb, W.

B、Ceの少なくとも1種を合計で0.001〜0.5
0%、(ii )S n:0.003〜0.015%、
の二群のうち少なくとも一群を含有し、残部Feおよび
不可避的不純物からなることを特徴とする。
At least one of B and Ce in total from 0.001 to 0.5
0%, (ii) Sn: 0.003-0.015%,
It is characterized by containing at least one of the two groups, with the remainder consisting of Fe and unavoidable impurities.

以下、本発明の化学成分およびASTM結晶粒度番号の
限定理由について述べる。
The reasons for limiting the chemical components and ASTM grain size numbers of the present invention will be described below.

Cは、強度確保のため必要な元素であるが、応力腐食割
れ感受性を増大させ、また含有量が0.40%を超える
と他の合金元素との関連で靭性を劣化さ仕るので、両低
合金鋼共に040%を上限とした。
C is an element necessary to ensure strength, but it increases stress corrosion cracking susceptibility, and if its content exceeds 0.40%, it deteriorates toughness in relation to other alloying elements, so it should not be used in both cases. The upper limit was set at 0.040% for both low alloy steels.

Siは、製鋼時の脱酸のために必要な元素であり、0.
15%を超える添加が望ましいが、1.00%を超えて
含有させると旧γ粒界の耐食性が劣化し、粒界型の応力
腐食割れ感受性が著しく増大するので、両低合金鋼共に
0.15〜1.00%(0,15%を含まず)に限定し
た。
Si is an element necessary for deoxidation during steel manufacturing, and 0.
It is desirable to add more than 15%, but if it is added more than 1.00%, the corrosion resistance of prior γ grain boundaries deteriorates, and the susceptibility to grain boundary stress corrosion cracking increases significantly. It was limited to 15 to 1.00% (excluding 0.15%).

Pは、旧γ粒界に偏析してその耐食性を劣化させ、応力
腐食割れ感受性を増太さ仕るとともに焼戻し脆性を助長
する不純物元素である。JIS規格のクロムモリブデン
鋼およびニッケルクロムモリブデン鋼では、焼戻し脆性
の観点から含有量が0.030%以下に制限されている
が、応力腐食割れ防止のためには含有量をさらに制限す
る必要がある。よって、Pの含有量は両低合金鋼共に0
.010%以下に限定した。
P is an impurity element that segregates at prior γ grain boundaries, deteriorates its corrosion resistance, increases stress corrosion cracking susceptibility, and promotes temper brittleness. In JIS standard chromium molybdenum steel and nickel chromium molybdenum steel, the content is limited to 0.030% or less from the viewpoint of tempering brittleness, but it is necessary to further limit the content to prevent stress corrosion cracking. . Therefore, the P content is 0 for both low alloy steels.
.. 0.010% or less.

Sは、熱間加工性を著しく劣化させる元素であり、熱間
鍛造時の割れを防止するという観点から両低合金鋼共に
0.030%を上限とした。
S is an element that significantly deteriorates hot workability, and from the viewpoint of preventing cracking during hot forging, the upper limit was set at 0.030% for both low alloy steels.

Mnは、焼入性改善と製鋼時の脱酸、脱硫のため0.6
0%を超える添加が必要であるが、含有量が1.00%
を超えるとPの上記粒界偏析を助長して応力腐食割れ感
受性および焼戻し脆化感受性が著しく増大する。よって
、Mn含有債を両低合金含綱共に0.60〜1.00X
(0,60’%を含まず)に限定した。
Mn is 0.6 for improving hardenability and deoxidizing and desulfurizing during steel manufacturing.
It is necessary to add more than 0%, but the content is 1.00%
If it exceeds the above, the grain boundary segregation of P will be promoted, and stress corrosion cracking susceptibility and temper embrittlement susceptibility will significantly increase. Therefore, the Mn-containing bond is 0.60 to 1.00X for both low alloy steels.
(excluding 0.60'%).

NiおよびCrは強度上昇、焼入性改善、靭性向上に有
効な成分元素で、特にCrの場合は0.50%以上の添
加を必要とするが、含有量が夫々4.00%および2.
50%を超えると鋼の変態特性が大きく変化し、優れた
靭性を得るための熱処理に長時間を要するため実用的で
ない。よって、両紙合金鋼共にNi含有量を4.00%
以下、Cr含有量を0.50〜2.50%の範囲に夫々
限定するが、特に低圧タービンなどの機器材料として用
いる場合には、Ni:3.25〜4.00%、Cr:1
.25〜2.50%とすることが望ましい。
Ni and Cr are component elements that are effective in increasing strength, improving hardenability, and improving toughness. Particularly in the case of Cr, it is necessary to add 0.50% or more, but the content is 4.00% and 2.0%, respectively.
If it exceeds 50%, the transformation characteristics of the steel will change significantly and a long time will be required for heat treatment to obtain excellent toughness, which is not practical. Therefore, the Ni content of both paper alloy steels is 4.00%.
Hereinafter, the Cr content will be limited to a range of 0.50 to 2.50%, but especially when used as a material for equipment such as a low-pressure turbine, Ni: 3.25 to 4.00%, Cr: 1
.. It is desirable to set it as 25-2.50%.

