JPH05345922A - Production of high-pressure part and low-pressure part integrated type turbine rotor - Google Patents

Production of high-pressure part and low-pressure part integrated type turbine rotor

Info

Publication number
JPH05345922A
JPH05345922A JP17597792A JP17597792A JPH05345922A JP H05345922 A JPH05345922 A JP H05345922A JP 17597792 A JP17597792 A JP 17597792A JP 17597792 A JP17597792 A JP 17597792A JP H05345922 A JPH05345922 A JP H05345922A
Authority
JP
Japan
Prior art keywords
turbine rotor
low pressure
pressure part
cooling
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17597792A
Other languages
Japanese (ja)
Other versions
JP3066998B2 (en
Inventor
Tsukasa Azuma
司 東
Yasuhiko Tanaka
泰彦 田中
Masao Shiga
正男 志賀
Hiroshi Fukui
寛 福井
Toshimi Tan
敏美 丹
Ryoichi Kaneko
了市 金子
Tokio Morisada
祝雄 森定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Steel Works Ltd
Original Assignee
Hitachi Ltd
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Steel Works Ltd filed Critical Hitachi Ltd
Priority to JP4175977A priority Critical patent/JP3066998B2/en
Publication of JPH05345922A publication Critical patent/JPH05345922A/en
Application granted granted Critical
Publication of JP3066998B2 publication Critical patent/JP3066998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the size of a turbine rotor by heating a turbine rotor element body composed of a heat resistant steel with specific composition up to specific temp., separately applying hardening under respectively specified conditions, and then performing tempering under specific conditions. CONSTITUTION:A turbine rotor element body is constituted of a heat resistant steel which has a composition consisting of, by weight, 0.15-0.4% C, <=0.1% Si, 0.05-0.5% Mn, 1.5-2.5% Ni, 0.8-2.5% Cr, 0.8-2.5% Mo, 0.15-0.35% V, and the balance Fe with inevitable impurities and further satisfying at least one of the conditions in expressions I, II, III. At the time of hardening the above, heating is done up to 900-1000 deg.C, and then, the sect-ions to be high pressure part and medium pressure part of a steam turbine are hardened at a cooling velocity not higher than the velocity of air-blast quenching and also the section to be a low pressure part is hardened at a cooling velocity not lower than oil quenching velocity, respectively. Subsequently, tempering is done once or more at 550-700 deg.C. By this method, the high temp. creep strength in the high- pressure and medium-pressure part and the toughness in the low-pressure part can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発電機のタービンロ
ータ軸などに用いられる高低圧一体型タービンロータの
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high / low pressure integrated turbine rotor used for a turbine rotor shaft of a generator.

【0002】[0002]

【従来の技術】発電機のタービンの1つとして、高圧部
から低圧部までを一体化した高低圧一体型タービンが知
られており、このタービンには高低圧一体型タービンロ
ータが用いられている。このタービンロータは、高温で
高圧から低圧に至る蒸気圧力にさらされており、その材
料には、優れた高温クリープ特性と、優れた低温靱性と
を兼ね備えていることが要求される。従来、高低圧一体
型タービンロータ材としては、Cr ーMo ーV系低合金
鋼が開発されており、さらに、例えば特公昭54ー19
370号や特開平3−130502号には、この種の材
料を改良した低合金鋼が開示されている。高低圧一体型
タービンロータを製造する際には、上記合金鋼からなる
タービンロータ素体を均一に加熱して、素体全体に油焼
入れ、水焼入れ、噴水焼入れなどを行い、その後に焼戻
しを行う熱処理を施している。ところで、上記した高低
圧一体型タービンロータには、従来、胴径が1m程度の
小型のものが使用されていたが、エネルギ−効率を向上
させるために、例えば胴径が2mに及ぶ大型の高低圧一
体型タービンロータの開発が望まれている。
2. Description of the Related Art As one of generator turbines, a high-low pressure integrated turbine in which a high-pressure portion to a low-pressure portion are integrated is known, and a high-low pressure integrated turbine rotor is used for this turbine. .. This turbine rotor is exposed to steam pressures ranging from high pressure to low pressure at high temperatures, and its material is required to have both excellent high temperature creep characteristics and excellent low temperature toughness. Conventionally, Cr-Mo-V series low alloy steel has been developed as a high-low pressure integrated turbine rotor material, and further, for example, Japanese Patent Publication No. 54-19.
No. 370 and Japanese Patent Laid-Open No. 130502/1993 disclose a low alloy steel obtained by improving this type of material. When manufacturing a high-low pressure integrated turbine rotor, the turbine rotor body made of the above alloy steel is uniformly heated, and the entire body is oil-quenched, water-quenched, fountain-quenched, and then tempered. It is heat treated. By the way, as the high-low pressure integrated turbine rotor, a small one having a body diameter of about 1 m has been conventionally used, but in order to improve energy efficiency, for example, a large high-diameter body having a body diameter of 2 m is used. Development of a low-pressure integrated turbine rotor is desired.

