JPH05195068A - Manufacture of high-and low-pressure integrated turbine rotor - Google Patents

Manufacture of high-and low-pressure integrated turbine rotor

Info

Publication number
JPH05195068A
JPH05195068A JP29382891A JP29382891A JPH05195068A JP H05195068 A JPH05195068 A JP H05195068A JP 29382891 A JP29382891 A JP 29382891A JP 29382891 A JP29382891 A JP 29382891A JP H05195068 A JPH05195068 A JP H05195068A
Authority
JP
Japan
Prior art keywords
turbine rotor
low pressure
less
low
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29382891A
Other languages
Japanese (ja)
Inventor
Tsukasa Azuma
司 東
Yasuhiko Tanaka
泰彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP29382891A priority Critical patent/JPH05195068A/en
Publication of JPH05195068A publication Critical patent/JPH05195068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture a high-and low-pressure integrated turbine rotor, which makes strength and toughness high and can be used for the large scaled rotor. CONSTITUTION:The turbine rotor base stock is heated to parts corresponding to the high pressure part and middle pressure part as desirable so as to be higher than a part corresponding to the low pressure part and quenching is executed at cooling rate of oil cooling or above to the part corresponding to the low pressure part at the cooling rate of air blast cooling or lower to the parts corresponding to the high pressure part and the middle pressure part and, thereafter, one or more times of tempering is executed to the base stock at a prescribed temp. By this method, the material having excellent high temp. creep strength and low temp. toughness is obtd., and the application for the large scaled high-and low-pressure integrated turbine rotor is enabled, and energy efficiency can be improved by making the turbine rotor large in scale.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発電機のタービンロ
ータ軸などに用いられる高低圧一体型タービンロータの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a high-low pressure integrated turbine rotor used for a turbine rotor shaft of a generator.

【0002】[0002]

【従来の技術】周知のように、タービン発電機には種々
のものがあり、その1つとして、単車室からなるタービ
ン発電機においては、高低圧一体型タービンロータが用
いられている。このタービンロータは、高温で高圧から
低圧に至る蒸気圧力にさらされており、その材料には、
優れた高温クリープ特性と、優れた低温靱性とを兼ね備
えていることが要求されている。従来、高低圧一体型タ
ービンロータ材としては、Cr ーMo ーV系低合金鋼が
開発されており、さらに、例えば特公昭54ー1937
0号には、この種の材料を改良した低合金鋼が開示され
ている。高低圧一体型タービンロータを製造する際に
は、上記合金鋼からなるタービンロータ素体を均一に加
熱して、素体全体に油焼入れ、水焼入れ、噴水焼入れな
どを行い、その後に焼戻しを行う熱処理を施している。
ところで、上記した高低圧一体型タービンロータには、
従来、胴径が1m程度の小型のものが使用されていた
が、エネルギ−効率を向上させるために、例えば胴径が
2mに及ぶ大型の高低圧一体型タービンロータの開発が
望まれている。
2. Description of the Related Art As is well known, there are various types of turbine generators, and as one of them, a turbine generator having a single casing uses a high-low pressure integrated turbine rotor. This turbine rotor is exposed to steam pressure from high pressure to low pressure at high temperature, and its material is
It is required to have both excellent high temperature creep properties and excellent low temperature toughness. Conventionally, Cr-Mo-V type low alloy steel has been developed as a high-low pressure integrated turbine rotor material, and further, for example, Japanese Patent Publication No. 54-1937.
No. 0 discloses a low alloy steel improved on this type of material. When manufacturing a high-low pressure integrated turbine rotor, the turbine rotor body made of the above alloy steel is uniformly heated, and the entire body is oil-quenched, water-quenched, fountain-quenched, and then tempered. It is heat treated.
By the way, in the high-low pressure integrated turbine rotor described above,
Conventionally, a small one having a body diameter of about 1 m has been used, but in order to improve energy efficiency, development of a large-sized high-low pressure integrated turbine rotor having a body diameter of 2 m is desired.

【0003】[0003]

【発明が解決しようとする課題】しかし、高低圧一体型
タービンロータの大型化を実現するためには、従来の小
型ロータに比べ、材料の高強度化、高靱性化が要求さ
れ、従来使用されていた材料や製造方法では、この要請
に応えることが困難である。例えば、小型の高低圧一体
型タービンロータ材として従来開発されているCrーMo
ーV系低合金鋼を用いて常法の熱処理を施しても、大
型の高低圧一体型タービンロータとしては高温クリープ
強度あるいは低温靱性が不足し、大型高低圧一体型ター
ビンロータ材として十分な性能が得られない。この発明
は、上記事情を背景としてなされたものであり、優れた
高温クリープ特性と優れた低温靱性とを兼ね備えた高低
圧一体型タービンロータの製造方法を提供することを目
的とするものである。
However, in order to increase the size of the high-low pressure integrated turbine rotor, it is required that the material has higher strength and higher toughness than the conventional small rotor, and thus the conventional rotor has been used. It is difficult to meet this demand with the conventional materials and manufacturing methods. For example, Cr-Mo, which has been previously developed as a compact high- and low-voltage integrated turbine rotor material
-Even if heat treatment of V-type low alloy steel is carried out by a conventional method, the high temperature and low pressure integrated turbine rotor lacks high temperature creep strength or low temperature toughness, and it has sufficient performance as a large high pressure and low pressure integrated turbine rotor material. Can't get The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a high-low pressure integral turbine rotor having both excellent high-temperature creep characteristics and excellent low-temperature toughness.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本願発明の高低圧一体型タービンロータの製造方法
のうち第1の発明は、タービンロータ素体を所定の温度
に加熱して、低圧部に相当する部分を油冷以上の冷却速
度、高圧部および中圧部に相当する部分を衝風冷却以下
の冷却速度で焼入れし、その後、前記素体を所定の温度
で1回以上の焼戻しを行うことを特徴とする。前記ター
ビンロータ素体は、高圧部、中圧部、低圧部をそれぞれ
必ず具備している必要はなく、これらの2以上を具備し
ているものであればよい。また、焼入れに際しての加熱
温度は、タービンロータ素体に用いられる鋼の組成に従
い、鋼をオーステナイト化させるのに必要な温度が適宜
選定される。また、低圧部相当部分に適用する冷却は、
油冷以上の冷却速度を有する方法で行えばよく、例え
ば、油冷、水冷、噴水冷却で行うことができる。さら
に、高、中圧部相当部分に適用する冷却は、衝風冷却以
下の冷却速度を有する方法で行えばよく、例えば、衝風
冷却、空冷により行うことができる。次に、焼戻し温度
およびその回数も、鋼の組成、必要な焼戻し効果などに
従って適宜選定される。第2の発明は、第1の発明にお
いてタービンロータ素体を、その高圧部および中圧部に
相当する部分が、低圧部に相当する部分よりも高温にな
るように加熱して焼入れすることを特徴とする。
In order to solve the above problems, the first invention of the method for manufacturing a high-low pressure integrated turbine rotor according to the present invention is to heat a turbine rotor body to a predetermined temperature to reduce the low pressure. The parts corresponding to the parts are quenched at a cooling speed of oil cooling or higher, and the parts corresponding to the high pressure part and the intermediate pressure part are cooled at a cooling speed of not higher than the airflow cooling, and then the element body is tempered one or more times at a predetermined temperature. It is characterized by performing. The turbine rotor body does not necessarily have to have each of the high pressure portion, the medium pressure portion, and the low pressure portion, and may have any two or more of them. Further, the heating temperature for quenching is appropriately selected according to the composition of the steel used for the turbine rotor body, the temperature required for austenitizing the steel. Also, the cooling applied to the low pressure part
A method having a cooling rate equal to or higher than oil cooling may be used, and for example, oil cooling, water cooling, or fountain cooling can be performed. Further, the cooling applied to the portion corresponding to the high and medium pressure portions may be performed by a method having a cooling rate equal to or lower than the airflow cooling, and for example, airflow cooling or air cooling can be performed. Next, the tempering temperature and the number of times thereof are appropriately selected according to the composition of the steel, the required tempering effect, and the like. A second aspect of the invention is to heat and quench the turbine rotor body in the first aspect of the invention so that the portions corresponding to the high pressure portion and the intermediate pressure portion have a higher temperature than the portions corresponding to the low pressure portion. Characterize.

【0005】第3の発明は、タービンロータ素体が、重
量%で、C:0.2〜0.35%、Ni :1.6〜2.
4%、Cr :1.2〜2.5%、Mo :0.9〜1.5
%、V:0.2〜0.3%を含有し、残部がFe および
不可避不純物からなり、該不可避不純物のうち、重量%
で、Si :0.1%以下、Mn :0.1%以下、P:
0.005%以下、S:0.005%以下を許容含有量
とする高純度鋼からなり、前記タービンロータ素体を9
00〜1000℃に加熱し、低圧部に相当する部分を油
冷以上の冷却速度、高圧部および中圧部に相当する部分
を衝風冷却以下の冷却速度で焼入れし、その後、前記素
体を550〜700℃で1回以上の焼戻しを行うことを
特徴とする。
According to a third aspect of the present invention, the turbine rotor body is, by weight%, C: 0.2 to 0.35%, Ni: 1.6 to 2.
4%, Cr: 1.2 to 2.5%, Mo: 0.9 to 1.5
%, V: 0.2 to 0.3%, the balance consisting of Fe and unavoidable impurities, and% by weight of the unavoidable impurities.
, Si: 0.1% or less, Mn: 0.1% or less, P:
The turbine rotor body is made of high-purity steel with an allowable content of 0.005% or less and S: 0.005% or less.
It is heated to 00 to 1000 ° C., the part corresponding to the low pressure part is quenched at a cooling speed of oil cooling or higher, and the parts corresponding to the high pressure part and the intermediate pressure part are quenched at a cooling speed not higher than the wind cooling, and then the element body is cooled. It is characterized by performing tempering at least once at 550 to 700 ° C.

【0006】第4の発明は、タービンロータ素体が、重
量%で、C:0.2〜0.35%、Ni :1.6〜2.
4%、Cr :1.2〜2.5%、Mo :0.9〜1.5
%、V:0.2〜0.3%を含有し、残部がFe および
不可避不純物からなり、該不可避不純物のうち、重量%
で、Si :0.1%以下、Mn :0.1%以下、P:
0.005%以下、S:0.005%以下を許容含有量
とする高純度鋼からなり、前記タービンロータ素体の高
圧部および中圧部に相当する部分を900〜1030
℃、低圧部に相当する部分を870〜1000℃で、し
かも高圧部および中圧部に相当する部分が低圧部よりも
20〜80℃高温となるように加熱して焼入れし、その
後、前記素体を550〜700℃で1回以上の焼戻しを
行うことを特徴とする。
According to a fourth aspect of the present invention, the turbine rotor body is, by weight%, C: 0.2 to 0.35%, Ni: 1.6 to 2.
4%, Cr: 1.2 to 2.5%, Mo: 0.9 to 1.5
%, V: 0.2 to 0.3%, the balance consisting of Fe and unavoidable impurities, and% by weight of the unavoidable impurities.
, Si: 0.1% or less, Mn: 0.1% or less, P:
It is made of high-purity steel having an allowable content of 0.005% or less and S: 0.005% or less, and the portions corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body are 900 to 1030.
C., the part corresponding to the low pressure part is heated to 870 to 1000.degree. C. and the parts corresponding to the high pressure part and the intermediate pressure part are heated to 20 to 80.degree. The body is characterized by being tempered one or more times at 550 to 700 ° C.

【0007】第5の発明は、第4の発明において、ター
ビンロータ素体の低圧部に相当する部分を油冷以上の冷
却速度、高圧部および中圧部に相当する部分を衝風冷却
以下の冷却速度で焼入れすることを特徴とする。
According to a fifth aspect of the present invention, in the fourth aspect of the invention, a portion corresponding to a low pressure portion of the turbine rotor body is cooled at an oil cooling rate or higher, and portions corresponding to a high pressure portion and an intermediate pressure portion are blown air cooled or less. It is characterized by quenching at a cooling rate.

【0008】第6の発明は、第3〜第5の発明の高純度
鋼の組成に、さらに、重量%で、Nb :0.01〜0.
05%を含有することを特徴とする。なお、上記の第3
〜第6の発明における不可避不純物は、その含有量を制
限した成分に限定されるものではなく、これ以外に、通
常、不可避的に混入する不純物も含むものであってもよ
く、それらの成分については、特に含有量を限定をする
ものではないが極力低減することが望ましい。
A sixth aspect of the invention is the composition of the high purity steel of the third to fifth aspects of the invention, further comprising Nb: 0.01-0.
It is characterized by containing 05%. In addition, the above-mentioned third
The unavoidable impurities in the sixth invention are not limited to the components whose contents are limited, and in addition to these, impurities that are usually unavoidably mixed may be included. Does not particularly limit the content, but it is desirable to reduce the content as much as possible.

【0009】[0009]

【作用】焼入れ時の冷却速度は、フェライト変態が起ら
ない程度に遅いほど(例えば約5℃/h以上)、高温ク
リープ強度は良好となり、逆に、焼入れ時の冷却速度が
速いほど低温靱性は良好となる。高低圧一体型タービン
ロータは、部位によって使用条件が異なるために、要求
される性質にも部位によって差異があり、特に、高圧部
および中圧部では高温クリープ強度が十分に高いことが
必要とされ、低圧部では低温靱性に優れていることが必
要とされる。
When the cooling rate during quenching is slower so that ferrite transformation does not occur (for example, about 5 ° C / h or more), the high temperature creep strength becomes better, and conversely, the faster the cooling rate during quenching, the lower temperature toughness. Will be good. Since the high-low pressure integrated turbine rotor has different usage conditions depending on the parts, the required properties also differ depending on the parts. Especially, it is necessary that the high temperature creep strength is sufficiently high in the high pressure part and the intermediate pressure part. In the low pressure part, it is required to have excellent low temperature toughness.

【0010】本願発明の高低圧一体型タービンロータの
製造方法によれば、タービンロータ素体の高中圧部と、
低圧部とによって冷却速度を前記のように変えて(以
下、偏差冷却という)、焼入れを行うので、高、中圧部
に相当する部分は十分な高温クリープ強度が確保され、
一方、低圧部では優れた低温靱性が確保される。また、
冷却に先立つ加熱温度を、高、中圧部と低圧部で差異を
設ける(以下、偏差加熱という)ことにより、上記作用
が確実なものとなる。その際に、高、中圧部の加熱温度
が低圧部よりも20〜80℃高温になるように加熱する
のが望ましい。これは、温度差が20℃未満であると、
高、中圧部の強度と低圧部の靱性において十分な優位性
が得られず、また、80℃を超えると製造が困難になる
ためである。
According to the method for manufacturing a high-low pressure integrated turbine rotor of the present invention, the high-to-medium pressure portion of the turbine rotor body,
Since the quenching is performed by changing the cooling rate according to the low pressure part as described above (hereinafter referred to as deviation cooling), sufficient high temperature creep strength is secured in the parts corresponding to the high and medium pressure parts,
On the other hand, excellent low temperature toughness is secured in the low pressure part. Also,
By providing a difference in the heating temperature prior to cooling between the high and medium pressure portions and the low pressure portion (hereinafter, referred to as deviation heating), the above-mentioned operation is ensured. In that case, it is desirable to heat so that the heating temperature of the high and medium pressure portions is higher by 20 to 80 ° C. than that of the low pressure portion. This means that if the temperature difference is less than 20 ° C,
This is because sufficient superiority cannot be obtained in the strength of the high and medium pressure portions and the toughness of the low pressure portion, and when the temperature exceeds 80 ° C, the production becomes difficult.

【0011】さらに、タービンロータ素体に、特定の組
成を有する高純度鋼を採用することにより焼入れ性が向
上し、熱処理によって、大型のロータにおいても大胴径
の中心部に至るまで十分に焼入れされ、高温クリープ強
度を損なうことなく低温靱性を向上させることができ
る。さらに、不可避不純物の含有量を抑制して高純度化
することによって、焼戻脆化感受性が改善されるととも
に、経年劣化を抑えることができる。
Further, by adopting a high-purity steel having a specific composition for the turbine rotor body, the hardenability is improved, and by heat treatment, even in a large-sized rotor, it is sufficiently hardened to reach the center of the large diameter. Therefore, the low temperature toughness can be improved without impairing the high temperature creep strength. Further, by suppressing the content of the unavoidable impurities to achieve high purification, the temper embrittlement susceptibility is improved and the deterioration over time can be suppressed.

【0012】次に、この高純度鋼の成分含有量の限定理
由を以下に述べる。なお、以下の説明では、各成分の含
有量は、重量%で示す。C:0.2〜0.35% Cは所望の引張り強さ、耐力を得るために、0.2%以
上の含有が必要であるが、0.35%を超えると、靱性
が低下し、また、炭化物の凝集、粗大化が起こりクリー
プ強度を低下させるので上記範囲とする。Ni :1.6〜2.4% Ni は、焼入れ性、強度、靱性を向上させるために添加
する。ただし、その含有量が1.6%未満では、その作
用は不十分であり、また、2.4%を超えて含有させる
と、高温クリープ強度を低下させるので上記範囲とし
た。
Next, the reasons for limiting the component contents of this high-purity steel will be described below. In addition, in the following description, the content of each component is shown by weight%. C: 0.2 to 0.35% C needs to be contained in an amount of 0.2% or more in order to obtain desired tensile strength and proof stress, but if it exceeds 0.35%, toughness decreases, Further, since the carbide aggregates and coarsens to reduce the creep strength, the above range is set. Ni: 1.6 to 2.4% Ni is added to improve hardenability, strength, and toughness. However, if its content is less than 1.6%, its action is insufficient, and if it exceeds 2.4%, the high temperature creep strength is lowered, so the above range was made.

【0013】Cr :1.2〜2.5% 高温強度、靱性の改善のために添加される。ただし、そ
の含有量が1.2%未満では、その作用が不十分であ
り、また、2.5%を超えて含有させても、効果は飽和
するので上記範囲とした。Mo :0.9〜1.5% Cとの間で炭化物を形成し、基地中に微細に析出して、
低温および高温における強度を向上させ、さらに、焼戻
脆化を抑制する。含有量が0.9%未満では、その作用
は不十分であり、また、1.5%を超えて含有させる
と、効果が飽和するのみでなく、かえって高温強度およ
び靱性を低下させるので上記範囲とした。
Cr: 1.2 to 2.5% Added for improving high temperature strength and toughness. However, if its content is less than 1.2%, its action is insufficient, and if it exceeds 2.5%, the effect is saturated, so the above range was made. Mo: Carbides are formed between 0.9 and 1.5% C and finely precipitate in the matrix ,
Improves strength at low and high temperatures and suppresses temper embrittlement. If the content is less than 0.9%, the effect is insufficient, and if the content exceeds 1.5%, not only the effect is saturated, but also the high temperature strength and toughness are deteriorated, so the above range And

【0014】V:0.2〜0.3% Vは炭化物を形成し、高温強度を向上させる。ただし、
その含有量が0.2%未満ではその作用は不十分であ
り、0.3%を超えて含有させると、高温クリープ強
度、靱性を低下させるので上記範囲とした。Nb :0.01〜0.05% Nb は炭化物を形成し、高温強度を高めるため、所望に
より添加する。ただし、含有量が0.01%未満では、
その作用は不十分であり、0.05%を超えて含有させ
ると、共晶型炭化物を形成し、著しく靱性を劣化させる
ため上記範囲に限定した。
V: 0.2 to 0.3% V forms carbides and improves high temperature strength. However,
If its content is less than 0.2%, its action is insufficient, and if it exceeds 0.3%, the high temperature creep strength and toughness are lowered, so the above range was made. Nb: 0.01 to 0.05 % Nb forms a carbide and enhances the high temperature strength, so it is added if desired. However, if the content is less than 0.01%,
Its action is insufficient, and if it exceeds 0.05%, eutectic type carbides are formed and the toughness is remarkably deteriorated.

【0015】不可避不純物(Si :0.1%以下、Mn
:0.1%以下、P:0.005%以下、S:0.0
05%以下) Si 、Mn :0.1%以下 Si は、通常、脱酸剤として使用され、その場合の含有
量は、通常0.30〜0.50%程度である。この程度
のSi を含有すると、大型鋼塊においてはマクロ偏析を
発生する。また、Si 含有量が高いと、焼戻脆化感受性
が極めて大となり、切欠靱性が損なわれる。本願発明で
は、上述のSi の悪影響を避けるために、例えば、Si
脱酸に代えて真空C脱酸を採用する。真空C脱酸を行う
場合、脱酸前にSi 含有量を極力低減しておくことが望
ましく、本願発明では、不可避不純物としてのSi の許
容含有量を工業的に可能な0.1%以下に制限した。M
n は、Sと結びついて非金属介在物を形成し、靱性を低
下させる。また、鋼中に残存したMn は、Si と同様に
焼戻脆化を促進するので、極力低減することが望まし
く、不可避不純物としてのMn の許容含有量を工業的に
可能な0.1%以下に制限した。。
Inevitable impurities (Si: 0.1% or less, Mn
: 0.1% or less, P: 0.005% or less, S: 0.0
05% or less) Si, Mn: 0.1% or less Si is usually used as a deoxidizing agent, and the content in that case is usually about 0.30 to 0.50%. When this amount of Si is contained, macrosegregation occurs in a large steel ingot. Further, if the Si content is high, the temper embrittlement susceptibility becomes extremely high, and the notch toughness is impaired. In the present invention, in order to avoid the above-mentioned adverse effects of Si, for example, Si
Vacuum C deoxidation is adopted instead of deoxidation. When performing vacuum C deoxidation, it is desirable to reduce the Si content as much as possible before the deoxidation. In the present invention, the permissible content of Si as an unavoidable impurity is set to 0.1% or less which is industrially possible. Limited M
n combines with S to form a non-metallic inclusion and reduces toughness. Further, Mn remaining in the steel promotes temper embrittlement similarly to Si, so it is desirable to reduce it as much as possible, and the allowable content of Mn as an unavoidable impurity is 0.1% or less that is industrially possible. Limited to. .

【0016】P:0.005%以下 Pは、焼戻脆化感受性を助長する元素であって、経年劣
化の少ない材料を得るためには極力低減することが望ま
しく、現状の精錬技術レベルを考慮して、Pの許容含有
量を0.005%以下に制限した。S:0.005%以下 Sは、大型鋼塊においては、微量の含有でもMn S等の
非金属介在物を鋼中に生成し、鋼の品質を劣化させるの
で、極力低減することが望ましく、Pと同様に現状の精
錬技術レベルを考慮して、Sの許容含有量を0.005
%以下に制限した。
P: 0.005% or less P is an element that promotes temper embrittlement susceptibility, and it is desirable to reduce it as much as possible in order to obtain a material with little deterioration over time. Considering the current refining technology level. Then, the allowable content of P was limited to 0.005% or less. S: 0.005% or less S, in a large steel ingot, produces a non-metallic inclusion such as MnS in the steel even if it is contained in a small amount, and deteriorates the quality of the steel. Therefore, it is desirable to reduce S as much as possible. As with P, considering the current refining technology level, the allowable content of S is 0.005
Limited to less than%.

【0017】その他の不可避不純物 なお上述の不可避不純物の他に、鋼質を劣化させる不可
避不純物として、Cu、また焼戻脆化を助長する不可避
不純物として、As 、Sb 、Sn などがあげられるが、
これらの不可避不純物は極力低減することが好ましい。
しかし、これらの不可避不純物は、原材料に付随して不
可避的に混入するものであって、精錬によって除去する
ことは困難である。したがって、原材料の厳選によると
ころが大きく、鋼質改善の見地から、Cu :0.10%
以下、As :0.008%以下、Sb :0.01%以
下、Sn :0.005%以下に制限することが望まし
い。
Other Inevitable Impurities In addition to the above inevitable impurities, inevitable impurities that deteriorate the steel quality are Cu, and as inevitable impurities that promote temper embrittlement, there are As, Sb, Sn, and the like.
It is preferable to reduce these unavoidable impurities as much as possible.
However, these unavoidable impurities are inevitably mixed with the raw materials and are difficult to remove by refining. Therefore, it is largely due to careful selection of raw materials, and from the viewpoint of steel quality improvement, Cu: 0.10%
Hereinafter, it is desirable to limit As: 0.008% or less, Sb: 0.01% or less, Sn: 0.005% or less.

【0018】次に、上記組成のタービンロータ素体に施
す熱処理の特別な条件およびその限定理由について説明
する。焼入れ加熱温度 均一加熱 :900〜1000℃ 全体を均一に加熱する場合に、そのオーステナイト化温
度は、900℃未満では、十分な高温クリープ強度が得
られず、また1000℃を超えると、低温靱性が低下す
るので上記範囲とする。偏差加熱 :高中圧部 900〜1030℃、低圧部 87
0〜1000℃ (高中圧部温度−低圧部温度) 20〜80℃ 高、中圧部と、低圧部の加熱温度に差異を設ける場合
に、高、中圧部では、オーステナイト化温度が900℃
未満であると十分な高温クリープ強度が得られず、また
1030℃を超えると、高温での切欠弱化が認められる
ため上記範囲とする。一方、低圧部のオーステナイト化
温度は、870℃未満では、炭化物が完全に固溶しない
ため低温靱性が低下し、また、1000℃を超えるとオ
ーステナイト結晶粒が粗大化して低温靱性が低下するこ
とから上記範囲とする。なお、高、中圧部のオーステナ
イト化温度は、低圧部のオーステナイト化温度よりも、
20〜80℃高い温度範囲で選ばれるが、その作用効果
を得るためには20℃以上の温度差を付ける必要があ
る。また、その温度差が80℃を超えると製造が難しい
ため、その温度差の範囲を20〜80℃に限定した。焼戻し温度 :550〜700℃ 焼戻し温度は、550℃未満では十分な焼戻し効果が得
らないため、良好な靱性を得ることができず、また、7
00℃を超えると所望の強度が得られないため上記範囲
内とする。
Next, the special conditions for the heat treatment applied to the turbine rotor body having the above composition and the reasons for the limitation will be described. Quenching heating temperature Uniform heating : 900 to 1000 ° C. When uniformly heating the whole, if the austenitizing temperature is less than 900 ° C., sufficient high temperature creep strength cannot be obtained, and if it exceeds 1000 ° C., the low temperature toughness is low. Since it decreases, the above range is set. Deviation heating : High and medium pressure part 900 to 1030 ° C, low pressure part 87
0 to 1000 ° C (high-medium pressure part temperature-low pressure part temperature) 20 to 80 ° C When the heating temperature of the high and medium pressure parts and the low pressure part is different, the austenitizing temperature is 900 ° C in the high and middle pressure parts.
If it is less than 10%, sufficient high temperature creep strength cannot be obtained, and if it exceeds 1030 ° C., notch weakening at high temperature is recognized, so the above range is set. On the other hand, if the austenitizing temperature of the low pressure portion is less than 870 ° C, the low temperature toughness is lowered because the carbide is not completely solid-solved, and if it exceeds 1000 ° C, the austenite crystal grains are coarsened and the low temperature toughness is lowered. Within the above range. Incidentally, the austenitizing temperature of the high and medium pressure parts is higher than the austenitizing temperature of the low pressure part.
The temperature is selected in the range of 20 to 80 ° C. higher, but it is necessary to make a temperature difference of 20 ° C. or more in order to obtain the effect. Moreover, since the manufacturing is difficult when the temperature difference exceeds 80 ° C., the range of the temperature difference is limited to 20 to 80 ° C. Tempering temperature : 550 to 700 ° C. If the tempering temperature is less than 550 ° C., a sufficient tempering effect cannot be obtained, so that good toughness cannot be obtained.
If the temperature exceeds 00 ° C, the desired strength cannot be obtained, so the content is within the above range.

【0019】[0019]

【実施例】表1に示す組成の供試鋼(No.1〜3)を
真空溶解炉にて溶解し、50Kg鋼塊を溶製した。各鋼
塊を1200℃に加熱して、鍛造比約4で熱間鍛造して
胴径75mmのタービンロータ素体とし、以下の熱処理
を施した。本発明法の一方法として、各素体を940℃
に均一に加熱した後、高圧部および中圧部に相当する部
分を、実体のタービンロータ素体を強制空冷した場合の
中心部冷却速度を想定した25℃/hの冷却速度で冷却
し、低圧部に相当する部分を、噴水冷却した場合の中心
部冷却速度を想定した50℃/hの冷却速度で冷却し
て、冷却速度に差異を設けて焼入れを行った(均一加熱
・偏差冷却)。また、本発明の他の一方法として、ター
ビンロータ素体の高圧部および中圧部に相当する部分を
970℃、低圧部に相当する部分を930℃に加熱し、
その後、実体のタービンロータ素体を噴水冷却した場合
の中心部冷却速度を想定した50℃/hの冷却速度で冷
却して焼入れを行った(偏差加熱・均一冷却)。
[Examples] Sample steels (Nos. 1 to 3) having the compositions shown in Table 1 were melted in a vacuum melting furnace to melt a 50 Kg steel ingot. Each of the steel ingots was heated to 1200 ° C. and hot forged at a forging ratio of about 4 to form a turbine rotor body having a body diameter of 75 mm, and the following heat treatment was performed. As one method of the method of the present invention,
After the uniform heating, the parts corresponding to the high pressure part and the intermediate pressure part are cooled at a cooling rate of 25 ° C./h, which is assumed to be the cooling rate at the center when the actual turbine rotor body is forcedly cooled, The portion corresponding to the portion was cooled at a cooling rate of 50 ° C./h assuming the cooling rate of the central portion when the fountain was cooled, and quenching was performed with different cooling rates (uniform heating / deviation cooling). Further, as another method of the present invention, a portion corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body is heated to 970 ° C., and a portion corresponding to the low pressure portion is heated to 930 ° C.
After that, quenching was performed by cooling at a cooling rate of 50 ° C./h, which is assumed to be the cooling rate of the central portion when the actual turbine rotor body was cooled with a fountain (deviation heating / uniform cooling).

【0020】また、本発明の他の方法として、タービン
ロータ素体の高圧部および中圧部に相当する部分を97
0℃、低圧部に相当する部分を930℃に加熱し、さら
に、高、中圧部に相当する部分を、実体のタービンロー
タ素体を強制空冷した場合の中心部冷却速度を想定した
25℃/hの冷却速度で冷却し、低圧部に相当する部分
を、噴水冷却した場合の中心部冷却速度を想定した50
℃/hの冷却速度で冷却して、焼入れを行った(偏差加
熱・偏差冷却)。また、比較法として、タービンロータ
素体を均一に950℃に加熱し、その後、実体のタービ
ンロータ素体を噴水冷却した場合の中心部冷却速度を想
定した50℃/hの冷却速度で冷却して、焼入れを行っ
た(均一加熱・均一冷却)。さらに、各素体は、焼入れ
後に、650℃で20時間の焼戻しを施した。
As another method of the present invention, the portions corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body are set to 97.
The temperature corresponding to 0 ° C. and the low pressure part is heated to 930 ° C., and the part corresponding to the high and medium pressure parts is further heated to 25 ° C., which is the center cooling rate when the actual turbine rotor body is forcedly cooled. The cooling rate was assumed to be 50 / h, and the cooling rate at the center was assumed to be 50 when the portion corresponding to the low pressure portion was cooled with a fountain.
Quenching was performed by cooling at a cooling rate of ° C / h (deviation heating / deviation cooling). As a comparative method, the turbine rotor body was uniformly heated to 950 ° C., and then the actual turbine rotor body was cooled at a cooling rate of 50 ° C./h, which is assumed to be the center cooling rate in the case of cooling with a fountain. Then, it was quenched (uniform heating / uniform cooling). Further, each element body was tempered at 650 ° C. for 20 hours after quenching.

【0021】次に、熱処理後の供試鋼の材料試験結果を
表2に示す。表2から明らかなように、本発明法によれ
ば、従来法に比べて、高圧部では高温クリープ強度が向
上し、低圧部では靱性が向上している。また、本発明法
中では、偏差加熱・偏差冷却による方法の方が、均一加
熱・偏差冷却または、偏差加熱・均一冷却による方法よ
りも上記効果はより顕著となっている。
Next, Table 2 shows the material test results of the sample steel after the heat treatment. As is clear from Table 2, according to the method of the present invention, the high temperature creep strength is improved in the high pressure portion and the toughness is improved in the low pressure portion as compared with the conventional method. Further, in the method of the present invention, the above-mentioned effect is more remarkable in the method of deviation heating / deviation cooling than in the method of uniform heating / deviation cooling or deviation heating / uniform cooling.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上説明したように本願発明の高低圧一
体型タービンロータの製造方法によれば、タービンロー
タ素体を所望により偏差加熱し、さらに偏差冷却して焼
入れを行ったので、高、中圧部の高温クリープ強度が向
上するとともに、低圧部の靱性が向上し、大型のタービ
ンロータへの適用が可能となる。また、タービンロータ
素体を特定組成の高純度鋼で構成し、この素体を偏差加
熱または偏差冷却して焼入れし、その後焼戻しすれば、
上記高温クリープ強度、低温靱性の向上効果はより大き
なものとなり、また、焼戻脆化感受性が改善されて、経
年劣化を抑えることができる。
As described above, according to the method of manufacturing a high-low pressure integrated turbine rotor of the present invention, the turbine rotor body is deviation-heated as desired, and further deviation-cooled to quench the steel body. The high temperature creep strength of the medium pressure part is improved, and the toughness of the low pressure part is improved, so that it can be applied to a large turbine rotor. Also, if the turbine rotor body is made of high-purity steel of a specific composition, this body is subjected to deviation heating or deviation cooling, quenching, and then tempering,
The effects of improving the high temperature creep strength and the low temperature toughness are further enhanced, and the temper embrittlement susceptibility is improved, so that deterioration over time can be suppressed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 タービンロータ素体を所定の温度に加熱
して、低圧部に相当する部分を油冷以上の冷却速度、高
圧部および中圧部に相当する部分を衝風冷却以下の冷却
速度で焼入れし、その後、前記素体を所定の温度で1回
以上の焼戻しを行うことを特徴とする高低圧一体型ター
ビンロータの製造方法
1. A turbine rotor body is heated to a predetermined temperature, a portion corresponding to a low pressure portion is cooled at an oil cooling rate or higher, and a portion corresponding to a high pressure portion and an intermediate pressure portion is cooled at a wind speed or less. Quenching, and then tempering the element body at a predetermined temperature one or more times.
【請求項2】 タービンロータ素体を、その高圧部およ
び中圧部に相当する部分が、低圧部に相当する部分より
も高温になるように加熱して焼入れすることを特徴とす
る請求項1記載の高低圧一体型タービンロータの製造方
2. The turbine rotor body is heated and quenched so that the portions corresponding to the high pressure portion and the intermediate pressure portion have a higher temperature than the portions corresponding to the low pressure portion. Method for manufacturing high-low pressure integrated turbine rotor described
【請求項3】 タービンロータ素体が、重量%で、C:
0.2〜0.35%、Ni :1.6〜2.4%、Cr :
1.2〜2.5%、Mo :0.9〜1.5%、V:0.
2〜0.3%を含有し、残部がFe および不可避不純物
からなり、該不可避不純物のうち、重量%で、Si :
0.1%以下、Mn :0.1%以下、P:0.005%
以下、S:0.005%以下を許容含有量とする高純度
鋼からなり、前記タービンロータ素体を900〜100
0℃に加熱し、低圧部に相当する部分を油冷以上の冷却
速度、高圧部および中圧部に相当する部分を衝風冷却以
下の冷却速度で焼入れし、その後、前記素体を550〜
700℃で1回以上の焼戻しを行うことを特徴とする高
低圧一体型タービンロータの製造方法
3. The turbine rotor body, in wt%, C:
0.2 to 0.35%, Ni: 1.6 to 2.4%, Cr:
1.2-2.5%, Mo: 0.9-1.5%, V: 0.
2 to 0.3%, the balance consisting of Fe and inevitable impurities, of which in% by weight, Si:
0.1% or less, Mn: 0.1% or less, P: 0.005%
Hereinafter, S: 0.005% or less is made of high-purity steel with an allowable content of 900 to 100
It is heated to 0 ° C., the portion corresponding to the low pressure portion is quenched at an oil cooling rate or higher, and the portions corresponding to the high pressure portion and the intermediate pressure portion are quenched at a cooling rate not higher than the wind cooling, and then the element body is heated to 550.
High-low pressure integrated turbine rotor manufacturing method characterized by performing tempering at least once at 700 ° C.
【請求項4】 タービンロータ素体が、重量%で、C:
0.2〜0.35%、Ni :1.6〜2.4%、Cr :
1.2〜2.5%、Mo :0.9〜1.5%、V:0.
2〜0.3%を含有し、残部がFe および不可避不純物
からなり、該不可避不純物のうち、重量%で、Si :
0.1%以下、Mn :0.1%以下、P:0.005%
以下、S:0.005%以下を許容含有量とする高純度
鋼からなり、前記タービンロータ素体の高圧部および中
圧部に相当する部分を900〜1030℃、低圧部に相
当する部分を870〜1000℃で、しかも高圧部およ
び中圧部に相当する部分が低圧部よりも20〜80℃高
温となるように加熱して焼入れし、その後、前記素体を
550〜700℃で1回以上の焼戻しを行うことを特徴
とする高低圧一体型タービンロータの製造方法
4. The turbine rotor body, in wt%, C:
0.2 to 0.35%, Ni: 1.6 to 2.4%, Cr:
1.2-2.5%, Mo: 0.9-1.5%, V: 0.
2 to 0.3%, the balance consisting of Fe and inevitable impurities, of which in% by weight, Si:
0.1% or less, Mn: 0.1% or less, P: 0.005%
Hereinafter, S: composed of high-purity steel having an allowable content of 0.005% or less, a portion corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body is 900 to 1030 ° C., and a portion corresponding to the low pressure portion is It is heated at 870 to 1000 ° C., and the parts corresponding to the high pressure part and the intermediate pressure part are heated to 20 to 80 ° C. higher than the low pressure part, and then quenched, and then the element body is once at 550 to 700 ° C. A method for manufacturing a high-low pressure integrated turbine rotor, characterized by performing the above tempering
【請求項5】 タービンロータ素体の低圧部に相当する
部分を油冷以上の冷却速度、高圧部および中圧部に相当
する部分を衝風冷却以下の冷却速度で焼入れすることを
特徴とする請求項4記載の高低圧一体型タービンロータ
の製造方法
5. A turbine rotor body is quenched by cooling a portion corresponding to a low pressure portion at an oil cooling rate or higher and a portion corresponding to a high pressure portion and a medium pressure portion at a cooling rate not higher than blast cooling. A method of manufacturing a high-low pressure integrated turbine rotor according to claim 4.
【請求項6】 タービンロータ素体用高純度鋼の組成
に、さらに、重量%で、Nb :0.01〜0.05%を
含有することを特徴とする請求項3〜5のいずれかに記
載の高低圧一体型タービンロータの製造方法。
6. The composition of the high-purity steel for a turbine rotor body further contains Nb: 0.01 to 0.05% by weight, according to any one of claims 3 to 5. A method for manufacturing a high-low pressure integrated turbine rotor according to the description.
JP29382891A 1991-10-15 1991-10-15 Manufacture of high-and low-pressure integrated turbine rotor Pending JPH05195068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29382891A JPH05195068A (en) 1991-10-15 1991-10-15 Manufacture of high-and low-pressure integrated turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29382891A JPH05195068A (en) 1991-10-15 1991-10-15 Manufacture of high-and low-pressure integrated turbine rotor

Publications (1)

Publication Number Publication Date
JPH05195068A true JPH05195068A (en) 1993-08-03

Family

ID=17799689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29382891A Pending JPH05195068A (en) 1991-10-15 1991-10-15 Manufacture of high-and low-pressure integrated turbine rotor

Country Status (1)

Country Link
JP (1) JPH05195068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716468A (en) * 1994-12-26 1998-02-10 The Japan Steel Works, Ltd. Process for producing high-and low-pressure integral-type turbine rotor
US6569269B1 (en) 2000-02-08 2003-05-27 Mitsubishi Heavy Industries, Ltd. Process for producing a high and low pressure integrated turbine rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813609A (en) * 1981-07-17 1983-01-26 Kao Corp Preparation of crosslinked ampholytic polymer
JPS5996248A (en) * 1982-11-26 1984-06-02 Toshiba Corp Integrated high, medium and low pressure rotor for steam turbine and its manufacture
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813609A (en) * 1981-07-17 1983-01-26 Kao Corp Preparation of crosslinked ampholytic polymer
JPS5996248A (en) * 1982-11-26 1984-06-02 Toshiba Corp Integrated high, medium and low pressure rotor for steam turbine and its manufacture
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716468A (en) * 1994-12-26 1998-02-10 The Japan Steel Works, Ltd. Process for producing high-and low-pressure integral-type turbine rotor
US6569269B1 (en) 2000-02-08 2003-05-27 Mitsubishi Heavy Industries, Ltd. Process for producing a high and low pressure integrated turbine rotor
US6773519B2 (en) 2000-02-08 2004-08-10 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US5716468A (en) Process for producing high-and low-pressure integral-type turbine rotor
CN106978564A (en) A kind of precipitation hardening type plastic die steel and preparation method thereof
KR20120118443A (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
US20030185700A1 (en) Heat-resisting steel and method of manufacturing the same
JPH08333657A (en) Heat resistant cast steel and its production
JP2000273570A (en) Cast steel for pressure vessel and production of pressure vessel using the same
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JPH11209851A (en) Gas turbine disk material
JPH02197550A (en) High purity heat-resistant steel
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JPH05195068A (en) Manufacture of high-and low-pressure integrated turbine rotor
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JPH0234724A (en) Manufacture of turbine rotor
JPH1036944A (en) Martensitic heat resistant steel
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JPS6031898B2 (en) Turbine rotor material
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH0665678A (en) Production of high purity heat resistant steel and high and low pressure integration type turbine rotor composed of the same
JPH05345922A (en) Production of high-pressure part and low-pressure part integrated type turbine rotor
JP2563164B2 (en) High strength non-tempered tough steel
JP3164140B2 (en) Martensitic stainless steel for machine parts