JPH04362155A - High purity steel for integrated high and low pressure turbine rotor - Google Patents

High purity steel for integrated high and low pressure turbine rotor

Info

Publication number
JPH04362155A
JPH04362155A JP16342691A JP16342691A JPH04362155A JP H04362155 A JPH04362155 A JP H04362155A JP 16342691 A JP16342691 A JP 16342691A JP 16342691 A JP16342691 A JP 16342691A JP H04362155 A JPH04362155 A JP H04362155A
Authority
JP
Japan
Prior art keywords
less
low pressure
steel
turbine rotor
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16342691A
Other languages
Japanese (ja)
Inventor
Yasuhiko Tanaka
泰彦 田中
Tsukasa Azuma
司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP16342691A priority Critical patent/JPH04362155A/en
Publication of JPH04362155A publication Critical patent/JPH04362155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide high purity steel for the integrated high and low pressure rotor of a turbine usable for a large-sized rotor because of enhanced strength and toughness. CONSTITUTION:This high purity steel consists of, by weight, 0.2-0.35% C, 1.6-2.4% Bi, 1.2-2.5% Cr, 0.9-1.5% Mo, 0.2-0.3% V and the balance Fe with inevitable impurities or further contains 0.01-0.05% Nb. The allowed contents of Si, Mn, P and S among the inevitable impurities are <=0.1%, <=0.1%, <=0.005% and <=0.005%, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、発電機のタービンロ
ータ軸などに用いられる高低圧一体型タービンロータ用
高純度鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity steel for high-low pressure integrated turbine rotors used for turbine rotor shafts of power generators.

【0002】0002

【従来の技術】周知のように、タービン発電機には種々
のものがあり、その1つとして、単車室からなるタービ
ン発電機においては、高低圧一体型タービンロータが用
いられている。このタービンロータは、高温で高圧から
低圧に至る蒸気圧力にさらされており、その材料には、
優れた高温クリープ特性と、優れた低温靱性とを兼ね備
えていることが要求されている。従来、高低圧一体型タ
ービンロータ材としては、Cr ーMo ーV系低合金
鋼が開発されており、さらに、例えば特公昭54ー19
370号には、この種の材料を改良した低合金鋼が開示
されている。ところで、上記した高低圧一体型タービン
ロータには、従来、胴径が1m程度の小型のものが使用
されていたが、エネルギ−効率を向上させるために、例
えば胴径が2mに及ぶ大型の高低圧一体型タービンロー
タの開発が望まれている。
2. Description of the Related Art As is well known, there are various types of turbine generators, one of which is a single-casing turbine generator that uses an integrated high and low pressure turbine rotor. This turbine rotor is exposed to steam pressure ranging from high to low pressure at high temperatures, and its materials include:
It is required to have both excellent high-temperature creep properties and excellent low-temperature toughness. Conventionally, Cr-Mo-V low alloy steels have been developed as materials for high and low pressure integrated turbine rotors.
No. 370 discloses a low alloy steel that is an improved version of this type of material. By the way, the above-mentioned high and low pressure integrated turbine rotor has traditionally been a small one with a body diameter of about 1 m, but in order to improve energy efficiency, a large high-speed rotor with a body diameter of 2 m has been used. The development of a low-pressure integrated turbine rotor is desired.

【0003】0003

【発明が解決しようとする課題】高低圧一体型タービン
ロータの大型化を実現するためには、従来の小型ロータ
に比べ、材料の高強度化、高靱性化が要求され、従来使
用されていた材料では、この要請に応えることが困難で
ある。例えば、小型の高低圧一体型タービンロータ材と
して従来開発されているCrーMoーV系低合金鋼を大
型の高低圧一体型タービンロータに適用しようとしても
高温クリープ強度あるいは低温靱性が不足し、大型高低
圧一体型タービンロータ材として十分な性能が得られな
い。
[Problem to be solved by the invention] In order to realize a larger high-low pressure integrated turbine rotor, higher strength and toughness of the material is required compared to conventional small rotors, and It is difficult to meet this demand with materials. For example, when trying to apply Cr-Mo-V low alloy steel, which has been conventionally developed as a material for small high-low pressure integrated turbine rotors, to large high-low pressure integrated turbine rotors, it lacks high-temperature creep strength or low-temperature toughness. Sufficient performance cannot be obtained as a large high/low pressure integrated turbine rotor material.

【0004】この発明は、上記事情を背景としてなされ
たものであり、優れた高温クリープ特性と優れた低温靱
性とを兼ね備えた高低圧一体型タービンロータ用高純度
鋼を提供することを目的とするものである。
The present invention was made against the background of the above circumstances, and an object of the present invention is to provide a high-purity steel for a high-low pressure integrated turbine rotor that has both excellent high-temperature creep properties and excellent low-temperature toughness. It is something.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
、本願発明の高低圧一体型タービンロータ用高純度鋼の
うち第1の発明は、重量%で、C:0.2〜0.35%
、Ni :1.6〜2.4%、Cr :1.2〜2.5
%、Mo :0.9〜1.5%、V:0.2〜0.3%
を含有し、残部がFe および不可避不純物からなり、
該不可避不純物のうち、重量%で、Si :0.1%以
下、Mn :0.1%以下、P:0.005%以下、S
:0.005%以下を許容含有量とすることを特徴とす
るものである。
[Means for Solving the Problems] In order to solve the above problems, the first invention of the high purity steel for high and low pressure integrated turbine rotor of the present invention has a carbon content of 0.2 to 0.35 in weight%. %
, Ni: 1.6-2.4%, Cr: 1.2-2.5
%, Mo: 0.9-1.5%, V: 0.2-0.3%
with the remainder consisting of Fe and unavoidable impurities,
Among the inevitable impurities, in weight percent, Si: 0.1% or less, Mn: 0.1% or less, P: 0.005% or less, S
: The permissible content is 0.005% or less.

【0006】第2の発明は、第1の発明の組成に、さら
に、重量%で、Nb :0.01〜0.05%を含有す
ることを特徴とするものである。
The second invention is characterized in that the composition of the first invention further contains Nb: 0.01 to 0.05% by weight.

【0007】なお、上記の第1、第2の発明における不
可避不純物は、その含有量を制限した成分に限定される
ものではなく、これ以外に、通常、不可避的に混入する
不純物も含むものであり、それらの成分については、特
に数値限定をするものではない。
[0007] The unavoidable impurities in the first and second inventions above are not limited to components whose content is limited, but also include impurities that are usually unavoidably mixed. There are no particular numerical limitations on these components.

【0008】[0008]

【作用】本願発明の高低圧一体型タービンロータ用高純
度鋼によれば、焼入れ性が向上し、熱処理によって、大
型のロータにおいても大胴径の中心部に至るまで十分に
焼入れされ、高温クリープ強度を損なうことなく低温靱
性を向上させることができる。さらに、不可避不純物の
含有量を抑制して高純度化することによって、焼戻脆化
感受性が改善されるとともに、経年劣化を抑えられる。
[Action] According to the high purity steel for high and low pressure integrated turbine rotors of the present invention, the hardenability is improved, and through heat treatment, even large rotors are sufficiently hardened down to the center of the large body diameter, resulting in high temperature creep. Low-temperature toughness can be improved without impairing strength. Furthermore, by suppressing the content of unavoidable impurities and achieving high purity, susceptibility to temper embrittlement is improved and aging deterioration can be suppressed.

【0009】次に、本願発明の成分含有量の限定理由を
以下に述べる。なお、以下の説明では、各成分の含有量
は、重量%で示す。 C:0.2〜0.35% Cは所望の引張り強さ、耐力を得るために、0.2%以
上の含有が必要であるが、0.35%を超えると、靱性
が低下し、また、炭化物の凝集、粗大化が起こりクリー
プ強度を低下させるので上記範囲とする。 Ni :1.6〜2.4% Ni は、焼入れ性、強度、靱性を向上させるために添
加する。ただし、その含有量が1.6%未満では、その
作用は不十分であり、また、2.4%を超えて含有させ
ると、高温クリープ強度を低下させるので上記範囲とし
た。
Next, the reason for limiting the component content of the present invention will be described below. In addition, in the following description, the content of each component is shown in weight%. C: 0.2-0.35% In order to obtain the desired tensile strength and yield strength, C content must be 0.2% or more, but if it exceeds 0.35%, the toughness decreases, In addition, since carbide agglomeration and coarsening occur, lowering the creep strength, the above range is set. Ni: 1.6 to 2.4% Ni is added to improve hardenability, strength, and toughness. However, if the content is less than 1.6%, its effect is insufficient, and if it is more than 2.4%, the high-temperature creep strength is reduced, so the range was set as above.

【0010】Cr :1.2〜2.5%高温強度、靱性
の改善のために添加される。ただし、その含有量が1.
2%未満では、その作用が不十分であり、また、2.5
%を超えて含有させても、効果は飽和するので上記範囲
とした。 Mo :0.9〜1.5% Cとの間で炭化物を形成し、基地中に微細に析出して、
低温および高温における強度を向上させ、さらに、焼戻
脆化を抑制する。含有量が0.9%未満では、その作用
は不十分であり、また、1.5%を超えて含有させると
、効果が飽和するのみでなく、かえって高温強度および
靱性を低下させるので上記範囲とした。
Cr: 1.2 to 2.5% added to improve high temperature strength and toughness. However, the content is 1.
If it is less than 2%, its effect will be insufficient;
Even if the content exceeds %, the effect will be saturated, so the above range was set. Mo: 0.9 to 1.5% Forms carbides with C and finely precipitates in the matrix,
Improves strength at low and high temperatures, and further suppresses temper embrittlement. If the content is less than 0.9%, the effect will be insufficient, and if the content exceeds 1.5%, the effect will not only be saturated, but also the high temperature strength and toughness will be reduced, so the above range is required. And so.

【0011】V:0.2〜0.3% Vは炭化物を形成し、高温強度を向上させる。ただし、
その含有量が0.2%未満ではその作用は不十分であり
、0.3%を超えて含有させると、高温クリープ強度、
靱性を低下させるので上記範囲とした。 Nb :0.01〜0.05% Nb は炭化物を形成し、高温強度を高めるため、所望
により添加する。ただし、含有量が0.01%未満では
、その作用は不十分であり、0.05%を超えて含有さ
せると、共晶型炭化物を形成し、著しく靱性を劣化させ
るため上記範囲に限定した。
V: 0.2 to 0.3% V forms carbides and improves high temperature strength. however,
If the content is less than 0.2%, its effect is insufficient, and if it is contained in more than 0.3%, the high temperature creep strength
Since it lowers toughness, it is set in the above range. Nb: 0.01 to 0.05% Nb forms carbide and increases high temperature strength, so it is added as desired. However, if the content is less than 0.01%, the effect is insufficient, and if the content exceeds 0.05%, eutectic carbides are formed and the toughness is significantly deteriorated, so it is limited to the above range. .

【0012】不可避不純物(Si :0.1%以下、M
n :0.1%以下、P:0.005%以下、S:0.
005%以下)Si 、Mn :0.1%以下Si は
、通常、脱酸剤として使用され、その場合の含有量は、
通常0.30〜0.50%程度である。この程度のSi
 を含有すると、大型鋼塊においてはマクロ偏析を発生
する。また、Si 含有量が高いと、焼戻脆化感受性が
極めて大となり、切欠靱性が損なわれる。本願発明では
、上述のSi の悪影響を避けるために、例えば、Si
 脱酸に代えて真空C脱酸を採用する。真空C脱酸を行
う場合、脱酸前にSi 含有量を極力低減しておくこと
が望ましく、本願発明では、不可避不純物としてのSi
 の許容含有量を工業的に可能な0.1%以下に制限し
た。Mn は、Sと結びついて非金属介在物を形成し、
靱性を低下させる。また、鋼中に残存したMn は、S
iと同様に焼戻脆化を促進するので、極力低減すること
が望ましく、不可避不純物としてのMn の許容含有量
を工業的に可能な0.1%以下に制限した。。
Unavoidable impurities (Si: 0.1% or less, M
n: 0.1% or less, P: 0.005% or less, S: 0.
0.05% or less) Si, Mn: 0.1% or less Si is usually used as a deoxidizing agent, and in that case the content is:
It is usually about 0.30 to 0.50%. This level of Si
, macro-segregation occurs in large steel ingots. Moreover, when the Si content is high, the susceptibility to temper embrittlement becomes extremely high, and notch toughness is impaired. In the present invention, in order to avoid the above-mentioned adverse effects of Si, for example, Si
Vacuum C deoxidation is used instead of deoxidation. When performing vacuum C deoxidation, it is desirable to reduce the Si content as much as possible before deoxidation, and in the present invention, Si as an unavoidable impurity is
The permissible content of is limited to 0.1% or less, which is industrially possible. Mn combines with S to form nonmetallic inclusions,
Decreases toughness. In addition, Mn remaining in the steel is S
Like i, Mn promotes temper embrittlement, so it is desirable to reduce it as much as possible, and the allowable content of Mn as an unavoidable impurity was limited to 0.1% or less, which is industrially possible. .

【0013】P:0.005%以下 Pは、焼戻脆化感受性を助長する元素であって、経年劣
化の少ない材料を得るためには極力低減することが望ま
しく、現状の精錬技術レベルを考慮して、Pの許容含有
量を0.005%以下に制限した。 S:0.005%以下 Sは、大型鋼塊においては、微量の含有でもMn S等
の非金属介在物を鋼中に生成し、鋼の品質を劣化させる
ので、極力低減することが望ましく、Pと同様に現状の
精錬技術レベルを考慮して、Sの許容含有量を0.00
5%以下に制限した。
P: 0.005% or less P is an element that promotes susceptibility to temper embrittlement, and in order to obtain materials with little aging deterioration, it is desirable to reduce it as much as possible, taking into consideration the current level of refining technology. Therefore, the allowable P content was limited to 0.005% or less. S: 0.005% or less In large steel ingots, even a trace amount of S will generate nonmetallic inclusions such as Mn and S in the steel, degrading the quality of the steel, so it is desirable to reduce it as much as possible. Similarly to P, considering the current refining technology level, the allowable content of S is set to 0.00.
It was limited to 5% or less.

【0014】その他の不可避不純物 なお上述の不可避不純物の他に、鋼質を劣化させる不可
避不純物として、Cu、また焼戻脆化を助長する不可避
不純物として、As 、Sb 、Sn などがあげられ
るが、これらの不可避不純物は極力低減することが好ま
しい。 しかし、これらの不可避不純物は、原材料に付随して不
可避的に混入するものであって、精錬によって除去する
ことは困難である。したがって、原材料の厳選によると
ころが大きく、鋼質改善の見地から、Cu :0.10
%以下、As :0.008%以下、Sb :0.01
%以下、Sn :0.005%以下に制限することが望
ましい。
Other Unavoidable Impurities In addition to the above-mentioned unavoidable impurities, unavoidable impurities that deteriorate steel quality include Cu, and unavoidable impurities that promote temper embrittlement include As, Sb, Sn, etc. It is preferable to reduce these unavoidable impurities as much as possible. However, these unavoidable impurities are unavoidably mixed in with the raw materials and are difficult to remove by refining. Therefore, it depends largely on the careful selection of raw materials, and from the perspective of improving steel quality, Cu: 0.10
% or less, As: 0.008% or less, Sb: 0.01
It is desirable to limit Sn to 0.005% or less.

【0015】[0015]

【実施例】表1に示す組成の本発明鋼と比較鋼を真空溶
解炉にて溶解し、50Kg鋼塊を溶製した。各鋼塊を1
200℃に加熱して、鍛造比約4で熱間鍛造し、さらに
、1050℃に加熱後、焼入れし、引続き、供試鋼No
.1〜5およびNo.7、No.8は、650℃で20
時間の焼戻しを施した。なお、供試鋼No.6は、焼戻
し温度を変え、No.6Aは650℃、No.6Bは6
55℃、No.6Cは660℃で、それぞれ20時間の
焼戻しを施した。
[Example] The present invention steel and comparative steel having the compositions shown in Table 1 were melted in a vacuum melting furnace to produce a 50 kg steel ingot. 1 piece of each steel ingot
It was heated to 200°C, hot forged at a forging ratio of about 4, further heated to 1050°C, quenched, and then sample steel No.
.. 1 to 5 and No. 7.No. 8 is 20 at 650℃
Subjected to time tempering. In addition, test steel No. No. 6 was obtained by changing the tempering temperature. 6A is 650°C, No. 6B is 6
55°C, No. 6C was tempered at 660°C for 20 hours.

【0016】次に、熱処理後の供試鋼の材料試験結果を
表2に示す。表2の結果に基づき、破面遷移温度とクリ
ープ破断時間の関係を図1に図示した。図1から明らか
なように、比較鋼に比べ、本発明鋼は破面遷移温度はよ
り低い側にあり、また、クリープ破断時間も、より長時
間側にあり、高温クリープ強度および低温靱性のいずれ
にも優れており、大型の高低圧一体型タービンロータへ
の適用が可能である。
Next, Table 2 shows the material test results of the sample steel after heat treatment. Based on the results in Table 2, the relationship between fracture surface transition temperature and creep rupture time is illustrated in FIG. As is clear from Figure 1, compared to the comparison steel, the fracture surface transition temperature of the steel of the present invention is lower, the creep rupture time is also longer, and both high-temperature creep strength and low-temperature toughness are It also has excellent performance and can be applied to large high and low pressure integrated turbine rotors.

【0017】[0017]

【表1】[Table 1]

【0018】[0018]

【表2】[Table 2]

【0019】[0019]

【発明の効果】以上説明したように本願発明の高低圧一
体型タービンロータ用高純度鋼によれば、重量%で、C
:0.2〜0.35%、Ni :1.6〜2.4%、C
r :1.2〜2.5%、Mo :0.9〜1.5%、
V:0.2〜0.3%を含有し、残部がFe および不
可避不純物からなり、該不可避不純物のうち、重量%で
、Si :0.1%以下、Mn :0.1%以下、P:
0.005%以下、S:0.005%以下を許容含有と
するので、焼入れ性が向上し、大型のロータにおいても
十分に焼入れすることができ、高温クリープ強度を損な
うことなく低温靱性を向上させることができる。さらに
、焼戻脆化感受性が改善されるとともに、経年劣化を抑
えることができる。したがって、高低圧一体型タービン
ロータへの適用において、ロータの大型化が可能になり
、エネルギー効率を向上させることができる。
Effects of the Invention As explained above, according to the high-purity steel for high-low pressure integrated turbine rotor of the present invention, C
:0.2~0.35%, Ni:1.6~2.4%, C
r: 1.2-2.5%, Mo: 0.9-1.5%,
Contains V: 0.2 to 0.3%, the remainder consists of Fe and unavoidable impurities, and among the unavoidable impurities, Si: 0.1% or less, Mn: 0.1% or less, P :
Since the permissible content is 0.005% or less and S: 0.005% or less, hardenability is improved, and even large rotors can be sufficiently hardened, and low-temperature toughness is improved without compromising high-temperature creep strength. can be done. Furthermore, the susceptibility to temper embrittlement is improved and deterioration over time can be suppressed. Therefore, when applied to a high/low pressure integrated turbine rotor, the rotor can be made larger and energy efficiency can be improved.

【0020】また、Nb :0.01〜0.05%を含
有させることにより、上記効果に加え、さらに高温クリ
ープ強度を増大させる効果がある。
[0020] Furthermore, by containing Nb: 0.01 to 0.05%, in addition to the above effects, there is an effect of further increasing high temperature creep strength.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】供試鋼のクリープ強度および低温靱性の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between creep strength and low temperature toughness of test steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、C:0.2〜0.35%、
Ni :1.6〜2.4%、Cr :1.2〜2.5%
、Mo :0.9〜1.5%、V:0.2〜0.3%を
含有し、残部がFe および不可避不純物からなり、該
不可避不純物のうち、重量%で、Si :0.1%以下
、Mn :0.1%以下、P:0.005%以下、S:
0.005%以下を許容含有量とすることを特徴とする
高低圧一体型タービンロータ用高純度鋼
Claim 1: C: 0.2 to 0.35% by weight,
Ni: 1.6-2.4%, Cr: 1.2-2.5%
, Mo: 0.9 to 1.5%, V: 0.2 to 0.3%, the remainder consisting of Fe and unavoidable impurities, and among the unavoidable impurities, Si: 0.1% by weight. % or less, Mn: 0.1% or less, P: 0.005% or less, S:
High purity steel for high and low pressure integrated turbine rotor, characterized by an allowable content of 0.005% or less
【請求項2】  請求項1記載の組成に、さらに、重量
%で、Nb :0.01〜0.05%を含有することを
特徴とする高低圧一体型タービンロータ用高純度鋼
2. A high-purity steel for a high-low pressure integrated turbine rotor, characterized in that the composition according to claim 1 further contains Nb: 0.01 to 0.05% by weight.
JP16342691A 1991-06-10 1991-06-10 High purity steel for integrated high and low pressure turbine rotor Pending JPH04362155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16342691A JPH04362155A (en) 1991-06-10 1991-06-10 High purity steel for integrated high and low pressure turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16342691A JPH04362155A (en) 1991-06-10 1991-06-10 High purity steel for integrated high and low pressure turbine rotor

Publications (1)

Publication Number Publication Date
JPH04362155A true JPH04362155A (en) 1992-12-15

Family

ID=15773680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16342691A Pending JPH04362155A (en) 1991-06-10 1991-06-10 High purity steel for integrated high and low pressure turbine rotor

Country Status (1)

Country Link
JP (1) JPH04362155A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224766A (en) * 1984-04-23 1985-11-09 Toshiba Corp Steam turbine rotor
JPS62109949A (en) * 1985-11-06 1987-05-21 Kobe Steel Ltd Nicrmo steel having excellent stress corrosion cracking resistance
JPS62278251A (en) * 1986-05-23 1987-12-03 Kobe Steel Ltd Low-alloy steel excellent in stress corrosion cracking resistance
JPH0234724A (en) * 1988-07-22 1990-02-05 Toshiba Corp Manufacture of turbine rotor
JPH02145749A (en) * 1988-11-25 1990-06-05 Toshiba Corp Turbine rotor
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224766A (en) * 1984-04-23 1985-11-09 Toshiba Corp Steam turbine rotor
JPS62109949A (en) * 1985-11-06 1987-05-21 Kobe Steel Ltd Nicrmo steel having excellent stress corrosion cracking resistance
JPS62278251A (en) * 1986-05-23 1987-12-03 Kobe Steel Ltd Low-alloy steel excellent in stress corrosion cracking resistance
JPH0234724A (en) * 1988-07-22 1990-02-05 Toshiba Corp Manufacture of turbine rotor
JPH02145749A (en) * 1988-11-25 1990-06-05 Toshiba Corp Turbine rotor
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP3461945B2 (en) Method of manufacturing high-low pressure integrated turbine rotor
US4857120A (en) Heat-resisting steel turbine part
US20030185700A1 (en) Heat-resisting steel and method of manufacturing the same
US5972287A (en) Heat-resisting steel
JPH02197550A (en) High purity heat-resistant steel
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3468975B2 (en) Low alloy heat resistant steel and steam turbine rotor
JPH021901B2 (en)
JPH04362155A (en) High purity steel for integrated high and low pressure turbine rotor
US4049432A (en) High strength ferritic alloy-D53
JP3576328B2 (en) Low alloy heat resistant steel and steam turbine rotor
JPH07103447B2 (en) High purity heat resistant steel
JPH1036944A (en) Martensitic heat resistant steel
JP3245097B2 (en) High temperature steam turbine rotor material
JPS6031898B2 (en) Turbine rotor material
JPH05195068A (en) Manufacture of high-and low-pressure integrated turbine rotor
JPH0665678A (en) Production of high purity heat resistant steel and high and low pressure integration type turbine rotor composed of the same
JPS6141750A (en) Rotor for steam turbine
JPH11217655A (en) High strength heat resistant steel and its production
JP3581458B2 (en) High temperature steam turbine rotor material
JP4774633B2 (en) Method for producing martensitic heat resistant steel
JPH03153848A (en) Heat-resistant steel
JPH0641678A (en) Turbine rotor
JPS6017016A (en) Heat treatment of turbine rotor