【0003】[0003]

【発明が解決しようとする課題】しかし、高低圧一体型
タービンロータの大型化を実現するためには、従来の小
型ロータに比べ、材料の高強度化、高靱性化が要求さ
れ、従来の製造方法では、この要請に応えることが困難
である。例えば、小型の高低圧一体型タービンロータ材
として従来開発されているCr−Mo −V系低合金鋼を
用いて常法の熱処理を施しても、大型の高低圧一体型タ
ービンロータとしては高温クリープ強度あるいは低温靱
性が不足し、大型高低圧一体型タービンロータ材として
十分な性能が得られないという問題点がある。この発明
は、上記事情を背景としてなされたものであり、優れた
高温クリープ特性と優れた低温靱性とを兼ね備えた高低
圧一体型タービンロータの製造方法を提供することを目
的とするものである。
However, in order to increase the size of the high- and low-pressure integrated turbine rotor, it is necessary to increase the strength and toughness of the material, as compared with the conventional small rotor. This method is difficult to meet this demand. For example, even if a conventional heat treatment is performed using a Cr-Mo-V type low alloy steel that has been conventionally developed as a small high- and low-pressure integrated turbine rotor material, a high-temperature creep as a large high- and low-pressure integrated turbine rotor is obtained. There is a problem that strength or low temperature toughness is insufficient and sufficient performance cannot be obtained as a large-sized high-low pressure integrated turbine rotor material. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a high-low pressure integral turbine rotor having both excellent high-temperature creep characteristics and excellent low-temperature toughness.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本願発明の高低圧一体型タービンロータの製造方法
のうち第1の発明は、重量%で、C:0.15〜0.4
%、Si :0.1%以下、Mn :0.05〜0.5%、
Ni :1.5〜2.5%、Cr :0.8〜2.5%、M
o :0.8〜2.5%、V:0.15〜0.35%を含
有し、残部がFeおよび不可避的不純物からなり、さら
に下記に示す(1)、(2)、(3)の条件の少なくと
も一つの条件を満たす耐熱鋼からなるタービンロータ素
体を焼入れする際に、このタービンロータ素体を900
〜1000℃に加熱して、蒸気タービンの稼働環境にお
ける高・中圧部に相当する部分を衝風冷却以下の冷却速
度、低圧部に相当する部分を油冷以上の冷却速度で焼入
れし、その後、前記素体を550〜700℃で1回以上
の焼戻しを行うことを特徴とする。 (Mn/Ni)比:0.12以下 (1) (Si+Mn)/Ni比:0.18以下 (2) (V+Mo)/(Ni+Cr)比:0.45〜0.7 (3)
In order to solve the above-mentioned problems, the first invention of the method for manufacturing a high-low pressure integrated turbine rotor according to the present invention is C: 0.15 to 0.4 in weight%.
%, Si: 0.1% or less, Mn: 0.05 to 0.5%,
Ni: 1.5 to 2.5%, Cr: 0.8 to 2.5%, M
o: 0.8 to 2.5%, V: 0.15 to 0.35%, the balance consisting of Fe and unavoidable impurities, and (1), (2) and (3) shown below. When quenching a turbine rotor body made of heat-resistant steel that satisfies at least one of the conditions
To 1000 ° C. and quench the part corresponding to the high / intermediate pressure part in the operating environment of the steam turbine at a cooling speed equal to or lower than the airflow cooling, and the part corresponding to the low pressure part at a cooling speed equal to or higher than the oil cooling, and then The element body is tempered one or more times at 550 to 700 ° C. (Mn / Ni) ratio: 0.12 or less (1) (Si + Mn) / Ni ratio: 0.18 or less (2) (V + Mo) / (Ni + Cr) ratio: 0.45 to 0.7 (3)

