JPH021901B2 - - Google Patents

Info

Publication number
JPH021901B2
JPH021901B2 JP58177800A JP17780083A JPH021901B2 JP H021901 B2 JPH021901 B2 JP H021901B2 JP 58177800 A JP58177800 A JP 58177800A JP 17780083 A JP17780083 A JP 17780083A JP H021901 B2 JPH021901 B2 JP H021901B2
Authority
JP
Japan
Prior art keywords
low
steel
temperature
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58177800A
Other languages
Japanese (ja)
Other versions
JPS6070166A (en
Inventor
Kenichi Usami
Seishin Kirihara
Choichi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17780083A priority Critical patent/JPS6070166A/en
Publication of JPS6070166A publication Critical patent/JPS6070166A/en
Publication of JPH021901B2 publication Critical patent/JPH021901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、Ni−Cr−Mo−V鋼の改良に係り、
特に高低圧および低温、高温における蒸気環境下
においても高温強度、靭性および耐酸化性を有す
る高低圧一体型蒸気タービン用ロータに用いる耐
クリープ耐酸化性低合金鋼に関するものである。 〔発明の背景〕 現在の蒸気タービン用ロータは、その使用蒸気
の温度、圧力によつて高圧部、中圧部および低圧
部からなり、それぞれの蒸気の温度、圧力に応じ
た強度、靭性および耐酸化性を有する異種材質を
組合せて構成されている。しかし、蒸気タービン
用ロータの高圧部、中圧部を構成する材料として
は、蒸気により538〜566℃の高温にさらされるた
め、高温下においても高強度を有することが要求
されている。そのため、一般に高圧、中圧部は1
%Cr−1%Mo−1/4V鋼が使用されている。一
方、低圧部には200〜300℃の蒸気にさらされるた
め、低温靭性の高い鋼たとえば高Niの1.6〜3.5%
Ni−1.2〜1.7%Cr−0.45%Mo−0.13%V鋼、ある
いは0.35%C以下を含む1.7〜3.5%Ni−1.2〜1.7%
Cr−0.45%Mo−0.13%V鋼などが使用されてい
る。 最近、ロータとデイスクの組合せ構造を簡略化
するため高圧部から低圧部までを同一材質で構成
するいわゆる一体型蒸気タービン用ロータが注目
されている。この高低圧一体型蒸気タービン用ロ
ータに要求される材質としては低温靭性にあわせ
て高温強度を有することが要求される。特に、大
型化した一体型蒸気タービン用ロータでは、ロー
タの外表部と中心部における冷却速度が異つても
長時間の使用により機械的性質の劣化、特に脆化
を起さないような材料で構成することが重要であ
る。 しかしながら、現在、タービン、ロータに用い
られている1%Cr−1%Mo−1/4%V鋼では、
高温でのクリープ強度が低い一方、低温での靭性
が十分でない。特に外表部と中心部での焼入れ冷
却速度が異なる場合には機械的性質を均一にする
ことができない。特に、大型化した場合には、中
心部では焼入れの際の冷却速度が30〜40℃以下と
なり350〜500℃の温度領域でおいて徐却されるた
め靭性が低下するという欠点がある。また、538
〜566℃の蒸気温度領域においては、Cr−Mo−
V鋼の高温焼もどし脆化温度域(375〜575℃)に
相当し、この温度範囲で長時間使用すればタービ
ン、ロータは著しく脆化される。 近年、発電用蒸気タービンにおいては、電力消
費量が昼と夜で相違しているため、蒸気タービン
の起動、停止回数が増えてきている。そのため、
蒸気タービン用ロータは起動−停止に伴う加熱−
冷却が繰り返されるため、経時的に脆化して靭性
が低下し、ついには、脆性破壊を起す危険性が増
大する。 そこで、高低圧一体型蒸気タービン用ロータ材
としては高いクリープ破壊強度、高い靭性および
長期間の使用で脆化しない材料が必要となつてき
ている。特に、高圧部および中圧部では550℃×
106hrで10Kg/mm2以上のクリープ破断強度が要求
される。さらに、高低圧蒸気タービン用ロータの
構成材料としては、上記クリープ破断強度の目標
値を満足すると共に、低圧部において低温靭性も
優れていることが必要である。 したがつて、高低圧一体型蒸気タービン用ロー
タの構成材料としては、低温靭性の優れた現用の
Ni−Cr−Mo−V鋼が最適である。 しかし、従来の低圧蒸気タービン用ロータに
Ni−Cr−Mo−V鋼を用いるときには、200〜300
℃の蒸気中に使用されるため、クリープ破断強度
はあまり要求されなかつた。 高低圧一体型蒸気ロータにNi−Cr−Mo−V鋼
を用いる場合には、クリープ破断強度が低いた
め、使用中に破壊するという問題点を有してい
た。 一方、高低圧一体型蒸気タービン用ロータの高
温側において、ロータの表面は高温の蒸気にさら
されるため、酸化スケールが生成する。そのた
め、酸化スケールは蒸気タービンの起動、停止に
伴うロータの膨張収縮により剥離し、減肉の原因
となると共に、表面欠陥を起こす。そのため、ロ
ータ材としては高強度および高靭性を有すると共
に、高温蒸気に対する耐酸化性がよいことが要求
される。 しかしながら、従来のNi−Cr−Mo−V鋼で
は、高温蒸気に対する耐酸化性が劣り、酸化スケ
ールの剥離による減肉および表面欠陥を生ずると
いう問題点を有していた。 〔発明の目的〕 本発明の目的は、高圧部、中圧部および低圧部
からなる蒸気タービン用ロータをNi−Cr−Mo−
V鋼の鍛造品で一体に形成すると共に、Ni−Cr
−Mo−V鋼に特殊元素を添加して高温クリープ
破断強度、靭性および耐酸化性の優れた高低圧一
体型蒸気タービン用ロータに用いる低合金鋼を提
供することにある。 〔発明の概要〕 本発明は、重量比でC;0.15〜0.35%、Si;
0.05%以下、Mn;1.0%以下、Ni;1.5〜4.0%、
Cr;1〜3.41%、Mo;0.2〜0.8%、Nb;0.07〜
0.3%、V;0.07〜0.15%、残部Feおよび不可避的
不純物からなる低合金鋼のNbとVとの比、Nb/
Vが、1を越え2以下であり、かつ、P、Sn、
Sb、Asの不可避的不純物とSiとの合計量が0.08
%以下である耐クリープ耐酸化性低合金鋼であつ
て、Crを前記成分範囲で且つ(C×Ni)/Crの
比で2.11以下になるよう添加し、さらに不純物で
あるP、Sn、Sb、Zn、Pb、As、Cu、Al、Bと、
Siとを極力低くおさえた高低圧一体型蒸気タービ
ン用ロータに用いる大型鍛造品用低合金鋼であ
る。 本発明に係る高低圧一体型蒸気タービン用ロー
タは、従来使用されたNi−Cr−Mo−V鋼から成
る蒸気タービン用ロータに比べてクリープ破断強
度、低温靭性が優れていると共に耐酸化性がよく
実用上十分に使用に耐え得るものである。 特に、本発明においては、重量比でC;0.18〜
0.23%、Si;0.05%以下、Mn;0.3〜0.7、Ni;2
〜3.5、Cr;1.2〜1.6%、Mo;0.4〜0.6%、V;
0.1〜0.13、Nb;0.1〜0.25%および残部Feからな
る低合金鋼のNbとVとの比、Nb/Vが、1を越
え2以下であり、かつP、Sb、SnおよびAsの不
純物が0.03%以下で、且つSi量との合計が0.08%
以下に抑制し、焼入れ焼もどした状態で全ベイナ
イト組織を有する鍛造品が好ましい。 本発明に係る高低圧一体型蒸気タービン用ロー
タを構成するNi−Cr−Mo−V鋼を上記成分範囲
に限定した理由は次の通りである。 C;0.15〜0.35% Cは焼入性を向上させ引張強さや耐力を向上さ
せると共に、Mo、Cr、V、Nbと結合して炭化
物を形成し高温クリープ破断強度を向上させるの
に必要な元素であるが、0.15%未満ではCが炭化
物の生成に消費されるためフエライト相を生成
し、実質的に完全ベイナイト組織が得られず、引
張強さとクリープ破断強度が得られない。一方、
0.35%を越えれば、炭化物が凝集して粗大化し、
靭性およびクリープ破断強度を却つて低下させる
傾向がある。したがつてC量は0.15〜0.35%の範
囲に限定した。さらに好ましくは0.18〜0.23%の
範囲がよい。 Mn;1.0%以下 Mnは脱酸および脱硫剤として作用すると共
に、焼入性および強度に寄与する元素であるが、
あまり多量に添加すると靭性を害すので1.0%以
下とした。特に0.3〜0.7%にするのが好ましい。 Ni;1.5〜4.0% Niは焼入性を向上させると共に低温靭性を向
上させるのにもつとも有効な元素である。しか
し、1.5%未満では強度、靭性が十分に得られな
い。一方、4.0%を越えると、実質的に完全ベイ
ナイト組織が得られなくなると共に高温強度が得
られないので、Ni量は1.5〜4.0%の範囲に限定し
た。特に好ましくは2〜3.5%がよい。 Cr;1〜3.41% Crは焼入性を向上させ、靭性およびクリープ
破断強度を向上させるのに有効な元素であると共
に、耐酸化性に寄与する元素である。しかし、1
%未満ではその効果が小さく、また、3.41%を越
えると、耐酸化性の向上に対する効果を除き、効
果が飽和するので、Cr量は1〜3.41%の範囲に限
定した。さらにクリープ破断強度および靭性を保
持しつつ、耐酸化性を向上させるには、Crは
(C+Ni)/Crの比2.21以下になるように添加す
ることが好ましい。従つて、Cr量は少なくとも
1.6〜3.41%にすることが望ましい。 Mo;0.2〜0.8 MoはCおよびCrとの共存下で高温強度を向上
させると共に高温脆性ならびに焼もどし脆性を抑
制するのに有効な元素であるが、0.2%未満では
その効果が十分でなく。また0.8%を越えると、
フエライト生成元素であるためCrと相乗して完
全ベイナイト組織が得られなくなるので、Mo量
は0.2〜0.8%の範囲に限定した。 V;0.07〜0.15% VはCと結合して微細炭化物を析出して高温強
度を向上させるのに最も有効な元素であるが、
0.07%未満ではその効果が少なく、0.15%を越え
ると、高温延性が低下するので、V量は0.07〜
0.15%の範囲に限定した。さらに、Cと結合して
微細な炭化物を析出するNbとの関係から、V量
は0.1〜0.13%の範囲にすることが好ましい。 Nb;0.07〜0.3% Nbは本発明において添加する重要元素であつ
て結晶粒を微細にして靭性を向上させると共に、
微細な炭化物をマトリツクス基地に析出して高温
強度、特にクリープ破断強度を向上させるに必要
な元素である。Nb量はV量との関係において
Nb/Vの比が、1を越え2以下の範囲内にクリ
ープ破断強度の最も高い値が存在し、かつ、50%
脆性破面率遷移温度が最も低い値を示す。Nb/
Vの比が1以下ではその効果が十分でなく、
Nb/Vの比が2を越えると、フエライト相が生
成して強度が低下する。Nb量は、Nb/Vの比が
1を越え2以下となる0.07〜0.3%の範囲に限定
した。さらに好ましくはNb量は0.1〜0.25%の範
囲とすることがよい。 さらに、本発明に係る耐クリープ耐酸化性低合
金鋼は不純物としてのSi、P、Sn、Sb、As、
Zn、Pb、Cu、AlおよびBの混入を極力低くおさ
えることにより、更にクリープ破断強度および耐
酸化性を改善したことにも特徴がある。 P、Sb、SnおよびAsの不純物はクリープ破断
強度および靭性に対して有害な元素であり、Pが
最も有害であり、Sb、Sn、Asの順となる。これ
らの合計量が0.035%以上になると特に顕著であ
り、Siを含めた合計量を0.08%以下とすることが
好ましい。 また、上記のP、Sb、SnおよびAsに加えて
Al、Zn、Cu、Pb、Bは高温蒸気における耐酸化
性を低下させる元素であり、Siを含めた混入量が
0.25%以上になると、高度蒸気中で耐酸化性を著
しく低下させる。従つて、不純物の混入量を0.2
%以下に抑制することが好ましい。 本発明に係る耐クリープ耐酸性低合金鋼は、上
記化学組成から構成され、焼入れ焼もどし状態で
完全ベイナイト組織を呈している。ベイナイト組
織を有する低合金鋼は最もすぐれたクリープ破断
強度を有している。このベイナイト組織は焼入れ
焼もどし処理によつて得られるが、完全ベイナイ
ト組織を得るにはC、Mn、Ni、Cr、Moおよび
Vの添加量を相乗的に成分調整することが必要で
ある。 次に、本発明に係る耐クリープ耐酸化性低合金
鋼を製造する際の留意点を説明すると、溶鋼中の
P、Sb、SnおよびAsを低めるには、使用する原
料を精選すると共に、溶鋼を減圧下に保持しなが
らArまたはHeなどの不活性ガスをランスを介し
て溶鋼中に吹込む。このようにすれば、P、Sb、
SnおよびAsは減圧下で酸化反応が促進されて酸
化物として溶鋼上に浮上除去されると共に、不活
性ガスの吹込みによる攪拌により、気化されて除
去される。一方、脱酸剤としてのSiを添加しない
場合にはArまたはNeの不活性ガスを溶鋼中にラ
ンスを介して吹込むことにより、溶鋼中のCとO
とを反応させて脱酸作用を補うことができる。 〔発明の実施例〕 次に、本発明の実施例について説明する。 まず、原料を精選してアーク電気炉で溶解し、
次いて、本発明についてはアーク電気炉から出鋼
した溶鋼を取鍋炉内に移注して取鍋精錬を行つ
た。この取鍋精錬では1torrの真空に保持して加
熱し、取鍋炉底部の孔からArガスを溶鋼中に吹
込み、脱ガスおよび酸化物の浮上により不純物
(Si、P、Sn、Sb、Zn、Pb、As、Cu、Alおよび
B)を除去し、次いで再びArガスを吹込みなが
らアークにより溶鋼を加熱した後、真空鋳造して
インゴツトを得た。さらにインゴツトを所定形状
に鍛造し、続いて840℃に加熱して1時間保持し
た後、600℃/hrの冷却速度で焼入れ処理施して、
さらに630℃×10hr空冷焼もどしを行つて供試材
とした。また、焼入れの冷却速度の影響をみるた
め、冷却速度を50℃/hrで焼入れした供試材をも
準備した。 一方、比較鋼はアーク電気炉で溶解した溶鋼を
そのまま真空鋳造してインゴツトとし、鍛造して
所定形状にした後、上記と同様の熱処理を施し
た。 第1表には本発明鋼と比較鋼の化学組成が示さ
れている。
[Field of Application of the Invention] The present invention relates to improvement of Ni-Cr-Mo-V steel,
In particular, the present invention relates to a creep-resistant, oxidation-resistant, low-alloy steel for use in rotors for high- and low-pressure integrated steam turbines, which has high-temperature strength, toughness, and oxidation resistance even in high- and low-pressure, low-temperature, and high-temperature steam environments. [Background of the Invention] Current rotors for steam turbines are comprised of a high-pressure section, an intermediate-pressure section, and a low-pressure section depending on the temperature and pressure of the steam used. It is composed of a combination of different materials that have chemical properties. However, since the materials constituting the high-pressure and intermediate-pressure parts of a steam turbine rotor are exposed to high temperatures of 538 to 566°C due to steam, they are required to have high strength even at high temperatures. Therefore, generally high pressure and medium pressure parts are 1
%Cr-1%Mo-1/4V steel is used. On the other hand, since the low-pressure part is exposed to steam at 200-300℃, steel with high low-temperature toughness, such as high Ni content of 1.6-3.5%
Ni - 1.2 to 1.7% Cr - 0.45% Mo - 0.13% V steel, or 1.7 to 3.5% containing 0.35% C or less Ni - 1.2 to 1.7%
Cr-0.45%Mo-0.13%V steel etc. are used. Recently, in order to simplify the combined structure of the rotor and disk, a so-called integrated steam turbine rotor, in which the high-pressure part and the low-pressure part are made of the same material, has been attracting attention. The material required for this high-low pressure integrated steam turbine rotor is required to have high-temperature strength as well as low-temperature toughness. In particular, rotors for larger integrated steam turbines are constructed of materials that do not cause deterioration of mechanical properties, especially embrittlement, due to long-term use, even if the cooling rates at the outer surface and center of the rotor are different. It is important to. However, with the 1% Cr-1% Mo-1/4% V steel currently used for turbines and rotors,
While creep strength at high temperatures is low, toughness at low temperatures is insufficient. In particular, if the quenching cooling rate is different between the outer surface and the center, it is not possible to make the mechanical properties uniform. In particular, when the size is increased, the cooling rate during quenching in the center part is lower than 30 to 40°C, and it is slowly cooled in the temperature range of 350 to 500°C, resulting in a decrease in toughness. Also, 538
In the steam temperature range of ~566℃, Cr−Mo−
This corresponds to the high-temperature tempering embrittlement temperature range (375 to 575°C) of V steel, and if used for a long time in this temperature range, the turbine and rotor will become significantly brittle. In recent years, in steam turbines for power generation, the number of times the steam turbine is started and stopped has been increasing because the amount of power consumed is different between day and night. Therefore,
Steam turbine rotor starts up and heats up when it stops.
As cooling is repeated, the material becomes brittle over time, decreasing its toughness and eventually increasing the risk of brittle fracture. Therefore, there is a need for rotor materials for high and low pressure integrated steam turbines to have high creep rupture strength, high toughness, and materials that do not become brittle after long-term use. In particular, 550℃× in high pressure and medium pressure parts.
Creep rupture strength of 10Kg/mm2 or more at 106 hours is required. Furthermore, the material constituting the rotor for high and low pressure steam turbines needs to satisfy the target value of creep rupture strength and also have excellent low temperature toughness in the low pressure section. Therefore, the currently used materials with excellent low-temperature toughness are suitable for the rotor for high- and low-pressure integrated steam turbines.
Ni-Cr-Mo-V steel is optimal. However, the rotor for conventional low pressure steam turbine
When using Ni-Cr-Mo-V steel, 200 to 300
Because it was used in steam at ℃, creep rupture strength was not very required. When Ni-Cr-Mo-V steel is used for the high and low pressure integrated steam rotor, the creep rupture strength is low, so there is a problem that the rotor breaks during use. On the other hand, on the high-temperature side of the high-low pressure integrated steam turbine rotor, the surface of the rotor is exposed to high-temperature steam, so oxidized scale is generated. Therefore, the oxide scale peels off due to expansion and contraction of the rotor as the steam turbine starts and stops, causing thinning and surface defects. Therefore, the rotor material is required to have high strength and toughness, as well as good oxidation resistance against high-temperature steam. However, conventional Ni-Cr-Mo-V steel has poor oxidation resistance against high-temperature steam and has the problem of thinning and surface defects due to peeling off of oxide scale. [Object of the Invention] The object of the present invention is to provide a steam turbine rotor consisting of a high pressure section, an intermediate pressure section, and a low pressure section using Ni-Cr-Mo-
In addition to being integrally formed with a forged V steel product, Ni-Cr
An object of the present invention is to provide a low-alloy steel for use in a rotor for a high-low pressure integrated steam turbine, which has excellent high-temperature creep rupture strength, toughness, and oxidation resistance by adding special elements to Mo-V steel. [Summary of the Invention] The present invention has a weight ratio of C; 0.15 to 0.35%, Si;
0.05% or less, Mn; 1.0% or less, Ni; 1.5-4.0%,
Cr; 1 to 3.41%, Mo; 0.2 to 0.8%, Nb; 0.07 to
0.3%, V; 0.07-0.15%, ratio of Nb to V in low alloy steel consisting of balance Fe and unavoidable impurities, Nb/
V is greater than 1 and less than or equal to 2, and P, Sn,
The total amount of unavoidable impurities such as Sb and As and Si is 0.08
A creep-resistant, oxidation-resistant, low-alloy steel with Cr added within the above-mentioned composition range and with a (C×Ni)/Cr ratio of 2.11 or less, and impurities such as P, Sn, and Sb. , Zn, Pb, As, Cu, Al, B,
This is a low-alloy steel for large forgings used in rotors for high- and low-pressure integrated steam turbines, with as low Si as possible. The integrated high and low pressure steam turbine rotor according to the present invention has superior creep rupture strength and low-temperature toughness as well as oxidation resistance compared to conventional steam turbine rotors made of Ni-Cr-Mo-V steel. It can withstand sufficient practical use. In particular, in the present invention, the weight ratio of C; 0.18 to
0.23%, Si; 0.05% or less, Mn; 0.3 to 0.7, Ni; 2
~3.5, Cr; 1.2-1.6%, Mo; 0.4-0.6%, V;
The ratio of Nb to V, Nb/V, of a low alloy steel consisting of 0.1 to 0.13, Nb; 0.1 to 0.25% and the balance Fe is more than 1 and less than 2, and the impurities of P, Sb, Sn and As are 0.03% or less, and the total with Si amount is 0.08%
A forged product having a total bainite structure in a quenched and tempered state with a hardness suppressed below or below is preferable. The reason why the Ni-Cr-Mo-V steel constituting the rotor for a high-low pressure integrated steam turbine according to the present invention is limited to the above-mentioned composition range is as follows. C: 0.15-0.35% C is an element necessary to improve hardenability, improve tensile strength and yield strength, and combine with Mo, Cr, V, and Nb to form carbides and improve high-temperature creep rupture strength. However, if it is less than 0.15%, C is consumed in the formation of carbides, resulting in the formation of a ferrite phase, making it impossible to obtain a substantially complete bainite structure, making it impossible to obtain tensile strength and creep rupture strength. on the other hand,
If it exceeds 0.35%, carbides will aggregate and become coarse.
It tends to reduce toughness and creep rupture strength. Therefore, the amount of C was limited to a range of 0.15 to 0.35%. More preferably, it is in the range of 0.18 to 0.23%. Mn: 1.0% or less Mn is an element that acts as a deoxidizing and desulfurizing agent and also contributes to hardenability and strength.
Adding too much will impair toughness, so it was set at 1.0% or less. In particular, it is preferably 0.3 to 0.7%. Ni: 1.5 to 4.0% Ni is a very effective element for improving hardenability and low-temperature toughness. However, if it is less than 1.5%, sufficient strength and toughness cannot be obtained. On the other hand, if it exceeds 4.0%, a complete bainitic structure will not be obtained and high temperature strength will not be obtained, so the Ni amount was limited to a range of 1.5 to 4.0%. Particularly preferably 2 to 3.5%. Cr; 1 to 3.41% Cr is an element effective in improving hardenability, toughness and creep rupture strength, and also contributes to oxidation resistance. However, 1
If it is less than 3.4%, the effect will be small, and if it exceeds 3.41%, the effect will be saturated, except for the effect on improving oxidation resistance. Therefore, the amount of Cr was limited to a range of 1 to 3.41%. Further, in order to improve oxidation resistance while maintaining creep rupture strength and toughness, it is preferable to add Cr so that the ratio of (C+Ni)/Cr is 2.21 or less. Therefore, the amount of Cr is at least
It is desirable to set it to 1.6 to 3.41%. Mo; 0.2 to 0.8 Mo is an element effective in improving high-temperature strength and suppressing high-temperature brittleness and tempering brittleness in coexistence with C and Cr, but if it is less than 0.2%, its effect is insufficient. Also, if it exceeds 0.8%,
Since Mo is a ferrite-forming element, it synergizes with Cr and makes it impossible to obtain a complete bainite structure, so the amount of Mo was limited to a range of 0.2 to 0.8%. V; 0.07 to 0.15% V is the most effective element in combining with C to precipitate fine carbides and improving high-temperature strength.
If it is less than 0.07%, the effect will be small, and if it exceeds 0.15%, high temperature ductility will decrease, so the amount of V should be 0.07~
It was limited to a range of 0.15%. Further, in view of the relationship with Nb, which combines with C to precipitate fine carbides, the amount of V is preferably in the range of 0.1 to 0.13%. Nb: 0.07-0.3% Nb is an important element added in the present invention, and it makes the crystal grains finer and improves toughness.
It is an element necessary to improve high-temperature strength, especially creep rupture strength, by precipitating fine carbides in the matrix base. In relation to the amount of Nb and the amount of V,
The highest value of creep rupture strength exists within the range where the Nb/V ratio is more than 1 and less than 2, and 50%
The brittle fracture ratio transition temperature shows the lowest value. Nb/
If the ratio of V is less than 1, the effect is not sufficient,
When the Nb/V ratio exceeds 2, a ferrite phase is formed and the strength is reduced. The amount of Nb was limited to a range of 0.07 to 0.3% such that the Nb/V ratio exceeded 1 and was 2 or less. More preferably, the amount of Nb is in the range of 0.1 to 0.25%. Furthermore, the creep-resistant oxidation-resistant low alloy steel according to the present invention contains Si, P, Sn, Sb, As, and other impurities.
Another feature is that creep rupture strength and oxidation resistance are further improved by minimizing the amount of Zn, Pb, Cu, Al, and B mixed in. Impurities such as P, Sb, Sn, and As are elements harmful to creep rupture strength and toughness, with P being the most harmful, followed by Sb, Sn, and As. This is particularly noticeable when the total amount of these is 0.035% or more, and it is preferable that the total amount including Si is 0.08% or less. In addition to the above P, Sb, Sn and As,
Al, Zn, Cu, Pb, and B are elements that reduce oxidation resistance in high-temperature steam, and the amount of contamination including Si is
If it exceeds 0.25%, the oxidation resistance will be significantly reduced in high-grade steam. Therefore, the amount of impurities mixed in is 0.2
% or less. The creep-resistant, acid-resistant, low-alloy steel according to the present invention has the above-mentioned chemical composition, and exhibits a complete bainitic structure in a quenched and tempered state. Low alloy steels with a bainite structure have the best creep rupture strength. This bainite structure can be obtained by quenching and tempering, but in order to obtain a complete bainite structure, it is necessary to synergistically adjust the amounts of C, Mn, Ni, Cr, Mo, and V added. Next, to explain the points to keep in mind when manufacturing the creep-resistant, oxidation-resistant, low-alloy steel according to the present invention, in order to reduce the P, Sb, Sn, and As in the molten steel, the raw materials to be used must be carefully selected, and the molten steel must be carefully selected. An inert gas such as Ar or He is blown into the molten steel through a lance while maintaining it under reduced pressure. In this way, P, Sb,
The oxidation reaction of Sn and As is promoted under reduced pressure, and they are floated and removed as oxides on the molten steel, and are vaporized and removed by stirring by blowing inert gas. On the other hand, when Si is not added as a deoxidizing agent, inert gas such as Ar or Ne is injected into the molten steel through a lance to reduce the amount of C and O in the molten steel.
The deoxidizing effect can be supplemented by reacting with [Embodiments of the Invention] Next, embodiments of the present invention will be described. First, raw materials are carefully selected and melted in an electric arc furnace.
Next, in the present invention, the molten steel tapped from the arc electric furnace was transferred to a ladle furnace and ladle refining was performed. In this ladle refining, the molten steel is heated while being maintained in a vacuum of 1 torr, and Ar gas is blown into the molten steel through the hole at the bottom of the ladle furnace. Impurities (Si, P, Sn, Sb, Zn, After removing Pb, As, Cu, Al and B), the molten steel was heated by an arc while blowing Ar gas again, and then vacuum cast to obtain an ingot. Furthermore, the ingot was forged into a predetermined shape, then heated to 840℃ and held for 1 hour, and then quenched at a cooling rate of 600℃/hr.
The specimen was further air-cooled and tempered at 630°C for 10 hours. In addition, in order to examine the influence of the cooling rate during quenching, we also prepared test materials that were quenched at a cooling rate of 50°C/hr. On the other hand, comparative steel was made by vacuum casting molten steel in an electric arc furnace as it was to form an ingot, forging it into a predetermined shape, and then subjecting it to the same heat treatment as above. Table 1 shows the chemical compositions of the invention steel and comparative steel.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る耐クリープ
耐酸化性低合金鋼によれば、高圧部、中圧部およ
び低下部からなる蒸気タービン用ロータを一体的
に形成する材料として、高温、低温の蒸気下で使
用しても高温クリープ破断強度、靭性および耐酸
化性が優れ、苛酷な条件での永年の使用に耐える
高低圧一体型蒸気タービン用ロータを提供できる
という顕著な効果を有している。 さらに、外表部と中心部における冷却速度が異
なる大型ロータにおいて、蒸気タービンの起動−
停止を繰り返しても脆化を起さないという利点を
兼ね備えている。
As explained above, the creep-resistant, oxidation-resistant, low-alloy steel of the present invention can be used as a material for integrally forming a steam turbine rotor consisting of a high-pressure section, an intermediate-pressure section, and a drop section. It has excellent high-temperature creep rupture strength, toughness, and oxidation resistance even when used under steam, and has the remarkable effect of providing a high-low pressure integrated rotor for steam turbines that can withstand years of use under harsh conditions. . Furthermore, in a large rotor with different cooling rates on the outer surface and the center, the startup of the steam turbine
It also has the advantage of not becoming brittle even after repeated stops.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼、比較鋼のクリープ破断強度
を示す線図、第2図はNb量とクリープ破断強度
との関係を示す線図、第3図は脆性処理の温度と
ΔFATTとの関係を示す線図、第4図はSi、P、
Sb、SnおよびAsの合計量とΔFATTとの関係を
示す線図、第5図は本発明鋼、比較鋼における
ΔFATTに及ぼす焼入冷却速度の影響を示す線
図、第6図は本発明鋼、比較鋼において蒸気温度
と酸化減量との関係を示す線図、第7図および第
8図はCr量および(C+Ni)/Crの比と酸化減
量との関係を示す線図、第9図はSi、P、Sn、
Sb、Pb、As、Cu、AlおよびBの合計量と酸化
減量との関係を示す線図、第10図はNb/Vと
クリープ破断強度およびΔFATTとの関係を示す
線図である。
Figure 1 is a diagram showing the creep rupture strength of the invention steel and comparative steel, Figure 2 is a diagram showing the relationship between Nb content and creep rupture strength, and Figure 3 is the relationship between brittle treatment temperature and ΔFATT. A diagram showing Si, P,
A diagram showing the relationship between the total amount of Sb, Sn and As and ΔFATT. Figure 5 is a diagram showing the influence of quenching cooling rate on ΔFATT for the inventive steel and comparative steel. Figure 6 is a diagram for the inventive steel. , a diagram showing the relationship between steam temperature and oxidation loss for comparative steels, Figures 7 and 8 are diagrams showing the relationship between Cr content and (C+Ni)/Cr ratio, and oxidation loss, and Figure 9 is a diagram showing the relationship between oxidation loss and the Cr content and (C+Ni)/Cr ratio. Si, P, Sn,
FIG. 10 is a diagram showing the relationship between the total amount of Sb, Pb, As, Cu, Al and B and oxidation loss. FIG. 10 is a diagram showing the relationship between Nb/V, creep rupture strength and ΔFATT.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でC;0.15〜0.35%、Si;0.05%以下、
Mn;1.0%以下、Ni;1.5〜4.0%、Cr;1〜3.41
%、Mo;0.2〜0.8%、Nb;0.07〜0.3%、V;
0.07〜0.15%、残部Feおよび不可避的不純物から
なる低合金鋼のNbとVとの比、Nb/Vが、1を
越え2以下であり、かつ、P、Sb、Sn、Asの不
可避的不純物とSiとの合計量が0.08%以下であ
り、Crは(C+Ni)/Crの比で2.11以下に添加
し、P、Sn、Sb、Zn、Pb、As、Cu、Al、Bの
不可避的不純物とSiとの合計量が0.2%以下であ
ることを特徴とする耐クリープ耐酸化性低合金
鋼。
1 C: 0.15 to 0.35%, Si: 0.05% or less, by weight ratio
Mn; 1.0% or less, Ni; 1.5-4.0%, Cr; 1-3.41
%, Mo; 0.2-0.8%, Nb; 0.07-0.3%, V;
The ratio of Nb to V, Nb/V, of a low alloy steel consisting of 0.07 to 0.15%, the balance being Fe and unavoidable impurities, is more than 1 and 2 or less, and unavoidable impurities of P, Sb, Sn, and As. The total amount of Si and Si is 0.08% or less, Cr is added at a (C+Ni)/Cr ratio of 2.11 or less, and unavoidable impurities such as P, Sn, Sb, Zn, Pb, As, Cu, Al, and B are added. A creep-resistant, oxidation-resistant, low-alloy steel characterized in that the total amount of and Si is 0.2% or less.
JP17780083A 1983-09-26 1983-09-26 Creep and oxidation resistant low-alloy steel Granted JPS6070166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17780083A JPS6070166A (en) 1983-09-26 1983-09-26 Creep and oxidation resistant low-alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17780083A JPS6070166A (en) 1983-09-26 1983-09-26 Creep and oxidation resistant low-alloy steel

Publications (2)

Publication Number Publication Date
JPS6070166A JPS6070166A (en) 1985-04-20
JPH021901B2 true JPH021901B2 (en) 1990-01-16

Family

ID=16037305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17780083A Granted JPS6070166A (en) 1983-09-26 1983-09-26 Creep and oxidation resistant low-alloy steel

Country Status (1)

Country Link
JP (1) JPS6070166A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
WO1990004659A1 (en) * 1988-10-19 1990-05-03 Electric Power Research Institute, Inc. MODIFIED 1% CrMoV ROTOR STEEL
US5108699A (en) * 1988-10-19 1992-04-28 Electric Power Research Institute Modified 1% CrMoV rotor steel
JPH0728371Y2 (en) * 1989-06-12 1995-06-28 リョービ株式会社 Heart lock
JPH07272271A (en) * 1994-03-30 1995-10-20 Kao Corp Transfer device
JP3780352B2 (en) * 1996-02-05 2006-05-31 株式会社日立製作所 High and low pressure integrated steam turbine, its rotor shaft, its manufacturing method, and combined power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330915A (en) * 1976-09-03 1978-03-23 Toshiba Corp Rotor for mixed pressure turbine and production thereof
JPS53128523A (en) * 1977-04-15 1978-11-09 Toshiba Corp Method of fabricating high-and low-pressure integral type vapor turbine rotor
JPS53128522A (en) * 1977-04-15 1978-11-09 Toshiba Corp Method of fabricating high-and low-pressure integral type vapor turbine rotor
JPS54145318A (en) * 1978-05-08 1979-11-13 Toshiba Corp Low alloy steel of high toughness
JPS558486A (en) * 1978-07-05 1980-01-22 Hitachi Zosen Corp Forged steel material for heavy gauge excellent in strength and toughness
JPS57126957A (en) * 1981-01-29 1982-08-06 Japan Steel Works Ltd:The High strength and high toughness case hardening steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330915A (en) * 1976-09-03 1978-03-23 Toshiba Corp Rotor for mixed pressure turbine and production thereof
JPS53128523A (en) * 1977-04-15 1978-11-09 Toshiba Corp Method of fabricating high-and low-pressure integral type vapor turbine rotor
JPS53128522A (en) * 1977-04-15 1978-11-09 Toshiba Corp Method of fabricating high-and low-pressure integral type vapor turbine rotor
JPS54145318A (en) * 1978-05-08 1979-11-13 Toshiba Corp Low alloy steel of high toughness
JPS558486A (en) * 1978-07-05 1980-01-22 Hitachi Zosen Corp Forged steel material for heavy gauge excellent in strength and toughness
JPS57126957A (en) * 1981-01-29 1982-08-06 Japan Steel Works Ltd:The High strength and high toughness case hardening steel

Also Published As

Publication number Publication date
JPS6070166A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP3461945B2 (en) Method of manufacturing high-low pressure integrated turbine rotor
US5061440A (en) Ferritic heat resisting steel having superior high-temperature strength
US5591391A (en) High chromium ferritic heat-resistant steel
EP0828010B1 (en) High strength and high-toughness heat-resistant cast steel
JP4222705B2 (en) Manufacturing method of high purity high Cr ferritic heat resistant steel and high purity high Cr ferritic heat resistant steel
WO2021134949A1 (en) Hot-work die steel electroslag remelting ingot and preparation method therefor
EP0770696B1 (en) High strength and high toughness heat resisting steel and its manufacturing method
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
JPH021901B2 (en)
US6106766A (en) Material for gas turbine disk
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production
JPH02197550A (en) High purity heat-resistant steel
JP3196587B2 (en) High Cr ferritic heat resistant steel
JPH0234724A (en) Manufacture of turbine rotor
JPH0472039A (en) High purity heat resistant steel
KR100268708B1 (en) Method of manufacturing high cr ferritic heat resisting steel for high temperature,high pressure parts
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPS63255344A (en) Extra high purity shaft material for turbine rotor
KR100460313B1 (en) High toughness and high temperature strenght low alloy steel for integrated turbine rotor
JPH03153848A (en) Heat-resistant steel
JPS6141750A (en) Rotor for steam turbine
JPH1171655A (en) Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production
JPH0665678A (en) Production of high purity heat resistant steel and high and low pressure integration type turbine rotor composed of the same