JP3576234B2 - Cast steel for steam turbine cabin or pressure vessel - Google Patents

Cast steel for steam turbine cabin or pressure vessel Download PDF

Info

Publication number
JP3576234B2
JP3576234B2 JP30867994A JP30867994A JP3576234B2 JP 3576234 B2 JP3576234 B2 JP 3576234B2 JP 30867994 A JP30867994 A JP 30867994A JP 30867994 A JP30867994 A JP 30867994A JP 3576234 B2 JP3576234 B2 JP 3576234B2
Authority
JP
Japan
Prior art keywords
temperature
cast steel
steam turbine
hours
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30867994A
Other languages
Japanese (ja)
Other versions
JPH08165541A (en
Inventor
明次 藤田
正朝 篠原
勇作 高野
象二郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30867994A priority Critical patent/JP3576234B2/en
Publication of JPH08165541A publication Critical patent/JPH08165541A/en
Application granted granted Critical
Publication of JP3576234B2 publication Critical patent/JP3576234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、火力発電用蒸気タービン車室又は圧力容器用鋳鋼材に関する。
【0002】
【従来の技術】
火力発電用蒸気タービンプラントに用いられる車室材や圧力容器用材料としては、複雑な形状に対応するため鋳物材料が多く使われているが、これらの材料としては主にCrMoV鋳、2.25%CrMo鋳、CrMo鋳などが挙げられる。これらの材料は高温強度を確保し、さらに鋳品であるために優れた溶接性が必要である。このうち、2.25%CrMo鋳やCrMo鋳は、常温の衝撃特性が優れており、その結果溶接性も良好である。しかし、Vを添加していないためクリープ破断強度が必ずしも十分でなく、年々高温化する蒸気タービン車室材に対するニーズに対応できないものとなっている。一方、CrMoV鋳はクリープ破断強度に優れているが、衝撃特性が劣るために溶接性が悪く、製造時の溶接補修が行いにくい問題点がある。
【0003】
【発明が解決しようとする課題】
本発明は、CrMoV鋳の優れたクリープ破断強度を現状のままで確保し、靭性を改善することによって、上記問題点を解決することのできる、溶接性の良好なCrMoV鋳系圧力容器用材料を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の目的は下記(1)〜()に記載の優れた靭性を有し、しかもクリープ破断強度は現用のCrMoV鋳鋼材と同等である新規鋳鋼材料により達成することができる。
(1)重量比で炭素:0.15〜0.20%、好ましくは0.16〜0.18%、シリコン:0.15〜0.35%、マンガン:0.5〜0.8%、クロム:1.2〜1.5%、好ましくは1.3〜1.5%、モリブデン:0.8〜1.2%、好ましくは0.9〜1.1%、バナジウム:0.1〜0.3%、好ましくは0.15〜0.25%及び不可避的不純物及び鉄からなり、焼入れ温度:920〜980℃、好ましくは935〜965℃で5〜20時間保持し、素材各部位の600℃までの冷却速度を200℃/時間以上の速さで冷却し、さらに焼し温度680〜730℃、好ましくは690〜720℃で5〜20時間保持してなることを特徴とする高温環境下で使用する蒸気タービン車室又は圧力容器用鋳鋼材
【0005】
)重量比で炭素:0.15〜0.20%、好ましくは0.16〜0.18%、シリコン:0.15〜0.35%、マンガン:0.5〜0.8%、クロム:1.2〜1.5%、好ましくは1.3〜1.5%、モリブデン:0.8〜1.2%、好ましくは0.9〜1.1%、バナジウム:0.1〜0.3%、好ましくは0.15〜0.25%、不純物としてのリンを0.008%以下、好ましくは0.004%以下、不純物としてのイオウを0.006%以下、好ましくは0.002%以下及び不可避的不純物及び鉄からなり、焼入れ温度:920〜980℃、好ましくは935〜965℃で5〜20時間保持し、素材各部位の600℃までの冷却速度を200℃/時間以上の速さで冷却し、さらに焼し温度680〜730℃、好ましくは690〜720℃で5〜20時間保持してなることを特徴とする高温環境下で使用する蒸気タービン車室又は圧力容器用鋳鋼材
【0006】
【作用】
本発明者らは、CrMoV鋳材の組成についてその成分を厳選特定するとともに、特定条件での熱処理を行うことにより従来得ることのできないほどの優れた靭性を有する鋳材を発見し本発明に到達した。
以下に本発明の鋳材における成分限定理由を述べる。
C:Cは焼入れ性を向上させるとともにCrやMoの炭化物を形成し高温強度の向上に寄与する。しかし、0.15%未満では十分な耐力、クリープ破断強度が得られず、また0.20%を超えると過剰な炭化物を形成し、靭性を低下させるため0.15〜0.20%とする。
Si:Siは脱酸材として有用な元素であるとともに湯流れを良くして十分に鋳物の先端まで溶湯を入れることに寄与する。しかし、Siは偏析を助長し、靭性を低下させる。0.15%未満ではその機能が十分に働かず、また0.35%を超える量を添加すると、靭性が低下してしまう。このため、0.15〜0.35%に限定する。
【0007】
Mn:Mnは焼入れ性を高める元素として有用であり、靭性改善に効果がある。0.5%未満ではその効果は十分ではなく、また0.8%を越えるとクリープ破断強さが低下するため、0.5〜0.8%とする。
Cr:Crは耐酸化性を改善すると共に炭化物を形成して高温強度を改善することに大きく寄与する。1.2%未満であるとその効果は十分ではなく、また1.5%を越えるとクリープ破断強さが逆に低下してしまうので1.2〜1.5%とする。
【0008】
Mo:Moは炭化物を形成し、高温のクリープ破断強さを向上させることに効果がある。また、焼入れ性を改善して靭性向上にも効果がある。0.8未満では十分な効果は得られず、また1.2%を越えると使用中の脆化をもたらすので、0.8〜1.2%とする。
V:Vは炭化物を形成しクリープ破断強度の向上に強く寄与するが、0.1%未満では十分な効果は得られず、また0.3%を越えると靭性を低下させるので、0.1〜0.3%とする。
【0009】
P:Pは不純物であり、溶解段階で十分に精錬して低く押さえることが必要である。特にPは焼し脆化を起こして使用中に材料の靭性を低下させる。このため、0.008%以下にすることが望ましい。
S:SもPと同様に不純物であり、凝固時に偏析し、濃化した部分は材料の結合強度が弱いため欠陥となる。このため、低く押さえることが必要であり、0.006%以下であることが望まれる。
【0010】
上記の組成を有する本発明の鋳材は、高温環境下で使用する蒸気タービン車室又は圧力容器用の材料であり、高温強度、とりわけクリープ破断強さと鋳物材であることから溶接補修性を確保する上で良好な靭性を有することが一般には要求される。このため、熱処理を行う上でもこの要求される特性を十分に出すための処理を行うことが好ましい。
焼入れ温度:焼入れ温度(液体化温度)は、材料の結晶粒度に大きく影響を与えるものであり、焼入れ温度が高いと結晶粒が粗くなり、靭性や延性が低下する。一方、焼入れ温度が低すぎると、結晶粒が細かくなり過ぎるためクリープ破断強さが低下してしまう。このため、最適な温度管理が必要となる。本発明の材料の場合、焼入れ処理(溶体化処理)を980℃を越える温度で行うと結晶粒が粗くなってしまい、十分な靭性、延性が得られない。また、920℃よりも低い温度で熱処理を行うと、十分なクリープ破断強さが得られない。このため、焼入れ温度としては、920〜980℃に限定する。
【0011】
焼入れ時間:焼入れ時間は、上述に示す焼入れの効果を十分に発揮できるだけの時間によって決められる。5時間未満である場合、材料の中に含まれる合金元素が十分に鉄の母相に溶けることはできないことや合金元素の濃度偏析が十分に解消されないことの問題が生じる。一方、20時間を越える時間保持した場合、20時間以内の処理と比較して、焼入れの効果に差はなく、逆に必要以上に結晶粒が粗大化してしまうため、延性、靭性の低下につながる。このため、焼入れ時間としては5〜12時間に限定する。
【0012】
し温度、焼し時間:焼しにおいては焼入れの際に導入された欠陥をなくし、靭性のある材料にするために行うものであり、この熱処理温度及び保持時間によって材料の機械的強度や延性、靭性が変化する。焼し処理において、温度が高く、保持時間が長いほど焼し処理は進み材料強度が低くなり、その代わりに延性や靭性が向上する。一方、焼し温度が低くしかもその保持時間が短い場合、材料強度は高くなるが延性、や靭性が低いものとなってしまう。このため、焼しの温度と時間を厳密に管理する必要がある。730℃より高い温度で焼しを行うと、延性や靭性は十分に高いものになるが機械的強度が十分でない。また、680℃よりも低い温度で焼戻すと十分に高い機械的強度は得られるが、延性や靭性が十分でない。このため、焼し温度は680〜730℃とする。また、焼し時間が5時間未満の場合、十分な合金元素の固溶や拡散が起こらず、充分なクリープ破断強度や延性、靭性が得られない。また、20時間を越える時間焼し処理を行ったとしても、20時間程度の焼し時間と大差ない固溶及び拡散しか起こらない。加えて必要以上に長い時間時効処理を行うと機械的強度が低下してしまう。このため、焼し時間は5〜20時間とする。
【0013】
焼入れ速度:焼入れ速度が遅い場合、焼入れ時にフェライト+パーライト組織ができてしまうために十分な機械的強度が得られない。このため、焼入れ速度を速くすることが必要である。実際に大型の素材を焼入れする場合は、焼入れ速度に限界があり、極端に速くすることはできないが、200℃/時間以上の冷却速度で焼入れ温度から600℃までの間を冷却することにより、安定した機械的強度を得ることができる。このため、焼入れの際の600℃までの冷却速度は、200℃/時間以上であることが望ましい。
【0014】
【実施例】
以下実施例により本発明をさらに詳細に説明するが、本発明はこの実施例によって限定されるものではない。
50kg真空溶解炉を用いて表1に示す試験材を溶解し、砂型の鋳型を用いて造塊した。このようにして製造した試験材に対して種々の熱処理を行い試験材とした。このように得られた試験材に対して常温引張試験、衝撃試験並びにクリープ破断試験を行い、材料特性の評価を実施した。
表2は、各試験材の機械的性質を示すものであるが、これによると、本発明材は、比較材と比べて良好な機械的強度及び引張延性、衝撃特性(50%FATTは衝撃遷移温度を示すものであり、この温度が低いものほど衝撃特性が良好であると言える)並びにクリープ破断強さ(クリープ破断試験では試験条件として温度と応力が一定であるので、破断時間が長いものがクリープ破断強さが強いものであると言える。)を示すことがわかる。
また、表3は熱処理の機械的特性に及ぼす影響についてまとめたものであるが、これによると、本発明の熱処理は比較熱処理と比べて高い延性、靭性並びに高いクリープ破断強さをバランス良く有していることがわかる。
【0015】
【表1】

Figure 0003576234
【0016】
【表2】
Figure 0003576234
【0017】
【表3】
Figure 0003576234
【0018】
【発明の効果】
本発明のCrMoV鋳材は、従来からの優れた高温強度、特にクリープ破断強度を損なうことなく、良好な延性、靭性を具備したものであることから、溶接補修性が改善されており、従来の材料よりも製造しやすいことが特徴となっており、従来材よりも安価に製造することができる。[0001]
[Industrial applications]
The present invention relates to a cast steel material for a steam turbine casing or pressure vessel for thermal power generation.
[0002]
[Prior art]
The cabin materials and pressure vessel materials used in steam turbine plants for thermal power, have been used casting material lot to accommodate complex shapes, as these materials primarily CrMoV cast steel, 2. 25% CrMo cast steel, and the like CrMo cast steel. These materials ensure the high temperature strength, it is necessary excellent weldability to a further cast steel products. Of these, 2.25% CrMo cast steel and CrMo cast steel, has excellent room-temperature impact properties, the result weldability is good. However, since V is not added, the creep rupture strength is not always sufficient, and it cannot meet the needs for steam turbine casing materials whose temperature increases year by year. On the other hand, CrMoV cast steel is excellent in creep rupture strength, poor weldability to impact properties are inferior, there is a weld repair is performed difficult problems during production.
[0003]
[Problems to be solved by the invention]
The present invention secures it stands an excellent creep rupture strength of CrMoV cast steel, by improving the toughness, can solve the above problems, a good CrMoV cast steel system pressure vessel weldability The purpose is to provide the material.
[0004]
[Means for Solving the Problems]
The above object can be achieved by a novel cast steel material having excellent toughness as described in the following (1) to ( 2 ) and having a creep rupture strength equivalent to that of a current CrMoV cast steel material.
(1) Carbon: 0.15 to 0.20%, preferably 0.16 to 0.18%, silicon: 0.15 to 0.35%, manganese: 0.5 to 0.8% by weight ratio, Chromium: 1.2-1.5%, preferably 1.3-1.5%, molybdenum: 0.8-1.2%, preferably 0.9-1.1%, vanadium: 0.1- 0.3%, preferably 0.15 to 0.25% and unavoidable impurities and iron, quenching temperature: maintained at 920 to 980 ° C., preferably 935 to 965 ° C. for 5 to 20 hours . the cooling rate to 600 ° C. and cooled in faster than 200 ° C. / time, further tempering Shi temperature six hundred and eighty to seven hundred thirty ° C., high temperature preferably characterized by being held 5-20 hours at six hundred ninety to seven hundred twenty ° C. Cast steel material for steam turbine casings or pressure vessels used in the environment .
[0005]
( 2 ) Carbon: 0.15 to 0.20%, preferably 0.16 to 0.18%, silicon: 0.15 to 0.35%, manganese: 0.5 to 0.8% by weight ratio, Chromium: 1.2-1.5%, preferably 1.3-1.5%, molybdenum: 0.8-1.2%, preferably 0.9-1.1%, vanadium: 0.1- 0.3%, preferably 0.15 to 0.25% , phosphorus as an impurity is 0.008% or less, preferably 0.004% or less, and sulfur as an impurity is 0.006% or less, preferably 0.1% or less. 002% or less, inevitable impurities and iron, quenching temperature: 920 to 980 ° C, preferably maintained at 935 to 965 ° C for 5 to 20 hours, and cooling rate of each part of the material to 600 ° C is 200 ° C / hour or more. It was cooled at a rate, further tempering Shi temperature six hundred eighty to seven hundred and thirty ° C., preferably Is a cast steel material for a steam turbine casing or pressure vessel used in a high-temperature environment, which is maintained at 690 to 720 ° C. for 5 to 20 hours .
[0006]
[Action]
The present inventors, as well as carefully identify the components for the composition of the CrMoV cast steel material, and found excellent toughness cast steel material having enough can not be obtained conventionally by heat treatment at a specific condition present invention Reached.
Describe reasons for content restrictions in the cast steel material of the present invention are described below.
C: C improves hardenability and forms carbides of Cr and Mo and contributes to improvement of high-temperature strength. However, if it is less than 0.15%, sufficient proof stress and creep rupture strength cannot be obtained, and if it exceeds 0.20%, excessive carbides are formed and the toughness is reduced, so that the content is made 0.15 to 0.20%. .
Si: Si is a useful element as a deoxidizing material and contributes to improving the flow of molten metal and sufficiently pouring the molten metal to the tip of the casting. However, Si promotes segregation and lowers toughness. If it is less than 0.15%, its function will not work sufficiently, and if it exceeds 0.35%, toughness will be reduced. For this reason, it is limited to 0.15 to 0.35%.
[0007]
Mn: Mn is useful as an element for improving hardenability and is effective in improving toughness. If it is less than 0.5%, the effect is not sufficient, and if it exceeds 0.8%, the creep rupture strength is reduced.
Cr: Cr contributes significantly to improving oxidation resistance and forming carbides to improve high-temperature strength. If it is less than 1.2%, the effect is not sufficient, and if it exceeds 1.5%, the creep rupture strength is conversely reduced.
[0008]
Mo: Mo forms carbides and is effective in improving high temperature creep rupture strength. It is also effective in improving hardenability and improving toughness. If it is less than 0.8, a sufficient effect cannot be obtained, and if it exceeds 1.2%, embrittlement occurs during use.
V: V forms carbides and strongly contributes to the improvement of creep rupture strength. However, if it is less than 0.1%, a sufficient effect cannot be obtained, and if it exceeds 0.3%, toughness is reduced. To 0.3%.
[0009]
P: P is an impurity and needs to be sufficiently refined and kept low in the melting stage. Particularly P reduces the toughness of the material during use undergo Shi embrittlement tempering. For this reason, it is desirable to make it 0.008% or less.
S: S is also an impurity like P, and segregates during solidification, and the concentrated portion becomes a defect because the bonding strength of the material is weak. For this reason, it is necessary to keep it low, and it is desired that it is 0.006% or less.
[0010]
Cast steel material of the present invention having the above composition is a material for a steam turbine casing or pressure vessel for use in a high temperature environment, high-temperature strength, the weld repair of since it is especially the creep rupture strength and cast material It is generally required to have good toughness for securing. For this reason, it is preferable to perform a process for sufficiently obtaining the required characteristics even in performing the heat treatment.
Quenching temperature: Quenching temperature (liquefaction temperature) greatly affects the crystal grain size of a material. If the quenching temperature is high, crystal grains become coarse, and toughness and ductility decrease. On the other hand, if the quenching temperature is too low, the crystal grains become too fine, and the creep rupture strength decreases. For this reason, optimal temperature management is required. In the case of the material of the present invention, if the quenching treatment (solution treatment) is performed at a temperature exceeding 980 ° C., the crystal grains become coarse, and sufficient toughness and ductility cannot be obtained. If the heat treatment is performed at a temperature lower than 920 ° C., sufficient creep rupture strength cannot be obtained. For this reason, the quenching temperature is limited to 920 to 980 ° C.
[0011]
Quenching time: The quenching time is determined by the time required to sufficiently exert the above-described quenching effect. If the time is less than 5 hours, there arises a problem that the alloy element contained in the material cannot be sufficiently dissolved in the iron matrix and that the concentration segregation of the alloy element cannot be sufficiently eliminated. On the other hand, when the time is maintained for more than 20 hours, there is no difference in the effect of quenching as compared with the treatment within 20 hours, and conversely, the crystal grains are coarsened more than necessary, leading to a decrease in ductility and toughness. . For this reason, the quenching time is limited to 5 to 12 hours.
[0012]
Tempering Shi temperature, tempering Shi Time: eliminate defects introduced during the hardening in the teeth tempering is performed in order to in a tough material, the mechanical material by the heat treatment temperature and the retention time Changes in strength, ductility, and toughness. In tempering Shi treatment temperature is high, the longer the retention time tempering Shi processing proceeds material strength is low, the ductility and toughness are improved instead. On the other hand, if the holding time yet tempering Shi temperature is low is short, the material strength becomes higher becomes as low ductility, and toughness. Therefore, it is necessary to strictly control the temperature and time of Shi tempering. Doing Shi tempering at a temperature higher than 730 ° C., ductility and toughness becomes a sufficiently high mechanical strength is not sufficient. Further, when tempering at a temperature lower than 680 ° C., a sufficiently high mechanical strength can be obtained, but ductility and toughness are not sufficient. For this reason, tempering Shi temperature is set to 680~730 ℃. Also, if the time Shi tempering is less than 5 hours, without causing solid solution and diffusion of adequate alloy elements, sufficient creep rupture strength and ductility, not toughness obtained. Further, even when subjected to time tempering Shi processing exceeding 20 hours, it occurs only in about 20 hours Shi tempering time and little more than the solid solution and diffusion. In addition, when the aging treatment is performed for an unnecessarily long time, the mechanical strength is reduced. For this reason, tempering Shi time is 5 to 20 hours.
[0013]
Quenching speed: When the quenching speed is low, sufficient mechanical strength cannot be obtained because a ferrite + pearlite structure is formed during quenching. Therefore, it is necessary to increase the quenching speed. When actually quenching a large material, the quenching speed is limited and cannot be extremely increased. However, by cooling at a cooling rate of 200 ° C / hour or more from the quenching temperature to 600 ° C, Stable mechanical strength can be obtained. Therefore, the cooling rate to 600 ° C. during quenching is desirably 200 ° C./hour or more.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The test materials shown in Table 1 were melted using a 50 kg vacuum melting furnace, and ingots were formed using a sand mold. Various heat treatments were performed on the test material manufactured as described above to obtain a test material. A room temperature tensile test, an impact test, and a creep rupture test were performed on the test material thus obtained, and the material properties were evaluated.
Table 2 shows the mechanical properties of each of the test materials. According to the results, the material of the present invention has better mechanical strength, tensile ductility and impact properties (50% FATT shows an impact transition) than the comparative material. It indicates the temperature, and it can be said that the lower the temperature, the better the impact properties) and the creep rupture strength (in the creep rupture test, the temperature and stress are constant as test conditions, so that the longer the rupture time is, It can be said that the creep rupture strength is strong.)
Table 3 summarizes the effects of the heat treatment on the mechanical properties. According to this, the heat treatment of the present invention has a high balance of ductility, toughness and high creep rupture strength as compared with the comparative heat treatment. You can see that it is.
[0015]
[Table 1]
Figure 0003576234
[0016]
[Table 2]
Figure 0003576234
[0017]
[Table 3]
Figure 0003576234
[0018]
【The invention's effect】
CrMoV cast steel material of the present invention has excellent high-temperature strength of a conventional, in particular without impairing the creep rupture strength, good ductility, since those provided with the toughness, are improved weld repair properties, conventional It is characterized in that it is easier to manufacture than the above materials, and can be manufactured at lower cost than conventional materials.

Claims (2)

重量比で炭素:0.15〜0.20%、シリコン:0.15〜0.35%、マンガン:0.5〜0.8%、クロム:1.2〜1.5%、モリブデン:0.8〜1.2%、バナジウム:0.1〜0.3%及び不可避的不純物及び鉄からなり、焼入れ温度:920〜980℃で5〜20時間保持し、素材各部位の600℃までの冷却速度を200℃/時間以上の速さで冷却し、さらに焼し温度680〜730℃で5〜20時間保持してなることを特徴とする高温環境下で使用する蒸気タービン車室又は圧力容器用鋳鋼材。By weight, carbon: 0.15 to 0.20%, silicon: 0.15 to 0.35%, manganese: 0.5 to 0.8%, chromium: 1.2 to 1.5%, molybdenum: 0 0.8 to 1.2%, vanadium: 0.1 to 0.3%, inevitable impurities and iron, quenching temperature: maintained at 920 to 980 ° C for 5 to 20 hours, and up to 600 ° C for each part of the material. the cooling rate was cooled in faster than 200 ° C. / time, further tempering Shi temperature 680-730 steam turbine casing or pressure used in a high temperature environment characterized by comprising holding 5-20 hours at ° C. Cast steel for containers. 重量比で炭素:0.15〜0.20%、シリコン:0.15〜0.35%、マンガン:0.5〜0.8%、クロム:1.2〜1.5%、モリブデン:0.8〜1.2%、バナジウム:0.1〜0.3%、不純物としてのリンを0.008%以下、不純物としてのイオウを0.006%以下及び不可避的不純物及び鉄からなり、焼入れ温度:920〜980℃で5〜20時間保持し、素材各部位の600℃までの冷却速度を200℃/時間以上の速さで冷却し、さらに焼し温度680〜730℃で5〜20時間保持してなることを特徴とする高温環境下で使用する蒸気タービン車室又は圧力容器用鋳鋼材。By weight, carbon: 0.15 to 0.20%, silicon: 0.15 to 0.35%, manganese: 0.5 to 0.8%, chromium: 1.2 to 1.5%, molybdenum: 0 0.8 to 1.2%, vanadium: 0.1 to 0.3% , phosphorus as an impurity is 0.008% or less, sulfur as an impurity is 0.006% or less, and unavoidable impurities and iron are quenched. temperature: 920 to 980 and held 5-20 hours at ° C., the cooling rate to 600 ° C. material each part is cooled at 200 ° C. / time faster than 5-20 in further tempering Shi temperature six hundred eighty to seven hundred and thirty ° C. A cast steel material for a steam turbine casing or pressure vessel used in a high temperature environment, which is maintained for a time.
JP30867994A 1994-12-13 1994-12-13 Cast steel for steam turbine cabin or pressure vessel Expired - Fee Related JP3576234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30867994A JP3576234B2 (en) 1994-12-13 1994-12-13 Cast steel for steam turbine cabin or pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30867994A JP3576234B2 (en) 1994-12-13 1994-12-13 Cast steel for steam turbine cabin or pressure vessel

Publications (2)

Publication Number Publication Date
JPH08165541A JPH08165541A (en) 1996-06-25
JP3576234B2 true JP3576234B2 (en) 2004-10-13

Family

ID=17983989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30867994A Expired - Fee Related JP3576234B2 (en) 1994-12-13 1994-12-13 Cast steel for steam turbine cabin or pressure vessel

Country Status (1)

Country Link
JP (1) JP3576234B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721463B2 (en) * 2011-02-10 2015-05-20 三菱重工コンプレッサ株式会社 Manufacturing method of cast steel products
JP6244179B2 (en) * 2013-11-13 2017-12-06 日立Geニュークリア・エナジー株式会社 Heat treatment method for turbine rotor
CN104263885A (en) * 2014-09-22 2015-01-07 安徽应流集团霍山铸造有限公司 Heat treatment process for improving low-temperature toughness of castings
CN105945437B (en) * 2016-05-31 2018-06-22 共享铸钢有限公司 A kind of faults repair method after low-alloy cast steel part finishing

Also Published As

Publication number Publication date
JPH08165541A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
US4857120A (en) Heat-resisting steel turbine part
JPH08333657A (en) Heat resistant cast steel and its production
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JP3649618B2 (en) Cast steel for pressure vessel and method for producing pressure vessel using the same
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
JPH02197550A (en) High purity heat-resistant steel
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JPH0234724A (en) Manufacture of turbine rotor
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JP5996403B2 (en) Heat resistant steel and method for producing the same
JPH1036944A (en) Martensitic heat resistant steel
JP3285729B2 (en) Heat treatment of high strength low alloy cast steel
JP3411756B2 (en) Manufacturing method of cast steel for pressure vessel and pressure vessel
JPS61217554A (en) Heat resistant 12cr steel
JPH03285042A (en) Non-heat treated free cutting steel excellent in high temperature ductility
JPS60138054A (en) Rotor for steam turbine
JPH0641678A (en) Turbine rotor
KR100501507B1 (en) Low Alloy with Superior Impact Property and Rupture Ductility at High Temperature and Manufacturing Method therefor
CN114645218A (en) high-C high-Ni austenitic age-hardening heat-resistant steel and preparation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees