JPS6383249A - Hot working tool steel and its manufacture - Google Patents
Hot working tool steel and its manufactureInfo
- Publication number
- JPS6383249A JPS6383249A JP22759886A JP22759886A JPS6383249A JP S6383249 A JPS6383249 A JP S6383249A JP 22759886 A JP22759886 A JP 22759886A JP 22759886 A JP22759886 A JP 22759886A JP S6383249 A JPS6383249 A JP S6383249A
- Authority
- JP
- Japan
- Prior art keywords
- less
- tool steel
- grain size
- work tool
- hot work
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 229910000717 Hot-working tool steel Inorganic materials 0.000 title abstract 3
- 229910001315 Tool steel Inorganic materials 0.000 claims abstract description 22
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 17
- 238000005496 tempering Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 230000009466 transformation Effects 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract 5
- 239000013078 crystal Substances 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 9
- 229910001562 pearlite Inorganic materials 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 abstract description 8
- 239000010959 steel Substances 0.000 abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910001563 bainite Inorganic materials 0.000 abstract description 2
- 238000007670 refining Methods 0.000 abstract description 2
- 238000010791 quenching Methods 0.000 description 21
- 230000000171 quenching effect Effects 0.000 description 21
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 238000005204 segregation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
発明の目的
[産業上の利用分野]
本発明は、Ni含有Cr系熱間工具鋼およびその製造方
法の改良に関する。OBJECT OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a Ni-containing Cr-based hot work tool steel and a method for producing the same.
Cr系熱間工具鋼、たとえば、C:0.20〜0.35
%、Si:1.5%以下、Mn:1,5%以下、Cr
:2.0〜6.0%、Mo:0.5〜2.0%、W:0
.5〜2.0%(ただし2Mo +W≦4.0> 、V
:0.10〜1.0%を含有し、残部が実質的にFeか
らなる合金は、高温での軟化抵抗性がずぐれているため
、高寿命を要求される金型用鋼として適している。
ところが、この鋼はベイナイト焼入性が低いため、製品
の大きさは比較的小型のもの、たとえば10cm角のブ
ロックまたはそれに相当するもの以下に限られるし、焼
入れ処理も油冷などの急冷を必要とする。
最近、熱間加工用の金型は大型のものが多くなり、また
真空熱処理が普及しており、それに伴って、ベイナイト
焼入性の改善が急務となった。
cr系熱間工具鋼のベイナイト焼入性の改善には、Ni
の添加が有効であることが知られている。
ところが、上記の組成の合金にNiを添加すると、焼入
れのために加熱したときにオーステナイト結晶粒が著し
く粗大化して、結晶粒度番号にして、たとえば4.0以
下となり、その結果、靭性が大幅に低下するという弊害
がある。
これを防ぐために、l’−i 、Zr、Nbなどを微量
添加して難固溶性の炭化物や窒化物を生成させ、それら
を微細に分散させてオーステナイト結晶粒の成長を防止
することが考えられる。 しかし、金型の大型化傾向に
伴って鋼塊も大きくしなければならず、大型鋼塊では炭
化物などの偏析が起りやすいため、上記の対策の効果に
は限界がある。Cr-based hot work tool steel, for example, C: 0.20-0.35
%, Si: 1.5% or less, Mn: 1.5% or less, Cr
:2.0~6.0%, Mo:0.5~2.0%, W:0
.. 5 to 2.0% (however, 2Mo +W≦4.0>, V
:0.10 to 1.0%, with the balance essentially consisting of Fe, which has excellent softening resistance at high temperatures, making it suitable as mold steel that requires a long life. There is. However, because this steel has low bainitic hardenability, the size of the product is limited to relatively small pieces, such as 10 cm square blocks or equivalent, and the quenching process requires rapid cooling such as oil cooling. shall be. Recently, molds for hot working have become more and more large-sized, and vacuum heat treatment has become widespread, and as a result, there has been an urgent need to improve bainite hardenability. To improve the bainitic hardenability of CR-based hot work tool steel, Ni
It is known that the addition of However, when Ni is added to an alloy with the above composition, the austenite crystal grains become significantly coarsened when heated for quenching, and the grain size number becomes, for example, 4.0 or less, resulting in a significant decrease in toughness. This has the disadvantage of decreasing. In order to prevent this, it is possible to add small amounts of l'-i, Zr, Nb, etc. to generate poorly soluble carbides and nitrides, and to disperse them finely to prevent the growth of austenite grains. . However, as molds tend to become larger, steel ingots must also become larger, and large steel ingots tend to segregate carbides and the like, so there is a limit to the effectiveness of the above countermeasures.
上記の目的を達成する本発明のNi含有Cr系熱間工具
鋼は、C:0.20−0.35%、Si :1.5%以
下、Mn:1.5%以下、Ni:0゜3〜3.0%、C
r :2.0〜6.0%およびV:0.10〜2.0%
に加えて、Mo:Q、5〜4゜0%およびW:0.5〜
4.0%の1種または2種を含有し、ただし2Mo+W
: 8.0%以下であって、残部が実質的にFeからな
り、最終調質後の旧オーステナイト結晶粒を結晶粒度番
@5゜0以上としたことを特徴とする。
Ni含有Cr系熱間工具鋼は、上記の合金成分に加えて
、Co:4.0%以下を含有するものでおってもよい。
本発明の熱間工具鋼の製造方法は、C:0.20−0.
35%、Si:1.5%以下、Mn:1゜5%以下、N
i :0.3〜3.0%、Cr:2゜0〜6.0%お
よびV:0.10〜2.0%に加えて、Mo:0.5〜
4.0%およびW:0.5〜4.0%の1種または2種
を含有し、ただし2Mo+W:8.0%以下であって、
残部が実質的にFeからなり、必要に応じて4.0%以
下のCoを含有するNi含有Cr系熱間工具鋼を、10
50〜1300’Cの温度に加熱してオーステナイト結
晶粒を結晶粒度番号で3.0以下の粗整粒にしたのち、
パーライト変態が生じないような速度で冷却し、ついで
650℃〜AC1点の温度で焼戻しを行なうことによっ
て、焼入れ焼戻しによる最終調質時の旧オーステナイト
結晶粒を結晶粒度番号で5.0以上にすることを特徴と
する。
[作 用]
この種の熱間工具鋼の焼入れ前に行なう熱処理としては
、従来は球状化焼なましが一般的であって、これに代え
て焼ならし一焼戻しをしたり、球状化焼なましに先立っ
て焼ならし一焼戻しをすることもある。 これらの場合
の焼ならし温度は、焼入れ温度の近辺(±20℃)であ
る。
発明者は、Ni含有Cr系熱間工具鋼のオーステナイト
結晶粒が著しく粗大化した実用材を詳細に観察したとこ
ろ、その粗大化の傾向が、焼入前のミクロ組織における
炭化物のミクロ的偏析傾向とよく一致していることに気
づいた。 そして、焼入れ前のミクロ組織、すなわち焼
なまし、焼ならし一焼戻しまたは焼ならし一焼戻し一焼
なまし後のミクロ組織における炭化物の偏析は、鍛造や
圧延などの熱間加工とその後の冷却過程(一般に徐冷)
で形成されたミクロ組織によって決定されること、およ
びその傾向はNi添加量の増大につれて大きくなること
を見出した。
従って、Ni含有Cr系熱間工具鋼の結晶粒粗大化を防
止するには、焼入れ前のミクロ組織において炭化物の偏
析を少なくすることが必要である、との結論を得た。
これを実現する手段を求めて種々実験の結果到達したの
が、前記した最終調質後の旧オーステナイト結晶粒を粒
度番号で5.0以上とすること、およびそれを得るため
の熱処理条件である。 すなわち、従来は顧みられなか
つた高温の焼ならしを、それも比較的長時間にわたって
行ない、炭化物を固溶させるとともに成分の均質化をは
かり、ついで急冷して炭化物の析出を抑えることにより
、炭化物のミクロ的偏析を実質上解消して、焼入れ時の
組織を微細化することに成功したわけである。
本発明の特徴である高温の焼ならしは、高温で行なうほ
ど、また長時間かけるほど、焼ならし後のオーステナイ
ト結晶粒は粗粒となるが、炭化物の固溶と均質化が進む
ので、焼入れ時のオーステナイト結晶粒はむしろ細粒に
なる。 この事実は、下記の実施例により理解されるで
あろう。The Ni-containing Cr-based hot work tool steel of the present invention that achieves the above objects has a content of C: 0.20-0.35%, Si: 1.5% or less, Mn: 1.5% or less, and Ni: 0°. 3-3.0%, C
r: 2.0-6.0% and V: 0.10-2.0%
In addition, Mo: Q, 5~4°0% and W: 0.5~
Contains 4.0% of one or two types, but 2Mo+W
: 8.0% or less, the remainder substantially consists of Fe, and the prior austenite crystal grains after final heat treatment have a grain size number of @5°0 or more. The Ni-containing Cr-based hot work tool steel may contain Co: 4.0% or less in addition to the above alloy components. The method for producing hot work tool steel of the present invention includes C: 0.20-0.
35%, Si: 1.5% or less, Mn: 1°5% or less, N
i: 0.3~3.0%, Cr: 2°0~6.0% and V: 0.10~2.0%, Mo: 0.5~
4.0% and W: 0.5 to 4.0%, but 2Mo+W: 8.0% or less,
A Ni-containing Cr-based hot work tool steel with the remainder essentially consisting of Fe and optionally containing 4.0% or less Co,
After heating to a temperature of 50 to 1300'C to make the austenite crystal grains coarsely sized with a grain size number of 3.0 or less,
By cooling at a rate that does not cause pearlite transformation and then tempering at a temperature of 650°C to AC1 point, the prior austenite crystal grains at the final tempering by quenching and tempering are made to have a grain size number of 5.0 or more. It is characterized by [Function] Conventionally, spheroidizing annealing has been common as a heat treatment performed before quenching this type of hot tool steel, but instead of this, normalizing and tempering or spheroidizing annealing have been used. Prior to annealing, it may be normalized and tempered. The normalizing temperature in these cases is around the quenching temperature (±20° C.). The inventor closely observed a practical material of Ni-containing Cr-based hot work tool steel in which the austenite crystal grains were significantly coarsened, and found that the coarsening tendency was due to the microscopic segregation tendency of carbides in the microstructure before quenching. I noticed that they were in good agreement. The segregation of carbides in the microstructure before quenching, that is, after annealing, normalizing and tempering, or normalizing and tempering and annealing, is caused by hot working such as forging and rolling, and subsequent cooling. Process (generally slow cooling)
It was found that this tendency is determined by the microstructure formed by Ni, and that this tendency becomes larger as the amount of Ni added increases. Therefore, it was concluded that in order to prevent grain coarsening of Ni-containing Cr-based hot work tool steel, it is necessary to reduce the segregation of carbides in the microstructure before quenching.
As a result of various experiments in search of a means to achieve this, we arrived at the above-mentioned prior austenite crystal grains with a grain size number of 5.0 or more after the final heat treatment, and the heat treatment conditions to obtain it. . In other words, by performing high-temperature normalization, which has not been considered in the past, for a relatively long period of time, the carbides are dissolved into solid solution and the components are homogenized, and then rapidly cooled to suppress the precipitation of carbides. We succeeded in virtually eliminating the microscopic segregation of steel and refining the structure during quenching. The high-temperature normalizing that is a feature of the present invention is carried out at a higher temperature and for a longer time, the coarser the austenite crystal grains will be after normalizing, but the solid solution and homogenization of carbides will progress. The austenite crystal grains during quenching become rather fine grains. This fact will be understood by the examples below.
【実施例1】
下記の組成(重量%、残部Fe )のNi含有Cr系熱
間工具鋼を鍛造して、300m角×長ざ500#のブロ
ックを製造した。
Ω 旦↓ Mn Ni Cr MoV−0,2
70,330,680,863,180,920,63
ブロツクは鍛造後ピットで徐冷し、その中心部から長手
方向に20m角の試験片を採取して、下−9=
記の条件の3種の焼入れ前の熱処理および焼入れ一焼戻
しを施した。
(焼入れ前の熱処理)
LA:低温炉なまし・・・720’CX5時間−空冷S
A:球状化焼なまし・・・800’CX1時間−徐冷(
150’C/時)して600 °Cまで一以下空冷
N−LA:焼ならし→低温炉なまし・・・900〜’1
300°cX1時間−空冷→720’CX5時間−空冷
(焼入れ一焼戻し〉
焼入れ・・・970℃×1時間−150#径のケース中
で空冷
焼戻し・・・1回目570°C×2時間−空冷2回目6
20’CX2時間−空冷
(HRC44±1に調質)
焼入れ前の熱処理として、本発明に従うN−LAを行な
ったサンプルについてオーステナイト結晶粒度番号をし
らべ、第1図にプロワl−シた。
図にみるとおり、焼ならし加熱温度が900℃から”1
300℃に向って高温になるほど結晶粒度番号が小さく
、粗粒になっている。 粗粒のものは、いずれも整粒で
あった。
比較例であるLAまたはSAを施したものを含めて、焼
入れ一焼戻し後の結晶粒度番号をしらべるとともに、衝
撃試験を行なった。 その結果を第2図に示す。 図の
データから、本発明に従うN−LAを行なったものは、
従来技術であるLAまたはSAを行なったものより結晶
粒度番号が高い細粒となっており、その度合は焼ならし
温度の上昇につれて大きいこと、および結晶粒の微細化
につれて衝撃強度も高まることがわかる。 このように
、従来の通念を破って高温の焼ならしを行ない、いった
ん結晶粒を粗大にしたものが、かえって焼入れ一焼戻し
後は従来得られなかったレベルの細粒となり、従って靭
性が高いという事実は、本発明者がはじめて得た知見で
ある。[Example 1] Ni-containing Cr-based hot work tool steel having the following composition (weight %, remainder Fe) was forged to produce a block of 300 m square x 500 # length. Ω Dan↓ Mn Ni Cr MoV-0,2
70,330,680,863,180,920,63
After the block was forged, it was slowly cooled in a pit, and a 20 m square test piece was taken in the longitudinal direction from the center and subjected to three types of pre-quenching heat treatment and quenching and tempering under the following conditions. (Heat treatment before quenching) LA: Low temperature furnace annealing...720'CX 5 hours - air cooling S
A: Spheroidizing annealing... 800'CX 1 hour - slow cooling (
150'C/hr) to 600 °C with air cooling of 1 or less N-LA: Normalizing → Low temperature furnace annealing...900~'1
300°C x 1 hour - air cooling → 720'C x 5 hours - air cooling (quenching and tempering) Quenching... 970°C x 1 hour - Air cooling in a 150# diameter case Tempering... 1st time 570°C x 2 hours - air cooling 2nd time 6
20'CX 2 hours - air cooling (refined to HRC44±1) As a heat treatment before quenching, the austenite grain size number of the sample subjected to N-LA according to the present invention was investigated and plotted as shown in FIG. As shown in the figure, the normalizing heating temperature ranges from 900℃ to 1
As the temperature increases toward 300°C, the grain size number becomes smaller and the grains become coarser. All of the coarse grains were well-sized. The grain size numbers after quenching and tempering were investigated, including those subjected to LA or SA as comparative examples, and an impact test was conducted. The results are shown in FIG. From the data in the figure, the ones that underwent N-LA according to the present invention are:
The grains are finer and have a higher grain size number than those obtained by conventional LA or SA, and the degree of fineness increases as the normalizing temperature increases, and as the grains become finer, the impact strength also increases. Recognize. In this way, contrary to conventional wisdom, high-temperature normalizing is performed to coarsen the crystal grains, but after quenching and tempering, the grains become finer to a level that was previously unobtainable, resulting in high toughness. This fact is the first knowledge obtained by the present inventor.
【実施例2】
第1表に示すA−Fの6種のNi含有Or系熱間工具鋼
を製造し、300mm角X長ざ500Mのブロックに鍛
造した。 *印を付したBは比較例である。
各ブロックからの中心部から長手方向に採取した試験片
に対して、第2表に示す種々の熱処理を施した上で、や
はり第2表に示す焼入れ一焼戻し処理をして、硬さおよ
び衝撃値を測定した。 その結果を、焼入れ一焼戻しに
先立つ熱処理後の結晶粒度番号および焼入れ一焼戻し後
の結晶粒度番号とともに、第2表に示す。
発明の効果
本発明の製造方法によるときは、Niを添加して高温軟
化抵抗性を高めたCr系熱間工具鋼において、従来は避
けられなかったNi添加に伴う靭性の低下を、特定条件
の熱処理の採用により防止した工具鋼が得られる。
この工具鋼は焼入性が高いから、とくに製品として10
0#角を超える大型のブロック、素材としては120〜
130s角以上、300厚角にも達するものが、効果的
に焼入れでき、鍛造金型などの大型化傾向に対処するこ
とができる。[Example 2] Six types of Ni-containing Or-based hot work tool steels A to F shown in Table 1 were produced and forged into blocks of 300 mm square and 500 M in length. B marked with * is a comparative example. Test specimens taken longitudinally from the center of each block were subjected to various heat treatments shown in Table 2, and then quenched and tempered as shown in Table 2 to determine hardness and impact. The value was measured. The results are shown in Table 2 together with the grain size number after the heat treatment prior to quenching and tempering and the grain size number after quenching and tempering. Effects of the Invention When the manufacturing method of the present invention is used, the decrease in toughness due to the addition of Ni, which was previously unavoidable, can be avoided under specific conditions in Cr-based hot work tool steel that has increased high-temperature softening resistance by adding Ni. By employing heat treatment, a tool steel that prevents this from occurring can be obtained. This tool steel has high hardenability, so it is especially suitable for use as a product.
Large block exceeding 0# corner, 120~ as material
Items that are 130s square or more and as thick as 300s square can be effectively hardened, making it possible to cope with the tendency for forging molds to become larger.
【図面の簡単な説明】
図面はいずれも本発明の実施例における効果を示すもの
であって、
第1図は、Ni含有Cr系熱間工具鋼の焼入れ−焼戻し
に先立つ熱処理温度とオーステナイト結晶粒度番号との
関係を示すグラフであり、第2図は、焼入れ一焼戻しを
行なった後のオーステナイト結晶粒度番号および衝撃値
と、それに先立つ熱処理温度との関係を従来技術による
場合と比較して示すグラフである。
特許出願人 大同特殊鋼株式会社
代理人 弁理士 須 賀 総 夫
o torri 。
■[Brief Description of the Drawings] All the drawings show the effects of the embodiments of the present invention. Fig. 2 is a graph showing the relationship between the austenite grain size number and impact value after quenching and tempering, and the heat treatment temperature preceding the same, in comparison with the case using conventional technology. It is. Patent applicant: Daido Steel Co., Ltd., patent attorney: Souo Suga. ■
Claims (3)
、Mn:1.5%以下、Ni:0.3〜3.0%、Cr
:2.0〜6.0%およびV:0.10〜2.0%に加
えて、Mo:0.5〜4.0%およびW:0.5〜4.
0%の1種または2種を含有し、ただし2Mo+W:8
.0%以下であって、残部が実質的にFeからなり、最
終調質後の旧オーステナイト結晶粒を結晶粒度番号5.
0以上としたことを特徴とするNi含有Cr系熱間工具
鋼。(1) C: 0.20-0.35%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 0.3-3.0%, Cr
:2.0~6.0% and V:0.10~2.0%, in addition to Mo:0.5~4.0% and W:0.5~4.0%.
Contains 0% of one or two types, provided that 2Mo+W:8
.. 0% or less, the remainder is substantially composed of Fe, and the prior austenite crystal grains after final annealing have a grain size number of 5.
A Cr-based hot work tool steel containing Ni, characterized in that the Ni content is 0 or more.
、Mn:1.5%以下、Ni:0.3〜3.0%、Cr
:2.0〜6.0%およびV:0.10〜2.0%に加
えて、Mo:0.5〜4.0%およびW:0.5〜4.
0%の1種または2種を含有し、ただし2Mo+W:8
.0%以下であって、さらにCo:4.0%以下を含有
し、残部が実質的にFeからなり、最終調質後の旧オー
ステナイト結晶粒を結晶粒度番号5.0以上としたこと
を特徴とするNi含有Cr系熱間工具鋼。(2) C: 0.20-0.35%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 0.3-3.0%, Cr
:2.0~6.0% and V:0.10~2.0%, in addition to Mo:0.5~4.0% and W:0.5~4.0%.
Contains 0% of one or two types, provided that 2Mo+W:8
.. 0% or less, and further contains Co: 4.0% or less, the balance substantially consists of Fe, and the prior austenite crystal grains after final tempering have a grain size number of 5.0 or more. Ni-containing Cr-based hot work tool steel.
、Mn:1.5%以下、Ni:0.3〜3.0%、Cr
:2.0〜6.0%およびV:0.10〜2.0%に加
えて、Mo:0.5〜4.0%およびW:0.5〜4.
0%の1種または2種を含有し、ただし2Mo+W:8
.0%以下であって、残部が実質的にFeからなり、必
要に応じて4.0%以下のCoを含有するNi含有Cr
系熱間工具鋼を、1050〜1300℃の温度に加熱し
てオーステナイト結晶粒を結晶粒度番号で3.0以下の
粗整粒にしたのち、パーライト変態を避けるのに十分な
速度で冷却し、ついで650℃〜A_C_1点の温度で
焼戻しを行なうことによって、焼入れ焼戻しによる最終
調質時に旧オーステナイト結晶粒を結晶粒度番号で5.
0以上にすることを特徴とするNi含有Cr系熱間工具
鋼の製造方法。(3) C: 0.20-0.35%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 0.3-3.0%, Cr
:2.0~6.0% and V:0.10~2.0%, in addition to Mo:0.5~4.0% and W:0.5~4.0%.
Contains 0% of one or two types, provided that 2Mo+W:8
.. Ni-containing Cr containing 0% or less, the remainder substantially consisting of Fe, and optionally containing 4.0% or less of Co.
After heating the system hot work tool steel to a temperature of 1050 to 1300 ° C. to make the austenite crystal grains coarsely sized with a grain size number of 3.0 or less, cooling at a rate sufficient to avoid pearlite transformation, Then, by performing tempering at a temperature of 650°C to A_C_1 point, the prior austenite crystal grains have a grain size number of 5.
A method for producing a Ni-containing Cr-based hot work tool steel, characterized in that the Ni-containing Cr-based hot work tool steel has a Ni-containing temperature of 0 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759886A JPS6383249A (en) | 1986-09-26 | 1986-09-26 | Hot working tool steel and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22759886A JPS6383249A (en) | 1986-09-26 | 1986-09-26 | Hot working tool steel and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6383249A true JPS6383249A (en) | 1988-04-13 |
Family
ID=16863439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22759886A Pending JPS6383249A (en) | 1986-09-26 | 1986-09-26 | Hot working tool steel and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6383249A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318148A (en) * | 1991-04-18 | 1992-11-09 | Hitachi Metals Ltd | Tool steel for hot working |
JP2008202078A (en) * | 2007-02-19 | 2008-09-04 | Daido Steel Co Ltd | Hot-working die steel |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
CN105088086A (en) * | 2015-09-01 | 2015-11-25 | 广西南宁智翠科技咨询有限公司 | High-strength alloy steel |
JP2016132797A (en) * | 2015-01-19 | 2016-07-25 | 大同特殊鋼株式会社 | Steel for metal mold, and metal mold |
EP3173500A4 (en) * | 2014-07-23 | 2018-01-03 | Hitachi Metals, Ltd. | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
EP3348660A4 (en) * | 2015-09-11 | 2019-03-27 | Daido Steel Co.,Ltd. | Steel for molds and molding tool |
-
1986
- 1986-09-26 JP JP22759886A patent/JPS6383249A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318148A (en) * | 1991-04-18 | 1992-11-09 | Hitachi Metals Ltd | Tool steel for hot working |
JP2008202078A (en) * | 2007-02-19 | 2008-09-04 | Daido Steel Co Ltd | Hot-working die steel |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
EP3173500A4 (en) * | 2014-07-23 | 2018-01-03 | Hitachi Metals, Ltd. | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
US10533235B2 (en) | 2014-07-23 | 2020-01-14 | Hitachi Metals, Ltd. | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
JP2016132797A (en) * | 2015-01-19 | 2016-07-25 | 大同特殊鋼株式会社 | Steel for metal mold, and metal mold |
CN105088086A (en) * | 2015-09-01 | 2015-11-25 | 广西南宁智翠科技咨询有限公司 | High-strength alloy steel |
EP3348660A4 (en) * | 2015-09-11 | 2019-03-27 | Daido Steel Co.,Ltd. | Steel for molds and molding tool |
US11141778B2 (en) | 2015-09-11 | 2021-10-12 | Daido Steel Co., Ltd. | Steel for molds and molding tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4776900A (en) | Process for producing nickel steels with high crack-arresting capability | |
US5252153A (en) | Process for producing steel bar wire rod for cold working | |
CN111511936B (en) | Wire rod for cold heading, worked product using the same, and method for manufacturing the same | |
CN112877591B (en) | High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof | |
US4457789A (en) | Process for annealing steels | |
EP0249855B1 (en) | Hot work tool steel | |
JPH07179938A (en) | Method of improving impact characteristic of high-tensile steel, and high-tensile steel article with improved impact characteristic | |
JPH0156124B2 (en) | ||
JPS6383249A (en) | Hot working tool steel and its manufacture | |
JPH039168B2 (en) | ||
JPS6128742B2 (en) | ||
JP2018165408A (en) | Production method of steel material excellent in cold workability or machinability | |
JPH11269541A (en) | Manufacture of high strength steel excellent in fatigue characteristic | |
JPH0643605B2 (en) | Manufacturing method of non-heat treated steel for hot forging | |
JPS63161117A (en) | Production of hot rolled steel products having high strength and high toughness | |
JPS6137333B2 (en) | ||
US3704183A (en) | Method for producing a low-cost hypereutectoid bearing steel | |
JPH07310118A (en) | Production of case hardening steel suitable for cold-working | |
US4483722A (en) | Low alloy cold-worked martensitic steel | |
US4325758A (en) | Heat treatment for high chromium high carbon stainless steel | |
JPH07110970B2 (en) | Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking | |
JPH04297548A (en) | High strength and high toughness non-heat treated steel and its manufacture | |
JPS61166919A (en) | Manufacture of unrefined warm-forged article having high toughness | |
JPH0229727B2 (en) | DORIRUKARAAYOBOKONOSEIZOHOHO | |
KR900006688B1 (en) | Method of steel for hot rolled forging |