【0005】第2の発明は、上記耐熱鋼からなるタービ
ンロータ素体の高・中圧部に相当する部分を900〜1
030℃、低圧部に相当する部分を870〜1000℃
で、しかも高・中圧部に相当する部分が低圧部よりも2
0〜80℃高温となるように加熱して、焼入れし、その
後、前記素体を550〜700℃で1回以上の焼戻しを
行うことを特徴とする。第3の発明は、上記耐熱鋼から
なるタービンロータ素体の高・中圧部に相当する部分を
900〜1030℃、低圧部に相当する部分を870〜
1000℃で、しかも高・中圧部に相当する部分が低圧
部よりも20〜80℃高温となるように加熱して、高・
中圧部に相当する部分を衝風冷却以下の冷却速度、低圧
部に相当する部分を油冷以上の冷却速度で焼入れし、そ
の後、前記素体を550〜700℃で1回以上の焼戻し
を行うことを特徴とする。第4の発明は、上記耐熱鋼の
組成に、さらに重量%で、Nb およびTa :0.005
〜0.15%、W:0.1〜1.0%の1種以上を含有
することを特徴とする。第5の発明は、上記耐熱鋼の組
成に、さらに重量%で、Ti 、Al 、Zr 、B、Ca お
よび希土類元素の少なくとも1種を合計で0.001〜
0.1%含有することを特徴とする。
In a second aspect of the invention, the portion corresponding to the high / medium pressure portion of the turbine rotor body made of the above heat resistant steel is 900-1.
030 ℃, 870 ~ 1000 ℃ for the low pressure part
Moreover, the part corresponding to the high and medium pressure parts is 2 more than the low pressure part.
It is characterized by heating to a high temperature of 0 to 80 ° C. and quenching, and then tempering the element body once or more at 550 to 700 ° C. In a third aspect of the invention, a portion corresponding to the high / medium pressure portion of the turbine rotor body made of the above heat-resistant steel is 900 to 1030 ° C., and a portion corresponding to the low pressure portion is 870 to 870.
At 1000 ° C, the part corresponding to the high / medium pressure part is heated to a temperature 20 to 80 ° C higher than that of the low pressure part.
The part corresponding to the medium pressure part is quenched at a cooling rate not higher than the wind cooling, and the part corresponding to the low pressure part is quenched at a cooling rate not lower than oil cooling, and then the element body is tempered at 550 to 700 ° C. one or more times. It is characterized by performing. A fourth aspect of the present invention is the composition of the above heat-resistant steel, further comprising Nb and Ta: 0.005% by weight.
.About.0.15% and W: 0.1 to 1.0%. A fifth aspect of the present invention is the composition of the above heat-resistant steel, further comprising 0.001 to 0.001 by weight of at least one of Ti, Al, Zr, B, Ca and a rare earth element.
It is characterized by containing 0.1%.

【0006】なお、前記タービンロータ素体は、高圧
部、中圧部、低圧部をそれぞれ必ず具備している必要は
なく、これらの2以上を具備しているものであればよ
い。また、高中圧部と低圧部とで冷却速度を変える場合
に、低圧部相当部分に適用する焼入れ時の冷却は、油冷
以上の冷却速度を有する方法で行えばよく、例えば、油
冷、水冷、噴水冷却で行うことができ、さらに、高、中
圧部相当部分に適用する焼入れ時の冷却は、衝風冷却以
下の冷却速度を有する方法で行えばよく、例えば、衝風
冷却、空冷により行うことができる。次に、焼戻し温度
およびその回数も、鋼の組成、必要な焼戻し効果などに
従って適宜選定される。
The turbine rotor body does not necessarily have to have the high pressure portion, the medium pressure portion, and the low pressure portion, and may have two or more of them. Further, when the cooling rate is changed between the high-medium pressure portion and the low-pressure portion, the cooling at the time of quenching applied to the portion corresponding to the low-pressure portion may be performed by a method having a cooling rate higher than oil cooling, for example, oil cooling, water cooling. The cooling at the time of quenching, which can be performed by cooling with a fountain, and which is applied to a portion corresponding to the high and medium pressure portions, may be performed by a method having a cooling rate equal to or lower than the airflow cooling, for example, by airflow cooling or air cooling. It can be carried out. Next, the tempering temperature and the number of times thereof are appropriately selected according to the composition of the steel, the required tempering effect, and the like.

【0007】[0007]

【作用】高低圧一体型タービンロータは、部位によって
使用条件が異なるために、要求される性質にも部位によ
って差異があり、特に、高圧部および中圧部では高温ク
リープ強度が十分に高いことが必要とされ、低圧部では
低温靱性に優れていることが必要とされる。ところで、
焼入れ時の冷却速度は、フェライト変態が起らない程度
に遅いほど(例えば約5℃/h以上)高温クリープ強度
は良好となり、逆に、焼入れ時の冷却速度が速いほど低
温靱性は良好となる。
The high-low pressure integrated turbine rotor has different usage conditions depending on the parts, and thus the required properties also differ depending on the parts. Particularly, the high temperature creep strength is sufficiently high in the high pressure part and the intermediate pressure part. It is required, and it is required that the low pressure part has excellent low temperature toughness. by the way,
When the cooling rate during quenching is slow enough that ferrite transformation does not occur (for example, about 5 ° C / h or more), the high temperature creep strength becomes better, and conversely, the faster the cooling rate during quenching becomes, the better the low temperature toughness becomes. ..

【0008】本願発明の高低圧一体型タービンロータの
製造方法によれば、特定の組成を有する公知の耐熱鋼を
採用し、タービンロータ素体の高中圧部と、低圧部とに
よって焼入れ時の冷却速度を前記のように変えて(以
下、偏差冷却という)、焼入れを行うので、高、中圧部
に相当する部分は十分な高温クリープ強度が確保され、
一方、低圧部では優れた低温靱性が確保される。また、
タービンロータ素体は上記組成により焼入れ性が向上し
ており、熱処理によって、大型のロータにおいても大胴
径の中心部に至るまで十分に焼入れされ、高温クリープ
強度を損なうことなく低温靱性を向上させることができ
る。さらに、焼入れの際に、冷却に先立つ加熱温度を、
高、中圧部と低圧部で差異を設ける(以下、偏差加熱と
いう)ことにより、上記作用が確実なものとなる。
According to the method for manufacturing a high-low pressure integrated turbine rotor of the present invention, a well-known heat-resistant steel having a specific composition is used, and the turbine rotor body is cooled at the time of quenching by the high-medium pressure portion and the low-pressure portion. Since quenching is performed by changing the speed as described above (hereinafter referred to as deviation cooling), sufficient high temperature creep strength is secured in the parts corresponding to the high and medium pressure parts.
On the other hand, excellent low temperature toughness is secured in the low pressure part. Also,
The turbine rotor body has improved hardenability due to the above composition, and by heat treatment it is sufficiently hardened to reach the center of the large diameter even in large rotors, improving low temperature toughness without impairing high temperature creep strength. be able to. Furthermore, at the time of quenching, the heating temperature prior to cooling,
By providing a difference between the high / medium pressure portion and the low pressure portion (hereinafter referred to as deviation heating), the above-mentioned operation is ensured.

【0009】次に、上記組成のタービンロータ素体に施
す熱処理の条件およびその限定理由について説明する。焼入れ加熱温度 均一加熱 :900〜1000℃ 全体を均一に加熱する場合に、そのオーステナイト化温
度は、900℃未満では、十分な高温クリープ強度が得
られず、また1000℃を超えると、低温靱性が低下す
るので上記範囲とする。偏差加熱 :高中圧部 900〜1030℃、低圧部 87
0〜1000℃ (高中圧部温度−低圧部温度) 20〜80℃ 高、中圧部と、低圧部の加熱温度に差異を設ける場合
に、高、中圧部では、オーステナイト化温度が900℃
未満であると十分な高温クリープ強度が得られず、また
1030℃を超えると、高温での切欠弱化が認められる
ため上記範囲とする。一方、低圧部のオーステナイト化
温度は、870℃未満では、炭化物が完全に固溶しない
ため低温靱性が低下し、また、1000℃を超えるとオ
ーステナイト結晶粒が粗大化して低温靱性が低下するこ
とから上記範囲とする。なお、高、中圧部のオーステナ
イト化温度は、低圧部のオーステナイト化温度よりも、
20〜80℃高い温度範囲で選ばれるが、その作用効果
を得るためには20℃以上の温度差を付ける必要があ
る。また、その温度差が80℃を超えると製造が難しい
ため、その温度差の範囲を20〜80℃に限定した。
Next, the conditions of the heat treatment applied to the turbine rotor body having the above composition and the reasons for limiting the heat treatment will be described. Quenching heating temperature Uniform heating : 900 to 1000 ° C. When uniformly heating the whole, if the austenitizing temperature is less than 900 ° C., sufficient high temperature creep strength cannot be obtained, and if it exceeds 1000 ° C., low temperature toughness is poor. Since it will decrease, the above range is set. Deviation heating : High and medium pressure part 900 to 1030 ° C, low pressure part 87
0 to 1000 ° C (high and medium pressure part temperature-low pressure part temperature) 20 to 80 ° C When a difference in heating temperature between the high and medium pressure parts and the low pressure part is provided, the austenitizing temperature is 900 ° C in the high and middle pressure parts.
If it is less than 10%, sufficient high temperature creep strength cannot be obtained, and if it exceeds 1030 ° C., notch weakening at high temperature is recognized, so the above range is set. On the other hand, if the austenitizing temperature of the low pressure portion is less than 870 ° C, the low temperature toughness is lowered because the carbides are not completely dissolved, and if it exceeds 1000 ° C, the austenite crystal grains are coarsened and the low temperature toughness is lowered. Within the above range. The austenitizing temperature of the high and medium pressure parts is higher than the austenitizing temperature of the low pressure part.
The temperature is selected in the range of 20 to 80 ° C. higher, but it is necessary to make a temperature difference of 20 ° C. or more in order to obtain the effect. Moreover, since the manufacturing is difficult when the temperature difference exceeds 80 ° C., the range of the temperature difference is limited to 20 to 80 ° C.

【0010】冷却速度(偏差冷却の場合) 高・中圧部に相当する部分は良好な高温クリープ強度を
得るために、衝風冷却以下の冷却速度で焼入れする。こ
れを衝風冷却を超える速度で冷却すると、低温変態ベイ
ナイト組織量が増加し、十分な高温クリープ強度を得る
ことができない。また、低圧部に相当する部分は、良好
な低温靱性を得るために油冷以上の冷却速度で焼入れす
る。これを油冷よりも小さな冷却速度で冷却すると、そ
の中心部においてフェライトあるいは高温変態ベイナイ
トを含む組織となり低温靱性が上昇する。焼戻し温度 :550〜700℃ 焼戻し温度は、550℃未満では十分な焼戻し効果が得
らないため、良好な靱性を得ることができず、また、7
00℃を超えると所望の強度が得られないため上記範囲
内とする。
Cooling Rate (In the Case of Deviation Cooling) In order to obtain good high temperature creep strength, the portion corresponding to the high / medium pressure portion is quenched at a cooling rate equal to or lower than the blast cooling. If this is cooled at a rate higher than the blast cooling, the amount of low-temperature transformed bainite structure increases, and sufficient high temperature creep strength cannot be obtained. Further, the portion corresponding to the low pressure portion is quenched at a cooling rate higher than oil cooling in order to obtain good low temperature toughness. If this is cooled at a cooling rate lower than that of oil cooling, a structure containing ferrite or high temperature transformation bainite is formed in the central part, and the low temperature toughness increases. Tempering temperature : 550 to 700 ° C. If the tempering temperature is less than 550 ° C., a sufficient tempering effect cannot be obtained, so that good toughness cannot be obtained.
If the temperature exceeds 00 ° C, the desired strength cannot be obtained, so the content is within the above range.

【0011】[0011]

【実施例】表1に示す組成の供試鋼(No.1〜3)を
真空溶解炉にて溶解し、50Kg鋼塊を溶製した。各鋼
塊を1200℃に加熱して、鍛造比約4で熱間鍛造して
胴径75mmのタービンロータ素体とし、以下の熱処理
を施した。本発明法の一方法として、各素体を940℃
に均一に加熱した後、高圧部および中圧部に相当する部
分を、実体のタービンロータ素体を強制空冷した場合の
中心部冷却速度を想定した25℃/hの冷却速度で冷却
し、低圧部に相当する部分を、噴水冷却した場合の中心
部冷却速度を想定した50℃/hの冷却速度で冷却し
て、冷却速度に差異を設けて焼入れを行った(均一加熱
・偏差冷却)。また、本発明の他の方法として、タービ
ンロータ素体の高圧部および中圧部に相当する部分を9
70℃、低圧部に相当する部分を930℃に加熱し、そ
の後、実体のタービンロータ素体を噴水冷却した場合の
中心部冷却速度を想定した50℃/hの冷却速度で冷却
して、焼入れを行った(偏差加熱・均一冷却)。
[Examples] Sample steels (Nos. 1 to 3) having the compositions shown in Table 1 were melted in a vacuum melting furnace to melt a 50 Kg steel ingot. Each of the steel ingots was heated to 1200 ° C. and hot forged at a forging ratio of about 4 to form a turbine rotor body having a body diameter of 75 mm, and the following heat treatment was performed. As one method of the method of the present invention,
After the uniform heating, the parts corresponding to the high pressure part and the intermediate pressure part are cooled at a cooling rate of 25 ° C./h, which is assumed to be the cooling rate at the center when the actual turbine rotor body is forcedly cooled, The portion corresponding to the portion was cooled at a cooling rate of 50 ° C./h assuming the cooling rate of the central portion when the fountain was cooled, and quenching was performed with different cooling rates (uniform heating / deviation cooling). As another method of the present invention, the portions corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body are
70 ° C, a portion corresponding to the low pressure part is heated to 930 ° C, and then, the cooling is performed at a cooling rate of 50 ° C / h assuming a cooling rate of the central portion when the actual turbine rotor body is cooled with a fountain, and then quenched. Was performed (deviation heating / uniform cooling).

【0012】さらに、本発明の他の方法として、タービ
ンロータ素体の高圧部および中圧部に相当する部分を9
70℃、低圧部に相当する部分を930℃に加熱し、さ
らに、高、中圧部に相当する部分を、実体のタービンロ
ータ素体を強制空冷した場合の中心部冷却速度を想定し
た25℃/hの冷却速度で冷却し、低圧部に相当する部
分を、噴水冷却した場合の中心部冷却速度を想定した5
0℃/hの冷却速度で冷却して、焼入れを行った(偏差
加熱・偏差冷却)。また、比較法として、タービンロー
タ素体を均一に950℃に加熱し、その後、実体のター
ビンロータ素体を噴水冷却した場合の中心部冷却速度を
想定した50℃/hの冷却速度で冷却して、焼入れを行
った(均一加熱・均一冷却)。なお、各素体は、焼入れ
後に、650℃で20時間の焼戻しを施した。
Further, as another method of the present invention, the portions corresponding to the high pressure portion and the intermediate pressure portion of the turbine rotor body are 9
The temperature corresponding to the low pressure part is 70 ° C., the part corresponding to the low pressure part is heated to 930 ° C., and the part corresponding to the high pressure part and the intermediate pressure part is 25 ° C. which is the center cooling rate when the actual turbine rotor body is forcedly cooled. The cooling rate was assumed to be the central portion when the water was cooled at a cooling rate of / h and the portion corresponding to the low pressure portion was cooled with a fountain.
Quenching was performed by cooling at a cooling rate of 0 ° C./h (deviation heating / deviation cooling). As a comparative method, the turbine rotor body was uniformly heated to 950 ° C., and then the actual turbine rotor body was cooled at a cooling rate of 50 ° C./h, which is assumed to be the center cooling rate in the case of cooling with a fountain. Then, it was quenched (uniform heating / uniform cooling). Note that each element body was tempered at 650 ° C. for 20 hours after quenching.

【0013】次に、熱処理後の供試鋼の材料試験結果を
表2に示す。表2から明らかなように、本発明法によれ
ば、従来法に比べて、高圧部では高温クリープ強度が向
上し、低圧部では靱性が向上している。また、本発明法
中では、偏差加熱・偏差冷却による方法の方が、均一加
熱・偏差冷却または偏差加熱・均一冷却による方法より
も上記効果はより顕著となっている。
Next, Table 2 shows the material test results of the sample steel after the heat treatment. As is clear from Table 2, according to the method of the present invention, the high temperature creep strength is improved in the high pressure portion and the toughness is improved in the low pressure portion as compared with the conventional method. Further, in the method of the present invention, the above effect is more remarkable in the method of deviation heating / deviation cooling than in the method of uniform heating / deviation cooling or deviation heating / uniform cooling.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上説明したように本願発明の高低圧一
体型タービンロータの製造方法によれば、特定組成のタ
ービンロータ素体を所望により偏差加熱し、さらに偏差
冷却して焼入れを行ったので、高、中圧部の高温クリー
プ強度が向上するとともに、低圧部の靱性が向上し、タ
ービンロータの大型化が可能となり、エネルギ効率を向
上させることができる。また、材料特性の向上により高
い信頼性を得ることができる。
As described above, according to the method for manufacturing a high-low pressure integrated turbine rotor of the present invention, the turbine rotor element body having a specific composition is subjected to deviation heating as desired, and further deviation cooling is performed to quench it. The high temperature creep strength of the high and medium pressure portions is improved, the toughness of the low pressure portion is improved, the turbine rotor can be upsized, and the energy efficiency can be improved. Moreover, high reliability can be obtained by improving the material characteristics.

フロントページの続き (72)発明者 志賀 正男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 福井 寛 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 丹 敏美 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 金子 了市 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 森定 祝雄 茨城県勝田市堀口832番地の2 日立マテ リアルエンジニアリング株式会社内Front page continued (72) Inventor Masao Shiga 4026 Kujimachi, Hitachi City, Hitachi, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Hiro Fukui 4026 Kujicho, Hitachi City, Ibaraki, Hitachi Research Institute, Ltd. (72) Inventor Toshimi Tan 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi factory (72) Inventor Ryoichi Kaneko 3-1-1, Sachimachi Hitachi City, Ibaraki Prefecture Stock Company Hitachi Ltd. Hitachi factory (72) Inventor Norio Morisada 2-832, Horiguchi, Katsuta City, Ibaraki Prefecture Hitachi Material Engineering Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.15〜0.4%、S
i :0.1%以下、Mn :0.05〜0.5%、Ni :
1.5〜2.5%、Cr :0.8〜2.5%、Mo :
0.8〜2.5%、V:0.15〜0.35%を含有
し、残部がFe および不可避的不純物からなり、さらに
下記に示す(1)、(2)、(3)の条件の少なくとも
一つの条件を満たす耐熱鋼からなるタービンロータ素体
を焼入れする際に、このタービンロータ素体を900〜
1000℃に加熱して、蒸気タービンの稼働環境におけ
る高・中圧部に相当する部分を衝風冷却以下の冷却速
度、低圧部に相当する部分を油冷以上の冷却速度で焼入
れし、その後、前記素体を550〜700℃で1回以上
の焼戻しを行うことを特徴とする高低圧一体型タービン
ロータの製造方法 (Mn/Ni)比:0.12以下 (1) (Si+Mn)/Ni比:0.18以下 (2) (V+Mo)/(Ni+Cr)比:0.45〜0.7 (3)
1. C: 0.15 to 0.4% by weight, S
i: 0.1% or less, Mn: 0.05 to 0.5%, Ni:
1.5-2.5%, Cr: 0.8-2.5%, Mo:
0.8 to 2.5%, V: 0.15 to 0.35%, the balance consisting of Fe and inevitable impurities, and the conditions (1), (2) and (3) shown below. When quenching a turbine rotor body made of heat-resistant steel satisfying at least one of
After heating to 1000 ° C., the part corresponding to the high / medium pressure part in the operating environment of the steam turbine is quenched at a cooling speed not higher than the airflow cooling, and the part corresponding to the low pressure part is quenched at a cooling speed not lower than oil cooling. Method for manufacturing high- and low-pressure integrated turbine rotor characterized in that the element body is tempered at least once at 550 to 700 ° C. (Mn / Ni) ratio: 0.12 or less (1) (Si + Mn) / Ni ratio : 0.18 or less (2) (V + Mo) / (Ni + Cr) ratio: 0.45 to 0.7 (3)
【請求項2】 請求項1記載の耐熱鋼からなるタービン
ロータ素体の高・中圧部に相当する部分を900〜10
30℃、低圧部に相当する部分を870〜1000℃
で、しかも高・中圧部に相当する部分が低圧部よりも2
0〜80℃高温となるように加熱して、焼入れし、その
後、前記素体を550〜700℃で1回以上の焼戻しを
行うことを特徴とする高低圧一体型タービンロータの製
造方法
2. A portion corresponding to the high / medium pressure portion of the turbine rotor body made of the heat-resistant steel according to claim 1 is 900-10.
30 ℃, 870 ~ 1000 ℃ for the low pressure part
Moreover, the part corresponding to the high and medium pressure parts is 2 more than the low pressure part.
A method for manufacturing a high-low pressure integrated turbine rotor, comprising heating to a high temperature of 0 to 80 ° C., quenching, and then tempering the element body once or more at 550 to 700 ° C.
【請求項3】 請求項1記載の耐熱鋼からなるタービン
ロータ素体の高・中圧部に相当する部分を900〜10
30℃、低圧部に相当する部分を870〜1000℃
で、しかも高・中圧部に相当する部分が低圧部よりも2
0〜80℃高温となるように加熱して、高・中圧部に相
当する部分を衝風冷却以下の冷却速度、低圧部に相当す
る部分を油冷以上の冷却速度で焼入れし、その後、前記
素体を550〜700℃で1回以上の焼戻しを行うこと
を特徴とする高低圧一体型タービンロータの製造方法
3. A portion of the turbine rotor body made of the heat-resistant steel according to claim 1 corresponding to the high and medium pressure portions is 900 to 10.
30 ℃, 870 ~ 1000 ℃ for the low pressure part
Moreover, the part corresponding to the high and medium pressure parts is 2 more than the low pressure part.
0 to 80 ° C. are heated to a high temperature, the part corresponding to the high / medium pressure part is quenched at a cooling speed not higher than the wind cooling, and the part corresponding to the low pressure part is quenched at a cooling speed not lower than oil cooling, and then, A method for manufacturing a high-low pressure integrated turbine rotor, comprising tempering the element body at 550 to 700 ° C. one or more times.
【請求項4】 耐熱鋼の組成に、さらに重量%で、Nb
およびTa :0.005〜0.15%、W:0.1〜
1.0%の1種以上を含有することを特徴とする請求項
1〜3のいずれかに記載の高低圧一体型タービンロータ
の製造方法
4. The composition of the heat resistant steel further comprising Nb in a weight percentage.
And Ta: 0.005-0.15%, W: 0.1
The method for manufacturing a high-low pressure integrated turbine rotor according to claim 1, wherein the high-low pressure integrated turbine rotor contains 1.0% or more of 1.0%.
【請求項5】 耐熱鋼の組成に、さらに重量%で、Ti
、Al 、Zr 、B、Ca および希土類元素の少なくと
も1種を合計で0.001〜0.1%含有することを特
徴とする請求項1〜4のいずれかに記載の高低圧一体型
タービンロータの製造方法
5. The composition of the heat-resisting steel, further comprising:
And Al, Zr, B, Ca, and at least one kind of rare earth element are contained in a total amount of 0.001 to 0.1%, and the high and low pressure integrated turbine rotor according to any one of claims 1 to 4 is contained. Manufacturing method
JP4175977A 1992-06-11 1992-06-11 Method of manufacturing high-low pressure integrated turbine rotor Expired - Fee Related JP3066998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175977A JP3066998B2 (en) 1992-06-11 1992-06-11 Method of manufacturing high-low pressure integrated turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175977A JP3066998B2 (en) 1992-06-11 1992-06-11 Method of manufacturing high-low pressure integrated turbine rotor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33467596A Division JPH09194946A (en) 1996-11-29 1996-11-29 Production of high-low pressure integrated type turbine rotor

Publications (2)

Publication Number Publication Date
JPH05345922A true JPH05345922A (en) 1993-12-27
JP3066998B2 JP3066998B2 (en) 2000-07-17

Family

ID=16005553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175977A Expired - Fee Related JP3066998B2 (en) 1992-06-11 1992-06-11 Method of manufacturing high-low pressure integrated turbine rotor

Country Status (1)

Country Link
JP (1) JP3066998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029271A1 (en) * 1996-02-05 1997-08-14 Hitachi, Ltd. Steam turbine, its rotor shaft and heat resistant steel
EP0831203A2 (en) * 1996-09-24 1998-03-25 Hitachi, Ltd. Blading for a steamturbine of a combined cycle power generation system
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
EP1283277A1 (en) * 2001-07-02 2003-02-12 Lucchini Sidermeccanica S.p.A. Steel having excellent properties of workability by machine tools and, after a hardening thermal treatment, excellent mechanical properties and process for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof
JPH04120239A (en) * 1990-09-11 1992-04-21 Mitsubishi Heavy Ind Ltd High strength and high toughness low alloy steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130502A (en) * 1989-02-03 1991-06-04 Hitachi Ltd Steam turbine and rotor shaft and heat resisting steel thereof
JPH04120239A (en) * 1990-09-11 1992-04-21 Mitsubishi Heavy Ind Ltd High strength and high toughness low alloy steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029271A1 (en) * 1996-02-05 1997-08-14 Hitachi, Ltd. Steam turbine, its rotor shaft and heat resistant steel
EP0831203A2 (en) * 1996-09-24 1998-03-25 Hitachi, Ltd. Blading for a steamturbine of a combined cycle power generation system
EP0831203A3 (en) * 1996-09-24 2000-04-19 Hitachi, Ltd. Blading for a steam turbine of a combined cycle power generation system
US6182439B1 (en) 1996-09-24 2001-02-06 Hitachi, Ltd. High and low pressure sides-integrating system turbine, long blades thereof and combined cycle power generation system
EP1123984A2 (en) * 2000-02-08 2001-08-16 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
US6569269B1 (en) 2000-02-08 2003-05-27 Mitsubishi Heavy Industries, Ltd. Process for producing a high and low pressure integrated turbine rotor
US6773519B2 (en) 2000-02-08 2004-08-10 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor
EP1123984A3 (en) * 2000-02-08 2008-12-03 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor and process for producing the same
EP1283277A1 (en) * 2001-07-02 2003-02-12 Lucchini Sidermeccanica S.p.A. Steel having excellent properties of workability by machine tools and, after a hardening thermal treatment, excellent mechanical properties and process for the production thereof

Also Published As

Publication number Publication date
JP3066998B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
JP3461945B2 (en) Method of manufacturing high-low pressure integrated turbine rotor
CN102477518B (en) Steel used for steam turbine blades and manufacturing method thereof
CN102912236A (en) High-performance and abrasion-resistant hot work die steel and technology for manufacturing same
JPH09209086A (en) Manufacture of steel for manufacture of forging and forging
CN114622133A (en) Heat-resistant steel for ultra-supercritical steam turbine rotor forging and preparation method thereof
JP2001192730A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL AND ITS HEAT TREATMENT METHOD
JPH08333657A (en) Heat resistant cast steel and its production
JP4212132B2 (en) Ferritic heat resistant steel having martensitic structure and method for producing the same
JP2011042812A (en) Method for manufacturing forged steel article superior in toughness
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JPH05345922A (en) Production of high-pressure part and low-pressure part integrated type turbine rotor
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JP2002317252A (en) Ferritic heat resistant steel and production method therefor
JPS6383249A (en) Hot working tool steel and its manufacture
JPH09194946A (en) Production of high-low pressure integrated type turbine rotor
CN107267880A (en) A kind of high cracking resistance wear-resistant bainite Jaw plate steel, Jaw plate and preparation method
JPS6338420B2 (en)
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
JPH0234724A (en) Manufacture of turbine rotor
JPH0219425A (en) Manufacture of turbine rotor
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH1088274A (en) High strength heat resistant steel and its production
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110519

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees