JP3649618B2 - Cast steel for pressure vessel and method for producing pressure vessel using the same - Google Patents

Cast steel for pressure vessel and method for producing pressure vessel using the same Download PDF

Info

Publication number
JP3649618B2
JP3649618B2 JP08425899A JP8425899A JP3649618B2 JP 3649618 B2 JP3649618 B2 JP 3649618B2 JP 08425899 A JP08425899 A JP 08425899A JP 8425899 A JP8425899 A JP 8425899A JP 3649618 B2 JP3649618 B2 JP 3649618B2
Authority
JP
Japan
Prior art keywords
cast steel
pressure vessel
strength
quenching
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08425899A
Other languages
Japanese (ja)
Other versions
JP2000273582A (en
Inventor
康則 田代
正勝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Casting and Forging Corp
Original Assignee
Japan Casting and Forging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Casting and Forging Corp filed Critical Japan Casting and Forging Corp
Priority to JP08425899A priority Critical patent/JP3649618B2/en
Publication of JP2000273582A publication Critical patent/JP2000273582A/en
Application granted granted Critical
Publication of JP3649618B2 publication Critical patent/JP3649618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電用蒸気タービンプラントにおける車室や圧力容器に用いられる鋳鋼材及びそれを用いた圧力容器の製造方法に関する。
【0002】
【従来の技術】
火力発電用蒸気タービンプラントにおける車室や圧力容器には、複雑な形状に対応するために鋳鋼品が多く用いられる。
【0003】
これら鋳鋼品に求められる特性は、高温で使用されるところから高温強度が高く、かつクリープ破断強度が高いこと、鋳鋼品であることから欠陥部を溶接によって補修する必要があり、従って、優れた溶接特性を具備していることである。
【0004】
このような特性をもつ鋳鋼材として、2.25%CrMo鋳鋼、1%CrMo鋳鋼などが知られている。これらのうち、2.25%CrMo鋳鋼や1%CrMo鋳鋼は、常温における耐衝撃特性が比較的優れており、結果として溶接特性も良好である。
【0005】
【発明が解決しようとする課題】
しかしながら、2.25%CrMo鋳鋼や1%CrMo鋳鋼は、焼入れ性が必ずしも良好ではなく、わけても焼入れ処理過程での冷却速度が遅い厚肉部などは、初析フェライトの析出が多く、強度が低下する。
【0006】
また、V等の強化元素が添加されていないため、クリープ破断強度が必ずしも十分ではなく、年々高温化する蒸気タービンプラントにおける車室材として要求される特性に応え得ない。
【0007】
本発明は、2.25%CrMo鋳鋼や1%CrMo鋳鋼が有する耐衝撃特性や溶接特性を確保し、焼入れ性を大きく向上せしめることにより、焼入れ処理過程での冷却速度が遅い厚肉部においても、金属組織を容易にベーナイト単相化して2.25%CrMo鋳鋼や1%CrMo鋳鋼よりも優れた常温及び高温強度を有せしめ、また、クリープ破断強度についても優れた特性を示す圧力容器用鋳鋼材及びそれを用いた圧力容器の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、
(1)重量で、
C :0.05〜0.18%、 Si:0.22〜0.5%、
Mn:0.3〜1.0%、 Ni≦0.5%、
Cr:0.8〜3.0%、 Mo:0.4〜1.5%、
B :0.001超〜0.006%、Ti:0.008〜0.06%、
Al:0.005〜0.030%、 N ≦0.010%、
不純物としての
P ≦0.02%、 S ≦0.01%
を含み、残部が不可避的不純物及びFeからなり、かつ上記成分範囲の
Ti及びNが(3.4×N)/Ti≦1.6
の関係式を満足することを特徴とする圧力容器用鋳鋼材。及び
(2)前記(1)の圧力容器用鋳鋼材を鋳造して得られた圧力容器としての鋳鋼品を、900℃〜1070℃の温度域に5時間〜30時間保持し、素材各部の600℃までの冷却速度を0.5℃/min〜50℃/minとして冷却した後200℃以下まで冷却する焼入れ処理を施し、然る後、650℃〜750℃の温度域に5時間〜20時間保持する焼戻し処理を施すことを特徴とする圧力容器の製造方法である。
【0009】
【発明の実施の形態】
本発明の圧力容器用鋳鋼材及びそれを用いた圧力容器の製造方法について、詳細に説明する。
本発明の圧力容器用鋳鋼材(以下、鋳鋼材という)の成分限定理由を、以下に説明する。
【0010】
C:Cは鋳鋼材の焼入れ性を向上させるとともに、CrやMoの炭化物を形成し、クリープ破断強度の向上に寄与する。しかし、その含有量が0.05%未満では十分な耐力、クリープ破断強度が得られない。一方、溶接性を確保するためには可及的に低い炭素含有量であることが望ましく、0.18%以下でなければならない。また、C含有量が多いと靭性の確保が困難となり、さらに鋳鋼品の使用中に炭窒化物が凝集、粗大化し、高温長時間強度を劣化させる。このため、C含有量を0.05〜0.18%とする。
【0011】
Si:Siは脱酸材として有用な元素である。また、鋳物は形状が複雑であり、鋳型の隅々まで溶湯をスムーズに充満させないと、湯回り不良、湯境等の鋳造欠陥が発生し、補修の対象となる。そのため湯流れの確保が重要であり、Siは湯流れ性を確保する上で必要な元素である。しかし、Siは偏析を助長して鋳鋼品の靭性を低下させ、高温強度も低下させる。Si含有量が0.22%未満では、脱酸材として、また湯流れ性を確保する上で十分機能せず、一方、0.5%を超えて添加すると、鋳鋼品の靭性、高温強度を低下させる。そのため、0.22〜0.5%に限定する。
【0012】
Mn:Mnは鋳鋼材の焼入れ性を高める元素として有用であり、また、強度、靭性の改善に効果がある。しかし、0.3%未満の含有量ではその効果が十分ではなく、しかし、1.0%を超えて添加すると、鋳鋼品のクリープ破断強度を低下させる。そのため、0.3〜1.0%に限定する。好ましくは、0.3〜0.8%の範囲内である。
【0013】
Ni:Niは鋳鋼材の焼入れ性を向上させ、靭性改善にも効果がある。しかし、0.5%を超えて過度に多量に添加すると、鋳鋼品の高温強度わけてもクリープ破断強度を低下させる。そのため、0.5%以下に限定する。
【0014】
Cr:Crは材料の耐酸化性を改善するとともに、炭化物を形成してクリープ破断強度を向上せしめることに大きく寄与する。鋳鋼品のクリープ破断強度への影響の面では、1%を超えるところに最適添加量があるが、焼入れ性の向上による常温強度の確保や耐衝撃性の改善という面からは多く添加することが望ましい。0.8%未満の添加量では、Crの添加による焼入れ性改善効果が発現せず、十分な機械的強度や靭性を確保できない。一方、3.0%を超えて添加すると、クリープ破断強度を低下させる。そのため、0.8〜3.0%に限定する。好ましくは、1.5〜3.0%の範囲内である。
【0015】
Mo:Moは炭化物を形成し、クリープ破断強度を向上させるのに効果がある。また、焼入れ性を改善し、靭性改善にも効果がある。特に本発明の鋳鋼材においては、高温強度改善に寄与する元素である。しかし、0.4%未満では十分なクリープ破断強度改善効果が得られず、一方、1.5%を超えて添加すると、鋳鋼品使用中の脆化をもたらす。従って、0.4〜1.5%の範囲に限定する。好ましくは、0.5〜1%の範囲内である。
【0016】
B:Bは鋳鋼材の強度及び靭性を確保するために重要な元素であり、マトリックス及び粒界に固溶し、鋳鋼材の焼入れ性を向上させ、強度や靭性を改善する効果がある。しかし、0.001%以下では、固溶Bが少なくなるため焼入れ性が低下し、初析フェライトの析出によって強度、靭性が低下する。また、0.006%を超えて添加すると、材料を脆化させる。このため、0.001〜0.006%に限定する。好ましくは、0.001〜0.005%の範囲内である。
【0017】
Ti:Tiは窒化物形成元素であって、Bによる焼入れ効果を確保する上で重要な元素である。N含有量が多い場合、粒界にBはBNとして粒界に多く析出するためBの固溶量が少なくなり、Bによる焼入れ効果が減殺されフェライトの析出を助長し、鋳鋼材の強度及び靭性を低下させる。そのため、少量のB添加で焼入れ効果を確保する手段として、Tiを添加し窒化物(TiN)を形成させることによってBが窒化物(BN)を形成することを防ぎ、Bを固溶Bとして存在させて焼入れ性を確保する。Ti含有量が0.008%未満では添加効果が発現せず、一方、0.06%を超えて添加すると、鋳鋼材の靭性を低下せしめる。このため、0.008〜0.06%に限定する。
【0018】
Al:AlはTiと同様にNを固定(AlN)化し、Bの固溶量を多くしてBの効果を活かす働きをする。Al含有量が0.005%未満では、添加効果が発現せず、一方、0.030%を超えて添加すると靭性が低下する。このため、0.005〜0.030%に限定する。
【0019】
N:本発明の鋳鋼材においてNは有害な元素であり、Bの窒化物を形成しBの効果を阻害する。Bによる焼入れ効果を最大限に活かすためには、Nは可及的に少ない方がよい。即ち、N含有量が多い場合は、粒界にBNが多く析出してBの固溶量が少なくなり、Bによる焼入れ効果が低下して初析フェライトの析出を助長し、鋳鋼材の強度及び靭性を低下せしめる。このため、N量に対応させてB量を変えてBによる焼入れ効果を確保するが、N量が0.010%を超えると、B量も多く必要となって析出物(BN)が多くなり、材料を脆化させる。このため、Nを0.010%以下とする。
【0020】
本発明においては、Bの添加効果を阻害するNを固定化すべくTi、Alを添加している。特に、Tiは窒化物形成元素として重要であり、発明者らの知見によれば、Bの析出物(BN)の生成を抑え、少量のB添加でBによる焼入れ効果を大ならしめるためには、N量がTiとの関係において、(3.4×N)/Ti≦1.6の関係を満足する範囲とすれば、Bによる焼入れ効果が十分に発揮されてベーナイト組織となり、満足すべき強度、靭性およびクリープ特性を確保できる。
【0021】
P:Pは不純物元素であり、溶解段階で十分に脱燐して含有量を低くすることが必要である。特に、Pは焼戻し脆化を起こして鋳鋼品の使用中に靭性を低下させる。このため、0.020%以下にする必要がある。
【0022】
S:SもPと同様に不純物元素であって、溶鋼の凝固時に偏析し、微小欠陥(ミクロポロシティ)となり易いため低く抑える必要がある。このため、0.010%以下とする。
【0023】
次に、上記鋳鋼材を用いた圧力容器の製造方法について説明する。
本発明の方法によって得られる鋳鋼品は、高温環境下で使用される圧力容器であって、高温強度わけてもクリープ破断強度が高いことが要求される。また、鋳鋼品であるところから溶接補修することが避けられず、優れた溶接特性を具備することが必要であり、この点から良好な靭性を有することが必要である。このような観点から、本発明のプロセスにあっては、前記特性を十分に出すための熱処理条件が極めて重要となる。
【0024】
(1)焼入れ処理