Moは、旧γ粒界の耐食性を向上させ粒界型の応力腐食
割れ感受性を著しく減少させるとともに、焼戻し時に微
細炭化物として粒内に析出し、焼戻し脆化防止と強度玉
貸に大きく寄与する。このような効果を得るには、0.
25%以上の添加が必要であるが、含有量が4.00%
を超えると上記効果が飽和するとともに靭性が劣化し始
める。また、必要以上の添加は不経済でもある。よって
、両紙合金鋼共にMo含有量を0.25%〜4.00%
の範囲に限定した。
Mo improves the corrosion resistance of prior γ grain boundaries and significantly reduces susceptibility to intergranular stress corrosion cracking, and precipitates within the grains as fine carbides during tempering, greatly contributing to prevention of temper embrittlement and strength improvement. To obtain such an effect, 0.
It is necessary to add 25% or more, but the content is 4.00%
If it exceeds this, the above effects will be saturated and the toughness will begin to deteriorate. Moreover, adding more than necessary is also uneconomical. Therefore, the Mo content for both paper alloy steels is 0.25% to 4.00%.
limited to the range of

■は、結晶の細粒化および析出硬化作用によって鋼の強
度を上昇せしめる有効な元素であり、必要に応じて添加
されるが、含有量が0.30%を超えるとその効果が飽
和するため、両紙合金鋼共に0.30%を上限とした。
■ is an effective element that increases the strength of steel through crystal grain refinement and precipitation hardening action, and is added as necessary, but its effect is saturated when the content exceeds 0.30%. The upper limit was 0.30% for both paper alloy steels.

A+2.Ti、Nb、B、W、Ceは、いずれら旧γ粒
界の耐食性を向上させ、粒界型の応力腐食割れ感受性の
低減に大きく寄与する不可欠な添加元素である。そして
、このような効果を得るには、これらの元素の一種以上
を合計で0.001%以上添加する必要があるが、添加
量の合計が0.50%を超えると靭性が著しく劣化する
。よって、これらの元素の合計添加量を両紙合金鋼共に
0.001〜0.50%の範囲に限定した。ここで、T
iおよびNbの場合には0.03%以下の微量添加でも
十分に効果が得られることを確認している。
A+2. Ti, Nb, B, W, and Ce are all essential additive elements that improve the corrosion resistance of prior γ grain boundaries and greatly contribute to reducing the susceptibility to grain boundary type stress corrosion cracking. In order to obtain such an effect, it is necessary to add one or more of these elements in a total amount of 0.001% or more, but if the total amount of addition exceeds 0.50%, the toughness will significantly deteriorate. Therefore, the total addition amount of these elements was limited to a range of 0.001 to 0.50% for both paper alloy steels. Here, T
In the case of i and Nb, it has been confirmed that sufficient effects can be obtained even when added in trace amounts of 0.03% or less.

一方、応力腐食割れ感受性低減の信頼性を更に高めるべ
く、合金組成および顕微鏡組織の影響を詳細に検討した
ところ、Snの微量添加および/または旧オーステナイ
トの結晶粒度の大きさを制限することが有効であること
が明らかになった。
On the other hand, in order to further increase the reliability of reducing stress corrosion cracking susceptibility, a detailed study of the effects of alloy composition and microstructure revealed that it is effective to add a small amount of Sn and/or to limit the grain size of prior austenite. It became clear that.

Snの場合は、0.003%以上の添加により応力腐食
割れ感受性低減の信頼性をなお一層高めろことができる
が、0.015%を超えると焼戻し脆性を高め、靭性を
著しく劣化させろ。よって、第2の低合金鋼ではSnの
含有量を0.003〜0.015%の範囲に限定した。
In the case of Sn, the reliability of reducing stress corrosion cracking susceptibility can be further increased by adding 0.003% or more, but if it exceeds 0.015%, tempering brittleness increases and toughness significantly deteriorates. Therefore, in the second low alloy steel, the Sn content was limited to a range of 0.003 to 0.015%.

結晶粒度の場合は、実施例にあるようにASTM結晶粒
度番号(J I S  G 0511相当)が3以下で
は効果がなく、4以上に細粒化することによってSnの
微量添加と同等の効果が期待できることが分かった。そ
こで、本発明の実施態様項において、旧オーステナイト
結晶粒度番号を4以上に限定した。また、特許請求の範
囲第4項の低合金範囲の如く、Sn添加と結晶粒度の大
きさの制限を同時に行えば、なお一層の耐応力腐食割れ
低減に対する信頼性が得られることが実験、研究結果か
ら判明している。
In the case of grain size, as shown in the example, there is no effect if the ASTM grain size number (equivalent to JIS G 0511) is 3 or less, but by reducing the grain size to 4 or more, an effect equivalent to the addition of a small amount of Sn can be obtained. I found out what I could expect. Therefore, in the embodiment section of the present invention, the prior austenite grain size number is limited to 4 or more. Additionally, experiments and research have shown that if Sn is added and the grain size is restricted at the same time, as in the low alloy range of claim 4, further reliability in reducing stress corrosion cracking can be obtained. This is clear from the results.

〈発明の効果〉 本発明の低合金鋼は、優れた耐応力腐食割れ性を具備す
べく最適の合金元素を最適の成分比率で含有し、および
/または適切な顕微鏡組織(結晶粒度)を有しているの
で、NaOH,OH−などの腐食環境下で高負荷応力を
受ける部材に使用されても応力腐食割れを生ずる可能性
が小さい。
<Effects of the Invention> The low alloy steel of the present invention contains optimal alloying elements in an optimal component ratio in order to have excellent stress corrosion cracking resistance, and/or has an appropriate microstructure (crystal grain size). Therefore, the possibility of stress corrosion cracking occurring is small even when used in a member that is subjected to high load stress in a corrosive environment such as NaOH or OH-.

〈実施例〉 以下、本発明を実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to Examples.

末尾に掲げた第1表は、応力腐食割れ試験に供した供試
鋼の化学成分と旧γ結晶粒度を示している。これらの供
試鋼は、成分を調整して高周波誘導電気炉で溶解後、造
塊し、25mm厚さに熱間鍛造し、次いで、オーステナ
イト化温度まで加熱してから水焼入れし、その後620
℃まで加熱して1時間保持してから4℃/分の速度で冷
却tろ焼戻し処理を施して製造された。なお、結晶粒度
は焼入れ温度(加熱温度)およびその保持時間を調節す
ることにより種々変化させた。こうして製造された供試
鋼から機械加工により第1図に示す如き厚さ1.5of
f+X幅15mmX長さ65mmの短冊状試験片Tを製
作した。第1表中、供試鋼N0.1〜19は本特許請求
の範囲内の発明鋼、供試9N0.20〜25は上記発明
鋼に対する比較鋼である。
Table 1 listed at the end shows the chemical composition and prior γ crystal grain size of the test steel subjected to the stress corrosion cracking test. These test steels were melted in a high-frequency induction electric furnace after adjusting their composition, then formed into ingots, hot forged to a thickness of 25 mm, heated to an austenitizing temperature, water quenched, and then 620 mm thick.
It was manufactured by heating it to ℃, holding it for 1 hour, and then cooling it at a rate of 4 ℃/min and performing a tempering treatment. The grain size was varied by adjusting the quenching temperature (heating temperature) and the holding time. By machining the test steel manufactured in this way, a thickness of 1.5 of as shown in Fig. 1 was obtained.
A strip-shaped test piece T having f+X width of 15 mm and length of 65 mm was manufactured. In Table 1, test steels No. 1 to 19 are inventive steels within the scope of the claims of the present invention, and test samples No. 9 No. 0.20 to 25 are comparative steels for the above invention steels.

応力腐食割れ試験は、上記供試鋼でなる試験片を4点曲
げ定荷重試験治具Jに装着しく第1図参照)、供試鋼の
0.2%耐力(σy)の60%または100%に相当す
る曲げ応力をボルトBのねじ込みで負荷するとともに、
5US310S製オートクレーブA内の120℃の30
%N a OH水溶液に1週間または3週間浸漬して行
ない(第2図参照)、その後の試験片断面の光学顕微鏡
観察により割れの発生の有無および割れ深さを測定した
In the stress corrosion cracking test, a test piece made of the above-mentioned test steel is mounted on a 4-point bending constant load test jig J (see Figure 1), and the test piece is 60% or 100% of the 0.2% proof stress (σy) of the test steel. A bending stress equivalent to % is applied by screwing bolt B, and
5 30℃ at 120℃ in autoclave A manufactured by US310S
% NaOH aqueous solution for one week or three weeks (see FIG. 2), and then the presence or absence of cracking and the crack depth were measured by observing the cross section of the test piece with an optical microscope.

上記応力腐食割れ試験の結果を末尾の第2表に示す。表
の試験Iの結果から明らかなように、比較鋼はいずれも
深さ0.84mm以上の超大な割れを生じているが、本
発明鋼は応力腐食割れを全く発生していない。即ち、本
発明の意図するAl!、Ti、Nb。
The results of the above stress corrosion cracking test are shown in Table 2 at the end. As is clear from the results of Test I in the table, the comparative steels all suffered from extremely large cracks with a depth of 0.84 mm or more, but the steel of the present invention did not show any stress corrosion cracking. That is, Al! as intended by the present invention! , Ti, Nb.

B、W、Ceの添加が低合金鋼の応力腐食割れ感受性の
低減に極めて有効であることが明らかである。
It is clear that the addition of B, W, and Ce is extremely effective in reducing the stress corrosion cracking susceptibility of low alloy steel.

さらに、試験Iの条件を応力面で厳しくした試験Hにお
いては、特許請求の範囲第2項、第3項および第4項に
相当するII(N0.8〜!9)のみに応力腐食割れが
発生しておらず、ALTi、Nb、B。
Furthermore, in Test H, which made the conditions of Test I stricter in terms of stress, stress corrosion cracking occurred only in II (N0.8 to !9) corresponding to claims 2, 3, and 4. Not occurring, ALTi, Nb, B.

W 、 Ceの添加に加えて、Snの微m添加または結
晶粒度の制限が応力腐食割れに対する信頼性をさらに高
めていることが分かる。さらに、本実施例において最も
厳しい試験条件である試験■においては、特許請求の範
囲第4項を満足するM (N o。
It can be seen that in addition to the addition of W and Ce, the addition of a small amount of Sn or the restriction of grain size further increases the reliability against stress corrosion cracking. Furthermore, in test (2), which is the most severe test condition in this example, M (No.

16〜19)、即ち、Al、Ti、Nb、B、W、Ce
の添加に加えて、Snの微量添加と結晶粒度番号4以上
を満たすもののみが割れを全く発生させていない。即ち
、この条件が本発明において見出した応力腐食割れを防
止する上で最も有効なことが明らかである。
16-19), namely Al, Ti, Nb, B, W, Ce
In addition to the addition of a small amount of Sn, only those with a grain size number of 4 or more did not generate any cracks. That is, it is clear that this condition is the most effective in preventing stress corrosion cracking found in the present invention.

第2表 *:板厚貫通割れTable 2 *: Through-thickness cracking

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の応力腐食割れ試験の試験片への応力負
荷状況を示す図、第2図は第1図の試験片の浸漬状況を
示す図である。
FIG. 1 is a diagram showing the stress load situation on the test piece in the stress corrosion cracking test of the example, and FIG. 2 is a diagram showing the immersion situation of the test piece in FIG. 1.

Claims (4)

【特許請求の範囲】[Claims] (1)C:≦0.40重量%(以下重量%)、Si:0
.15〜1.00%(0.15%を含まず)、Mn:0
.60〜1.00%(0.60%を含まず)、P:≦0
.010%、S:≦0.030%、Ni:≦4.00%
、Cr:0.50〜2.50%、Mo:0.25〜4.
00%、V:≦0.30%を含有し、さらにAl、Ti
、Nb、B、W、Ceの少なくとも一種を合計で0.0
01%〜0.50%含有し、残部Feおよび不可避的不
純物からなることを特徴とする耐応力腐食割れ性に良好
な低合金鋼。
(1) C: ≦0.40 wt% (hereinafter referred to as wt%), Si: 0
.. 15-1.00% (not including 0.15%), Mn: 0
.. 60-1.00% (not including 0.60%), P:≦0
.. 010%, S:≦0.030%, Ni:≦4.00%
, Cr: 0.50-2.50%, Mo: 0.25-4.
00%, V:≦0.30%, and further contains Al, Ti
, Nb, B, W, and Ce in total of 0.0
A low alloy steel having good stress corrosion cracking resistance, characterized by containing 0.01% to 0.50%, with the remainder consisting of Fe and unavoidable impurities.
(2)上記特許請求の範囲第1項に記載の低合金鋼にお
いて、旧オーステナイト結晶粒度がASTM結晶粒度番
号4以上であることを特徴とする耐応力腐食割れ性に良
好な低合金鋼。
(2) The low alloy steel according to claim 1, which has good stress corrosion cracking resistance, characterized in that the prior austenite grain size is ASTM grain size number 4 or more.
(3)C:≦0.40%、Si:0.15〜1.00%
(0.15%を含まず)、Mn:≦0.60〜1.00
%(0.60%を含まず)、P:≦0.010%、S:
≦0.030%、Ni:≦4.00%、Cr:0.50
〜2.50%、Mo:0.25〜4.00%、V:≦0
.30%を含有し、さらに下記の(i)群および(ii
)群の少なくとも一群を含有し、 (i)Al、Ti、Nb、W、B、Ceの少なくとも1
種を合計で0.001〜0.50% (ii)Sn:0.003〜0.015% 残部Feおよび不可避的不純物からなることを特徴とす
る耐応力腐食割れ性に良好な低合金鋼。
(3) C: ≦0.40%, Si: 0.15-1.00%
(excluding 0.15%), Mn: ≦0.60-1.00
% (excluding 0.60%), P:≦0.010%, S:
≦0.030%, Ni:≦4.00%, Cr:0.50
~2.50%, Mo: 0.25~4.00%, V:≦0
.. 30%, and further contains the following groups (i) and (ii)
); (i) at least one of Al, Ti, Nb, W, B, Ce;
A low alloy steel having good stress corrosion cracking resistance, characterized in that the total amount of seeds is 0.001 to 0.50% (ii) Sn: 0.003 to 0.015%, the balance being Fe and unavoidable impurities.
(4)上記特許請求の範囲第3項に記載の低合金鋼にお
いて、旧オーステナイト結晶粒度がASTM結晶粒度番
号4以上であることを特徴とする耐応力腐食割れ性に良
好な低合金属。
(4) The low alloy steel according to claim 3, which has good stress corrosion cracking resistance, characterized in that the prior austenite grain size is ASTM grain size number 4 or more.
JP21639786A 1986-09-12 1986-09-12 Low-alloy steel having satisfactory resistance to stress corrosion cracking Pending JPS6372856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21639786A JPS6372856A (en) 1986-09-12 1986-09-12 Low-alloy steel having satisfactory resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21639786A JPS6372856A (en) 1986-09-12 1986-09-12 Low-alloy steel having satisfactory resistance to stress corrosion cracking

Publications (1)

Publication Number Publication Date
JPS6372856A true JPS6372856A (en) 1988-04-02

Family

ID=16687921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21639786A Pending JPS6372856A (en) 1986-09-12 1986-09-12 Low-alloy steel having satisfactory resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6372856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030143A (en) * 1989-05-25 1991-07-09 Yazaki Corporation Wire insulator pressure-cut connector terminal
CN103131955A (en) * 2013-03-01 2013-06-05 河南理工大学 Medium carbon multiple elements low alloy wear resisting steel and production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030143A (en) * 1989-05-25 1991-07-09 Yazaki Corporation Wire insulator pressure-cut connector terminal
CN103131955A (en) * 2013-03-01 2013-06-05 河南理工大学 Medium carbon multiple elements low alloy wear resisting steel and production method

Similar Documents

Publication Publication Date Title
EP1873270B1 (en) Low alloy steel
EP0219089B1 (en) High-strength high-cr ferritic heat-resistant steel and process for producing the same
JP2001073066A (en) LOW Cr FERRITIC HEAT RESISTANT STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS AND ITS PRODUCTION
US7935303B2 (en) Low alloy steel
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
WO2022021816A1 (en) Heat-resistant steel for steel pipe and casting
JPS616257A (en) 12% cr heat resisting steel
EP0225425B1 (en) Low alloy steel having good stress corrosion cracking resistance
US4820486A (en) Low alloy steel having good stress corrosion cracking resistance
JPS5935427B2 (en) Roll materials used in continuous casting equipment
JPS616256A (en) 12% cr heat resisting steel
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPS6372856A (en) Low-alloy steel having satisfactory resistance to stress corrosion cracking
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPS61235543A (en) Low alloy steel excelling in stress corrosion cracking resistance
EP0445519A1 (en) Wear-resistant steel for intermediate and room temperature service
JP3775371B2 (en) Low alloy steel
JPH0387332A (en) High strength-low alloy-heat resistant steel
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JPS6362848A (en) Low-alloy heat-resistant steel having high strength
JP2583114B2 (en) Low carbon Cr-Mo steel sheet with excellent weld cracking resistance
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP2001152293A (en) HIGH Cr FERRITIC HEAT RESISTING STEEL
US2523838A (en) Metal alloy