▲1▼焼入れ加熱温度:焼入れ加熱温度(溶体化温度)は、材料の結晶粒度に大きく影響する。焼入れ加熱温度が過度に高いと結晶粒が粗くなり、材料の延性、靭性を低下させてしまう。一方、焼入れ温度が低過ぎると、初析フェライトの析出によりクリープ破断強さ及び強度、靭性が低下してしまう。このため、適度な焼入れ温度管理が必要となる。
【0025】
本発明鋳鋼材の場合、加熱(溶体化処理)を1070℃を超える温度まですると、結晶粒が粗くなってしまい十分な延性、靭性が得られない。また、加熱(溶体化処理)温度を900℃未満にすると焼入れ効果が低下し、十分な材料特性が得られない。従って、焼入れ加熱温度(溶体化温度)を900℃〜1070℃に限定する。
【0026】
▲2▼焼入れ加熱保持時間:焼入れ加熱保持時間は、上記焼入れ効果を十分に発揮する時間とする。焼入れ加熱保持時間が5時間に満たないと、合金元素が鉄の母相に十分に溶けることができない。また、合金元素の濃度偏析が十分に解消されない問題を生じる。一方、30時間で溶体化による効果が飽和し、逆に結晶粒が粗大化して材料の延性、靭性を低下させてしまう。従って、焼入れ加熱保持時間を5時間〜30時間に限定する。
【0027】
▲3▼焼入れ(冷却)速度:焼入れ(冷却)速度は、材料の強度、靭性に強く影響する。焼入れ時の冷却速度が低いと、初析フェライトが析出するため十分なクリープ破断強さ及び強度、靭性が得られない。従って、焼入れ(冷却)速度を速くすることが必要である。
【0028】
実際に、大型の鋳物を焼入れする場合、焼入れ速度を速くするために油又は水に浸漬させて冷却することも考えられるが、形状が複雑な鋳物の場合、変形や割れの問題を生じる。このため本発明においては、焼入れ開始温度から鋳鋼品各部位の600℃までの焼入れ (冷却)速度の上限を50℃/minとし、下限を0.5℃/minとした。本発明の鋳鋼材の場合、0.5℃/min焼入れ(冷却)速度でも焼入れ効果があり、安定した機械的強度を得ることができることも大きな特徴の1つである。
【0029】
(2)焼戻し処理
▲1▼焼戻し温度及び時間:焼戻し処理は、焼入れの際に導入された欠陥をなくし、靭性のある材料にするために行う。この焼戻し温度及び時間によって材料の機械的強度や延性や靭性が変化する。
【0030】
焼戻し処理において、温度が高く保持時間が長いほど焼戻し処理は進み、材料の強度は低くなり、代わりに延性や靭性が向上する。
一方、焼戻し温度が低くしかも保持時間が短い場合は、材料強度は高くなるが、延性や靭性が低下する。このため、焼戻し温度及び時間は厳密に管理されねばならない。
【0031】
750℃を超える温度域で焼戻し処理を行うと、材料の延性や靭性は良好となるけれども機械的強度が低下する。また、650℃未満の温度域で焼戻し処理を行うと、十分に高い機械的強度は得られるが、材料の延性や靭性が低下する。このため、焼戻し処理温度域を650℃〜750℃とする。
【0032】
焼戻し時間が5時間に満たないと、十分な固溶や拡散及び微細な炭窒化物の析出が少なく、満足すべきクリープ破断強度や延性、靭性が得られない。
一方、20時間で焼戻し処理による効果が飽和する。加えて、20時間を超えて焼戻し処理を施すと、材料の機械的強度が低下する。従って、焼戻し処理時間は、5時間〜20時間の範囲内とする。
【0033】
【実施例】
表1に、試験に供した本発明の鋳鋼材のうちの2%Cr−1%Mo系材料の化学成分を示す。表4に、試験に供した本発明の鋳鋼材のうちの1%Cr−0.5%Mo系材料の化学成分を示す。全ての材料は、50kg真空溶解炉にて溶製し、鋳物砂で成型した鋳型に溶湯を鋳込んで鋳鋼品を得、これを試験材とした。表1及び表4において、肉太線で囲んだ数値は本発明の鋳鋼材の成分範囲外となるものである。
【0034】
鋳造によって得られた試験材(鋳鋼品)に、表2に、及び表5に示す本発明の方法において特定する熱処理条件を満たす熱処理を施し、得られた試験材について、引張り試験、衝撃試験及びクリープ破断試験を行って成分組成の影響を調べた。
【0035】
表2及び表5から明らかなように、本発明の鋳鋼材(発明材)は強度、及び伸び、絞りなどの延性、並びに耐衝撃特性(「50%FATT」は、衝撃破断遷移温度を示しており、この温度が低いものほど耐衝撃特性が良好であるといえる。また、この耐衝撃特性が良好な材料は、一般に、溶接性が良好な材料である。)等の特性のバランスがよく、安定して高い値を示している。
【0036】
これに対し比較材は、強度及び延性、靭性のバランスが悪く、特に耐衝撃特性が相対的に悪くなっている。また、本発明の鋳鋼材のクリープ破断強さ(クリープ破断試験では、試験条件として温度と応力が一定であるので、破断までの時間が長いものがクリープ破断強度が高いものであるといえる。)も比較材に比して優れていることが分かる。
【0037】
次に、本発明の鋳鋼材について、本発明において特定する熱処理条件が諸特性に及ぼす影響を調べた。表3及び表6に、その結果を示す。
表3及び表6から明らかなように、本発明において特定する熱処理条件を満たすものは、強度及び伸び、絞りなどの延性、並びに耐衝撃特性のバランスがよく、安定して高い値を示している。これに対し、本発明において特定する熱処理条件を満たさないものは、各特性のバランスが悪いことが分かる。
【0038】
本発明において特定する熱処理条件について、焼入れ(加熱)温度が条件を外れて低い場合や焼入れ(冷却)速度が条件を外れて遅い場合は、初析フェライトが析出し易くなり、圧力容器(鋳鋼品)の強度、靭性及びクリープ破断強度が低下する。
【0039】
焼入れ(加熱)温度が条件を外れて高い場合は、結晶粒度が粗く、製品の延性や靭性が悪くなる。
また、焼戻し温度が条件を外れて高過ぎる場合は、製品の延性や靭性はよいが強度が低い。一方、焼戻し温度が条件を外れて低過ぎる場合は、強度は高いが、製品の延性や靭性が悪い。
【0040】
【表1】

Figure 0003649618
【0041】
【表2】
Figure 0003649618
【0042】
【表3】
Figure 0003649618
【0043】
【表4】
Figure 0003649618
【0044】
【表5】
Figure 0003649618
【0045】
【表6】
Figure 0003649618
【0046】
【発明の効果】
本発明の圧力容器用鋳鋼材は、従来のCrMo鋳鋼材が有する優れた耐衝撃特性及び溶接特性を確保しつつ焼入れ性を大幅に向上せしめて焼入れ時の冷却速度が低い厚肉部においても金属組織を容易にベーナイト単相化することによって、2.25%CrMo鋳鋼や1%CrMo鋳鋼よりも優れた常温及び高温強度わけてもクリープ破断強度を有するとともに、良好な延性や靭性をも具備したものであるところから特に、溶接特性が一段と改善されており、従来の鋳鋼材よりも圧力容器を製造し易い特長を備えている。
【0047】
従って、製品の肉厚を低減することや溶接工数の低減によって、従来材よりも安価に圧力容器を製造することができるようになった。特に、本発明の圧力容器用鋳鋼材においては、高価な添加元素を極力添加しないことによってもコストを低減でき、かつ優れた特性を有し、産業上大きな効果をもたらす。
【0048】
また、本発明の圧力容器用鋳鋼材を出発材料とする本発明の方法によれば、高い延性、靭性並びにクリープ破断強さをバランスよく備えた圧力容器を提供できる効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cast steel material used for a passenger compartment and a pressure vessel in a steam turbine plant for thermal power generation, and a method for manufacturing a pressure vessel using the cast steel material.
[0002]
[Prior art]
A cast steel product is often used in a casing or a pressure vessel in a steam turbine plant for thermal power generation to cope with a complicated shape.
[0003]
The properties required for these cast steel products are high temperature strength and high creep rupture strength because they are used at high temperatures, and because they are cast steel products, it is necessary to repair defective parts by welding. It has welding characteristics.
[0004]
2.25% CrMo cast steel, 1% CrMo cast steel and the like are known as cast steel materials having such characteristics. Among these, 2.25% CrMo cast steel and 1% CrMo cast steel are relatively excellent in impact resistance at room temperature, and as a result, have good welding characteristics.
[0005]
[Problems to be solved by the invention]
However, 2.25% CrMo cast steel and 1% CrMo cast steel do not necessarily have good hardenability, especially in thick parts where the cooling rate is slow during the quenching process, the precipitation of proeutectoid ferrite is high and the strength decreases. To do.
[0006]
In addition, since a strengthening element such as V is not added, the creep rupture strength is not always sufficient, and it cannot meet the characteristics required as a casing material in a steam turbine plant that is getting higher year by year.
[0007]
The present invention secures the impact resistance and welding characteristics of 2.25% CrMo cast steel and 1% CrMo cast steel and greatly improves the hardenability, so that even in the thick part where the cooling rate is slow during the quenching process. , Casting steel for pressure vessels that easily converts the metallographic structure to a bainite single phase, has superior room temperature and high temperature strength than 2.25% CrMo cast steel and 1% CrMo cast steel, and also exhibits excellent creep rupture strength. An object of the present invention is to provide a material and a method for producing a pressure vessel using the same.
[0008]
[Means for Solving the Problems]
The present invention
(1) By weight
C: 0.05 to 0.18%, Si: 0.22 to 0.5%,
Mn: 0.3 to 1.0%, Ni ≦ 0.5%
Cr: 0.8-3.0%, Mo: 0.4-1.5%,
B: more than 0.001 to 0.006%, Ti: 0.008 to 0.06%,
Al: 0.005 to 0.030%, N ≦ 0.010%,
P ≦ 0.02% as impurity, S ≦ 0.01%
The balance is inevitable impurities and Fe, and Ti and N in the above component range are (3.4 × N) /Ti≦1.6.
A cast steel material for a pressure vessel, which satisfies the following relational expression: And (2) A cast steel product as a pressure vessel obtained by casting the cast steel material for a pressure vessel of (1) is held in a temperature range of 900 ° C. to 1070 ° C. for 5 hours to 30 hours, and 600 parts of each material After cooling at a cooling rate of 0.5 ° C./min to 50 ° C./min after cooling to 200 ° C., a quenching treatment is performed, and then in a temperature range of 650 ° C. to 750 ° C. for 5 hours to 20 hours. A pressure vessel manufacturing method is characterized by performing a tempering treatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The cast steel material for a pressure vessel of the present invention and a method for producing a pressure vessel using the same will be described in detail.
The reasons for limiting the components of the pressure vessel cast steel material (hereinafter referred to as cast steel material) of the present invention will be described below.
[0010]
C: C improves the hardenability of the cast steel and forms carbides of Cr and Mo, contributing to the improvement of creep rupture strength. However, if the content is less than 0.05%, sufficient yield strength and creep rupture strength cannot be obtained. On the other hand, in order to ensure weldability, it is desirable that the carbon content be as low as possible, and it should be 0.18% or less. Further, if the C content is large, it becomes difficult to ensure toughness, and carbonitrides aggregate and coarsen during use of the cast steel product, thereby deteriorating the high temperature and long time strength. For this reason, C content is made into 0.05 to 0.18%.
[0011]
Si: Si is an element useful as a deoxidizer. In addition, the casting has a complicated shape, and if the molten metal is not filled smoothly to every corner of the mold, casting defects such as poor hot water and a hot water boundary are generated and are subject to repair. Therefore, it is important to secure a hot water flow, and Si is an element necessary for ensuring the hot water flow. However, Si promotes segregation, lowers the toughness of the cast steel product, and lowers the high temperature strength. When the Si content is less than 0.22%, it does not function sufficiently as a deoxidizing material and for ensuring the flowability of molten metal. On the other hand, when it exceeds 0.5%, the toughness and high temperature strength of the cast steel product are reduced. Reduce. Therefore, it is limited to 0.22 to 0.5%.
[0012]
Mn: Mn is useful as an element that enhances the hardenability of cast steel, and is effective in improving strength and toughness. However, if the content is less than 0.3%, the effect is not sufficient, but if added over 1.0%, the creep rupture strength of the cast steel product is lowered. Therefore, it is limited to 0.3 to 1.0%. Preferably, it is in the range of 0.3 to 0.8%.
[0013]
Ni: Ni improves the hardenability of the cast steel material and is effective in improving toughness. However, if added in an excessively large amount exceeding 0.5%, the creep rupture strength of the cast steel product, especially the high temperature strength, is lowered. Therefore, it is limited to 0.5% or less.
[0014]
Cr: Cr not only improves the oxidation resistance of the material, but also greatly contributes to the formation of carbides and improved creep rupture strength. In terms of the effect on the creep rupture strength of cast steel products, there is an optimum addition amount that exceeds 1%, but it is often added in terms of securing room temperature strength by improving hardenability and improving impact resistance. desirable. If the addition amount is less than 0.8%, the effect of improving the hardenability due to the addition of Cr does not appear, and sufficient mechanical strength and toughness cannot be ensured. On the other hand, if added over 3.0%, the creep rupture strength is lowered. Therefore, it is limited to 0.8 to 3.0%. Preferably, it is in the range of 1.5 to 3.0%.
[0015]
Mo: Mo forms carbides and is effective in improving the creep rupture strength. It also improves hardenability and is effective in improving toughness. In particular, in the cast steel material of the present invention, it is an element that contributes to high temperature strength improvement. However, if the content is less than 0.4%, a sufficient effect of improving the creep rupture strength cannot be obtained. On the other hand, if the content exceeds 1.5%, embrittlement occurs during use of the cast steel product. Therefore, it is limited to the range of 0.4 to 1.5%. Preferably, it is in the range of 0.5 to 1%.
[0016]
B: B is an important element for securing the strength and toughness of the cast steel material, and has the effect of solid-dissolving in the matrix and grain boundaries, improving the hardenability of the cast steel material, and improving the strength and toughness. However, at 0.001% or less , the solid solution B decreases, so the hardenability decreases, and the strength and toughness decrease due to precipitation of proeutectoid ferrite. Moreover, when it exceeds 0.006% and is added, a material will be embrittled. For this reason, it limits to more than 0.001 to 0.006%. Preferably, it is in the range of more than 0.001 to 0.005%.
[0017]
Ti: Ti is a nitride-forming element and is an important element for securing the quenching effect by B. When the N content is high, B precipitates at the grain boundary as BN, so the solid solution amount of B decreases, the quenching effect of B is reduced, and the precipitation of ferrite is promoted. The strength and toughness of the cast steel material Reduce. Therefore, as a means to ensure the quenching effect by adding a small amount of B, B is prevented from forming nitride (BN) by adding Ti to form nitride (TiN), and B exists as solid solution B To ensure hardenability. If the Ti content is less than 0.008%, the effect of addition does not appear. On the other hand, if the Ti content exceeds 0.06%, the toughness of the cast steel material is lowered. For this reason, it limits to 0.008-0.06%.
[0018]
Al: Al, like Ti, fixes N (AlN), increases the amount of B dissolved, and functions to make use of the effect of B. If the Al content is less than 0.005%, the effect of addition does not appear. On the other hand, if the Al content exceeds 0.030%, the toughness decreases. For this reason, it limits to 0.005-0.030%.
[0019]
N: N is a harmful element in the cast steel material of the present invention, and forms a nitride of B to inhibit the effect of B. In order to make the best use of the quenching effect of B, N should be as small as possible. That is, when the N content is large, a large amount of BN precipitates at the grain boundary and the solid solution amount of B decreases, the quenching effect by B decreases, and the precipitation of proeutectoid ferrite is promoted. Reduce toughness. For this reason, the amount of B is changed in accordance with the amount of N to ensure the quenching effect by B. However, if the amount of N exceeds 0.010%, a larger amount of B is required and precipitates (BN) increase. , Embrittle the material. For this reason, N is made into 0.010% or less.
[0020]
In the present invention, Ti and Al are added to immobilize N which inhibits the effect of adding B. In particular, Ti is important as a nitride-forming element. According to the inventors' knowledge, in order to suppress the formation of B precipitates (BN) and to increase the quenching effect of B with a small amount of B addition, When the N content is in a range satisfying the relationship of (3.4 × N) /Ti≦1.6, the quenching effect by B is sufficiently exerted to form a bainite structure, which should be satisfied. Strength, toughness and creep properties can be secured.
[0021]
P: P is an impurity element and needs to be sufficiently dephosphorized in the melting stage to reduce the content. In particular, P causes temper embrittlement and reduces toughness during use of cast steel products. For this reason, it is necessary to make it 0.020% or less.
[0022]
S: S is also an impurity element like P, and segregates when the molten steel is solidified and easily becomes a micro defect (microporosity), so it is necessary to keep it low. For this reason, it is made into 0.010% or less.
[0023]
Next, the manufacturing method of the pressure vessel using the said cast steel material is demonstrated.
The cast steel product obtained by the method of the present invention is a pressure vessel used in a high temperature environment, and is required to have a high creep rupture strength, especially high temperature strength. In addition, it is inevitable that welding repair is performed from a cast steel product, and it is necessary to have excellent welding characteristics. From this point, it is necessary to have good toughness. From such a viewpoint, in the process of the present invention, the heat treatment conditions for sufficiently obtaining the above characteristics are extremely important.
[0024]
(1) Quenching treatment (1) Quenching heating temperature: The quenching heating temperature (solution temperature) greatly affects the crystal grain size of the material. If the quenching heating temperature is excessively high, the crystal grains become coarse and the ductility and toughness of the material are lowered. On the other hand, if the quenching temperature is too low, the creep rupture strength, strength, and toughness are reduced due to precipitation of pro-eutectoid ferrite. For this reason, appropriate quenching temperature management is required.
[0025]
In the case of the cast steel material of the present invention, if heating (solution treatment) is carried out to a temperature exceeding 1070 ° C., the crystal grains become coarse and sufficient ductility and toughness cannot be obtained. On the other hand, if the heating (solution treatment) temperature is less than 900 ° C., the quenching effect is lowered and sufficient material properties cannot be obtained. Therefore, the quenching heating temperature (solution temperature) is limited to 900 ° C to 1070 ° C.
[0026]
(2) Quenching and holding time: The quenching and holding time is set to a time for sufficiently exhibiting the quenching effect. If the quenching and heating holding time is less than 5 hours, the alloy elements cannot be sufficiently dissolved in the iron matrix. Further, there arises a problem that concentration segregation of alloy elements is not sufficiently solved. On the other hand, the effect of solution solution is saturated in 30 hours, and on the contrary, the crystal grains become coarse and the ductility and toughness of the material are lowered. Therefore, the quenching heat holding time is limited to 5 hours to 30 hours.
[0027]
(3) Quenching (cooling) speed: The quenching (cooling) speed strongly affects the strength and toughness of the material. If the cooling rate during quenching is low, proeutectoid ferrite will precipitate, and sufficient creep rupture strength, strength, and toughness will not be obtained. Therefore, it is necessary to increase the quenching (cooling) speed.
[0028]
Actually, when quenching a large casting, it is conceivable to cool it by immersing it in oil or water in order to increase the quenching speed. However, in the case of a casting having a complicated shape, problems of deformation and cracking occur. Therefore, in the present invention, the upper limit of the quenching (cooling) rate from the quenching start temperature to 600 ° C. of each part of the cast steel product is set to 50 ° C./min, and the lower limit is set to 0.5 ° C./min. In the case of the cast steel material of the present invention, one of the great features is that it has a quenching effect even at a quenching (cooling) rate of 0.5 ° C./min and can obtain a stable mechanical strength.
[0029]
(2) Tempering treatment {circle around (1)} Tempering temperature and time: The tempering treatment is carried out in order to eliminate defects introduced during quenching and to obtain a tough material. The mechanical strength, ductility and toughness of the material change depending on the tempering temperature and time.
[0030]
In the tempering process, the higher the temperature and the longer the holding time, the more the tempering process progresses, the strength of the material is lowered, and the ductility and toughness are improved instead.
On the other hand, when the tempering temperature is low and the holding time is short, the material strength increases, but the ductility and toughness decrease. For this reason, the tempering temperature and time must be strictly controlled.
[0031]
When tempering is performed in a temperature range exceeding 750 ° C., the ductility and toughness of the material are improved, but the mechanical strength is lowered. Moreover, when tempering is performed in a temperature range below 650 ° C., a sufficiently high mechanical strength can be obtained, but the ductility and toughness of the material are reduced. For this reason, a tempering process temperature range shall be 650 degreeC-750 degreeC.
[0032]
If the tempering time is less than 5 hours, sufficient solid solution, diffusion and precipitation of fine carbonitrides are small, and satisfactory creep rupture strength, ductility and toughness cannot be obtained.
On the other hand, the effect of the tempering process is saturated in 20 hours. In addition, when the tempering process is performed for more than 20 hours, the mechanical strength of the material is lowered. Accordingly, the tempering time is set within a range of 5 to 20 hours.
[0033]
【Example】
Table 1 shows chemical components of the 2% Cr-1% Mo-based material among the cast steel materials of the present invention subjected to the test. Table 4 shows chemical components of 1% Cr-0.5% Mo-based material among the cast steel materials of the present invention subjected to the test. All materials were melted in a 50 kg vacuum melting furnace, and a molten steel was cast into a mold molded with foundry sand to obtain a cast steel product, which was used as a test material. In Tables 1 and 4, the numerical values enclosed by thick lines are outside the component range of the cast steel material of the present invention.
[0034]
The test material (cast steel product) obtained by casting is subjected to heat treatment satisfying the heat treatment conditions specified in the methods of the present invention shown in Table 2 and Table 5, and the test material obtained is subjected to a tensile test, an impact test, and A creep rupture test was conducted to examine the influence of the component composition.
[0035]
As is apparent from Tables 2 and 5, the cast steel material of the present invention (invention material) has strength, ductility such as elongation and drawing, and impact resistance characteristics (“50% FATT” indicates the impact rupture transition temperature. It can be said that the lower the temperature, the better the impact resistance, and the material with good impact resistance is generally a material with good weldability. The value is stable and high.
[0036]
On the other hand, the comparative material has a poor balance between strength, ductility, and toughness, and particularly has a relatively poor impact resistance. Further, the creep rupture strength of the cast steel material of the present invention (in the creep rupture test, the temperature and stress are constant as the test conditions, so it can be said that the creep rupture strength is higher when the time to break is longer). It can also be seen that this is superior to the comparative material.
[0037]
Next, the influence of the heat treatment conditions specified in the present invention on various properties of the cast steel material of the present invention was examined. Tables 3 and 6 show the results.
As is apparent from Tables 3 and 6, those satisfying the heat treatment conditions specified in the present invention have a good balance between strength and elongation, ductility such as drawing, and impact resistance, and stably exhibiting high values. . On the other hand, it can be seen that those not satisfying the heat treatment conditions specified in the present invention have a poor balance of properties.
[0038]
In the heat treatment conditions specified in the present invention, if the quenching (heating) temperature is low and the quenching (cooling) speed is low, the pro-eutectoid ferrite is likely to precipitate, and the pressure vessel (cast steel product) ) Strength, toughness and creep rupture strength are reduced.
[0039]
When the quenching (heating) temperature is too high, the crystal grain size is coarse, and the ductility and toughness of the product are deteriorated.
In addition, when the tempering temperature is too high, the product has good ductility and toughness but low strength. On the other hand, when the tempering temperature is too low, the strength is high, but the ductility and toughness of the product are poor.
[0040]
[Table 1]
Figure 0003649618
[0041]
[Table 2]
Figure 0003649618
[0042]
[Table 3]
Figure 0003649618
[0043]
[Table 4]
Figure 0003649618
[0044]
[Table 5]
Figure 0003649618
[0045]
[Table 6]
Figure 0003649618
[0046]
【The invention's effect】
The cast steel material for pressure vessel of the present invention is a metal even in a thick-walled portion where the quenching performance is greatly improved and the cooling rate during quenching is low, while ensuring the excellent impact resistance and welding characteristics of conventional CrMo cast steel materials. By making the structure into a single phase of bainite easily, it has excellent room temperature and high temperature strength, especially creep rupture strength, and good ductility and toughness than 2.25% CrMo cast steel and 1% CrMo cast steel. In particular, the welding characteristics are further improved, and the pressure vessel can be manufactured more easily than conventional cast steel materials.
[0047]
Therefore, the pressure vessel can be manufactured at a lower cost than the conventional material by reducing the thickness of the product and reducing the number of welding processes. In particular, in the cast steel material for pressure vessels of the present invention, the cost can be reduced even when an expensive additive element is not added as much as possible, and it has excellent characteristics and has a great industrial effect.
[0048]
Moreover, according to the method of the present invention using the cast steel material for a pressure vessel of the present invention as a starting material, there is an effect that it is possible to provide a pressure vessel having a high balance of high ductility, toughness and creep rupture strength.

Claims (2)

重量で、
C :0.05〜0.18%、
Si:0.22〜0.5%、
Mn:0.3〜1.0%、
Ni≦0.5%、
Cr:0.8〜3.0%、
Mo:0.4〜1.5%、
B :0.001超〜0.006%、
Ti:0.008〜0.06%、
Al:0.005〜0.030%、
N ≦0.010%、
不純物としての
P ≦0.02%、
S ≦0.01%
を含み、残部が不可避的不純物及びFeからなり、かつ上記成分範囲の
Ti及びNが(3.4×N)/Ti≦1.6
の関係式を満足することを特徴とする圧力容器用鋳鋼材。
By weight
C: 0.05 to 0.18%,
Si: 0.22 to 0.5%,
Mn: 0.3 to 1.0%
Ni ≦ 0.5%,
Cr: 0.8 to 3.0%,
Mo: 0.4 to 1.5%,
B: more than 0.001 to 0.006%,
Ti: 0.008 to 0.06%,
Al: 0.005 to 0.030%,
N ≦ 0.010%,
P ≦ 0.02% as an impurity,
S ≦ 0.01%
The balance is inevitable impurities and Fe, and Ti and N in the above component range are (3.4 × N) /Ti≦1.6.
A cast steel material for a pressure vessel, which satisfies the following relational expression:
請求項1に記載の鋳鋼材を鋳造して得られた圧力容器としての鋳鋼品を、900℃〜1070℃の温度域に5時間〜30時間保持し、素材各部の600℃までの冷却速度を0.5℃/min〜50℃/minとして冷却した後200℃以下まで冷却する焼入れ処理を施し、然る後、650℃〜750℃の温度域に5時間〜20時間保持する焼戻し処理を施すことを特徴とする圧力容器の製造方法。  A cast steel product as a pressure vessel obtained by casting the cast steel material according to claim 1 is held in a temperature range of 900 ° C to 1070 ° C for 5 hours to 30 hours, and a cooling rate of each part of the material to 600 ° C is set. After cooling at 0.5 ° C./min to 50 ° C./min, a quenching treatment is performed to cool to 200 ° C. or less, and then a tempering treatment is performed in a temperature range of 650 ° C. to 750 ° C. for 5 hours to 20 hours. A method of manufacturing a pressure vessel, characterized in that
JP08425899A 1999-03-26 1999-03-26 Cast steel for pressure vessel and method for producing pressure vessel using the same Expired - Fee Related JP3649618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08425899A JP3649618B2 (en) 1999-03-26 1999-03-26 Cast steel for pressure vessel and method for producing pressure vessel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08425899A JP3649618B2 (en) 1999-03-26 1999-03-26 Cast steel for pressure vessel and method for producing pressure vessel using the same

Publications (2)

Publication Number Publication Date
JP2000273582A JP2000273582A (en) 2000-10-03
JP3649618B2 true JP3649618B2 (en) 2005-05-18

Family

ID=13825439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08425899A Expired - Fee Related JP3649618B2 (en) 1999-03-26 1999-03-26 Cast steel for pressure vessel and method for producing pressure vessel using the same

Country Status (1)

Country Link
JP (1) JP3649618B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018838A1 (en) * 2007-04-20 2008-10-30 Benteler Automobiltechnik Gmbh Use of a steel alloy
KR100873791B1 (en) 2007-04-27 2008-12-15 주식회사 엔케이 Quenching method and quenching device for manufacturing high pressure gas container
KR100967030B1 (en) * 2007-11-07 2010-06-30 주식회사 포스코 High Tensile Steel for Deep Drawing and Manufacturing Method Thereof
CN112359281A (en) * 2020-10-26 2021-02-12 中冶陕压重工设备有限公司 ZG17CrNi2MoSYI steel and casting preparation method

Also Published As

Publication number Publication date
JP2000273582A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
KR101394352B1 (en) Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine
EP0639691B1 (en) Rotor for steam turbine and manufacturing method thereof
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP3439197B2 (en) Low alloy heat resistant steel, heat treatment method thereof, and turbine rotor
JP3354832B2 (en) High toughness ferritic heat-resistant steel
JP3723924B2 (en) Heat-resistant cast steel and method for producing the same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3649618B2 (en) Cast steel for pressure vessel and method for producing pressure vessel using the same
JPH10121170A (en) Nickel-chromium alloy excellent in corrosion resistance and production thereof
JP3422658B2 (en) Heat resistant steel
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
JP3411756B2 (en) Manufacturing method of cast steel for pressure vessel and pressure vessel
JP5996403B2 (en) Heat resistant steel and method for producing the same
KR100424354B1 (en) Heat resistant cast steel
JP2019011501A (en) Method for producing nozzle plate of steam turbine
JP3285729B2 (en) Heat treatment of high strength low alloy cast steel
JPS61217554A (en) Heat resistant 12cr steel
JPH06256893A (en) High toughness low alloy steel excellent in high temperature strength
JP2012237049A (en) Heat resistant steel and steam turbine component
JPH09263888A (en) Manufacture of cast steel material for pressure vessel and pressure vessel
JPH1129837A (en) Heat resistant cast steel and heat resistant cast steel part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Ref document number: 3649618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees