JPH1171655A - Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production - Google Patents

Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production

Info

Publication number
JPH1171655A
JPH1171655A JP23286997A JP23286997A JPH1171655A JP H1171655 A JPH1171655 A JP H1171655A JP 23286997 A JP23286997 A JP 23286997A JP 23286997 A JP23286997 A JP 23286997A JP H1171655 A JPH1171655 A JP H1171655A
Authority
JP
Japan
Prior art keywords
less
stainless steel
intermetallic compound
steel sheet
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23286997A
Other languages
Japanese (ja)
Inventor
Akio Yamamoto
章夫 山本
Yuichi Sato
雄一 佐藤
Hideo Nakajima
秀夫 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nippon Steel Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP23286997A priority Critical patent/JPH1171655A/en
Publication of JPH1171655A publication Critical patent/JPH1171655A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a stainless steel sheet excellent in cryogenic characteristics in the weld zone by composing it of a steel of austenitc single phases contg. specified amounts of C, Si, Mn, Cr, Ni, N, Ca, Mg and Fe and regulating the maximum size of the oxides of Ca and Mg to be precipitated. SOLUTION: This steel sheet is composed of a stainless steel of austenitic single phases having a compsn. contg., by weight, <=0.05% C, <=2% Si, 0.1 to 16% Mn, 10 to 24% Cr, 8 to 25% Ni and 0.1 to 0.35% N, contg. one or more kinds of 0.0003 to 0.01% Ca and 0.0003 to 0.01% Mg and one or more kinds of <=4% Mo and 0.005 to 0.6% Nb, and the balance substantial Fe. Furthermore, the maximum size of the oxides of Ca and Mg to be precipitated is regulated to <=1 μm. In the process of subjecting the steel to melting, casting, hot rolling, cold rolling and heat treatment to form into a thin steel sheet, the content of dissolved oxygen in the stainless steel is regulated to 20 to 100 ppm, and Ca and Mg are added thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超伝導材生成熱処
理後においても、溶接部の極低温特性の優れた金属間化
合物超伝導材支持用ステンレス鋼板とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel sheet for supporting an intermetallic compound superconductive material having excellent cryogenic characteristics of a weld even after heat treatment for forming a superconductive material, and a method for producing the same.

【0002】[0002]

【従来の技術】Nb3 SnやNb3 Alなどの金属間化
合物超伝導材は、非常に脆く強度靭性に劣るために、そ
の原料を支持構造体や被覆補強材で保持した状態で生成
され、そのままの状態で、超伝導温度である極低温まで
冷却されて使用される。これらの補強材は、非磁性であ
ることが不可欠であることからオーステナイト系ステン
レス鋼が用いられるが、超伝導材の生成熱処理によって
極低温での靭性が劣化することが必至である。特に、超
伝導材の原料を包むために溶接にて造管する必要がある
が、その溶接部位の劣化が激しいのが現状である。
2. Description of the Related Art Intermetallic compound superconductors such as Nb 3 Sn and Nb 3 Al are very brittle and have poor strength and toughness. Therefore, they are produced in a state where the raw materials are held by a supporting structure or a coating reinforcing material. As it is, it is used after being cooled to a cryogenic temperature which is a superconducting temperature. Since austenitic stainless steel is used for these reinforcing materials because it is indispensable that they are nonmagnetic, it is inevitable that toughness at cryogenic temperatures is deteriorated by heat treatment for forming a superconducting material. In particular, it is necessary to form a pipe by welding in order to wrap the raw material of the superconducting material, but at present, the welded portion is severely deteriorated.

【0003】超伝導現象は、強力な電磁力が得られた
り、電流のジュール熱による損失がないことから、種々
の用途で利用されつつある。これに伴い、高性能の超伝
導材料が開発中である。しかし、高磁界を発生する超伝
導線材には、当然大きな電磁力を生ずることになるの
で、支持構造部材や被覆補強材には非磁性であることの
他に、極低温域で高い強度と靭性が要求される。このた
め、従来よりNで固溶強化するとともに、オーステナイ
ト相を安定化したオーステナイト系ステンレス鋼が用い
られてきた。
[0003] The superconducting phenomenon is being used in various applications because a strong electromagnetic force is obtained and there is no loss due to Joule heat of current. Accordingly, high-performance superconducting materials are under development. However, a superconducting wire that generates a high magnetic field naturally generates a large electromagnetic force. Therefore, in addition to being non-magnetic, the supporting structure and the coating reinforcing material have high strength and toughness in the cryogenic temperature range. Is required. For this reason, an austenitic stainless steel that has been conventionally solid-solution strengthened with N and has an austenite phase stabilized has been used.

【0004】ところで、Nb3 SnやNb3 Alなどの
金属間化合物超伝導材料は、塑性歪が入ると超伝導特性
が著しく劣化する欠点がある。このために、金属間化合
物超伝導部材は、その素材を被覆補強材および支持構造
材を用いて導体部材または超伝導磁石の形状に成形し、
その後に600〜1000℃で10時間以上の金属間化
合物への生成熱処理(以下、金属間化合物生成熱処理)
を行ない製造されている。被覆補強材や支持構造材も当
然この金属間化合物生成熱処理を同時に受けざるをえな
い。
[0004] Incidentally, the intermetallic compound superconducting material such as Nb 3 Sn or Nb 3 Al has a defect that the superconducting characteristics are remarkably deteriorated when plastic strain is applied. For this purpose, the intermetallic compound superconducting member is formed into a conductor member or a superconducting magnet in the form of a material using a coating reinforcing material and a supporting structure,
Thereafter, heat treatment for forming an intermetallic compound at 600 to 1000 ° C. for 10 hours or more (hereinafter, heat treatment for forming an intermetallic compound)
Manufactured. Naturally, the coating reinforcing material and the supporting structural material must be simultaneously subjected to the heat treatment for forming an intermetallic compound.

【0005】しかし、このような温度域での熱処理を施
した場合、低Cのオーステナイト系ステンレス鋼におい
ても、粒界にCrの窒化物が生成し、極低温での靭性が
劣化することが認められている。これに対して、特公昭
61−416号公報には、鋼中にVを添加する方法が開
示されている。しかし、高価な元素の添加が必要となる
だけでなく、強度向上を狙って高Nにすると効果が必ず
しも明確ではなくなる。さらに、特開昭62−2220
48号公報には、Moを添加して不純物元素の粒界への
拡散を抑制する方法や、Nbを含有させてNbCおよび
NbNを微細析出させてCr炭窒化物の析出を抑制する
方法が開示されている。しかし、この方法は安定化熱処
理を必要とするので製造コストが高い上に、溶接部は効
果が消滅するという欠点があった。また、特開昭63−
134627号公報には、溶体化後Nb3 Sn生成熱処
理温度より高目の温度域で再加熱を行なう方法が開示さ
れているが、この方法には、工程が煩雑になることから
コストの上昇を防止できないだけでなく、超伝導体その
ものの特性を劣化させる欠点があった。
However, when heat treatment is performed in such a temperature range, it is recognized that even in a low-C austenitic stainless steel, a nitride of Cr is formed at a grain boundary and toughness at an extremely low temperature is deteriorated. Have been. On the other hand, Japanese Patent Publication No. 61-416 discloses a method of adding V to steel. However, not only is it necessary to add expensive elements, but if the N is increased to increase the strength, the effect is not always clear. Further, JP-A-62-2220
No. 48 discloses a method of suppressing the diffusion of impurity elements to grain boundaries by adding Mo, and a method of containing Nb to finely precipitate NbC and NbN to suppress the precipitation of Cr carbonitride. Have been. However, this method requires a stabilizing heat treatment, so that the production cost is high and the effect of the welded portion is lost. Also, JP-A-63-
JP-A-134627 discloses a method in which reheating is performed in a temperature range higher than the Nb 3 Sn generation heat treatment temperature after solution treatment, but this method increases the cost because the process becomes complicated. Not only cannot it be prevented but also has the disadvantage of deteriorating the properties of the superconductor itself.

【0006】さらに、本発明者らは、微量のTiを添加
して、鋼中結晶粒内にTi系の析出物を析出させ、その
析出物を核として粒内にCr炭窒化物を析出させること
で粒界の強度劣化を防止する方法(特開平7−2383
20号公報にて開示)を発明した。この方法は、比較的
低コストで効果も認められるが、溶接部において析出さ
せた微細なTi析出物が、再固溶てしまい効果が低下す
る欠点があり、多層溶接を行なう厚板にしか適用するこ
とができなかった。
Further, the present inventors add a small amount of Ti to precipitate Ti-based precipitates in crystal grains in steel, and precipitate Cr carbonitrides in the grains using the precipitates as nuclei. To prevent the strength of grain boundaries from deteriorating (Japanese Patent Laid-Open No. 7-2383).
No. 20). Although this method is relatively effective at a relatively low cost, it has the drawback that the fine Ti precipitates precipitated in the welded area are re-dissolved and the effect is reduced. I couldn't.

【0007】一方、従来よりNi基合金は極低温域での
特性劣化が小さいことが認められていることから、イン
コロイなどの高Ni合金の適用も試みられているが、こ
れらの合金は、高価なNiを多量に使用していることか
ら、コスト的に幅広い適用は困難であった。以上述べた
ように、金属間化合物超伝導体の支持管用として極低温
域で強度と靭性が確保できる低コストの薄鋼板材料や対
応方法がなかった。そこで、本発明は、このような状況
に鑑み、超伝導金属間化合物を生成するための熱処理に
よる特性劣化を抑制し、溶接部の極低温特性の優れた金
属間化合物超伝導材支持用ステンレス鋼板とその製造方
法とその製造方法を提供することを目的とする。
On the other hand, since it has been recognized that Ni-based alloys have a small characteristic deterioration in an extremely low temperature range, application of high Ni alloys such as Incoloy has been attempted, but these alloys are expensive. Since a large amount of Ni is used, wide application in terms of cost has been difficult. As described above, there has been no low-cost thin steel sheet material capable of securing strength and toughness in a cryogenic temperature range and a corresponding method for supporting pipes of intermetallic compound superconductors. Accordingly, the present invention has been made in view of such circumstances, and suppresses the property deterioration due to heat treatment for generating a superconducting intermetallic compound, and provides a stainless steel sheet for supporting an intermetallic compound superconducting material having excellent cryogenic characteristics of a welded portion. And a method of manufacturing the same, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】超伝導体の支持構造材で
あるオーステナイト系ステンレス鋼の金属間化合物生成
熱処理による靭性劣化の原因が、その熱処理時に粗大な
Cr炭窒化物が粒界に析出するためであり、Cr炭窒化
物の析出を抑制するのではなく、析出部位を粒界から粒
内に変えるとの技術的な考え方、すなわち、析出炭窒化
物が極低温で靭性を劣化せしめるのは、粒界に析出する
からであり、粒内に析出する限りはその悪影響は軽いも
のと考えた。したがって、このために、何らかの方法で
Cr炭窒化物の析出部位を粒内に導くという技術思想に
もとづいて、本発明はなされたものである。
The cause of the toughness deterioration of the austenitic stainless steel, which is the supporting structure material of the superconductor, due to the heat treatment for forming an intermetallic compound is that coarse Cr carbonitride precipitates at the grain boundaries during the heat treatment. Instead of suppressing the precipitation of Cr carbonitride, the technical idea of changing the precipitation site from grain boundary to intragranular, that is, the precipitation carbonitride deteriorates the toughness at cryogenic temperature is It was considered that the adverse effect was slight as long as the particles precipitated in the grains. Therefore, for this purpose, the present invention has been made based on a technical idea that a precipitation site of Cr carbonitride is introduced into grains by some method.

【0009】本発明者らは、この考え方に基づいてCr
炭窒化物の析出サイトを詳細に調査したところCr炭窒
化物は、わずかではあるが粒界以外の粒内にも析出する
こと、さらに、その中心には微細なTi系炭窒化物や酸
化物があることを見出した。前記特開平7−23832
0号公報では、Ti系炭窒化物を核として積極的に活用
する方法を開示しているが、Ti系析出物は溶接で再固
溶して効果が低下する欠点があった。そこで、金属間化
合物生成熱処理において、Cr炭窒化物の析出核として
機能する析出物で、溶接によっても再固溶しないもの
を、さらに検討した。その結果、CaOやMgOなどの
微細な高融点酸化物が上記目的の核として最適であるこ
とを見出した。酸化物でも、Al2 3 やSiO2 など
や、また、CaOやMgOなどでも、その最大径が1μ
mを超える粗大なもが含まれている場合は、核としての
効果は見られなかった。
[0009] The inventors of the present invention based on this idea,
A detailed examination of the carbonitride precipitation sites revealed that, although a little, Cr carbonitride was also precipitated in grains other than the grain boundaries, and that fine Ti-based carbonitrides and oxides were found in the center. I found that there is. JP-A-7-23832
No. 0 discloses a method of positively utilizing Ti-based carbonitride as a nucleus, but has a disadvantage that Ti-based precipitates are re-dissolved by welding to reduce the effect. Therefore, in the heat treatment for forming an intermetallic compound, a precipitate that functions as a precipitation nucleus of Cr carbonitride and does not re-dissolve even by welding was further studied. As a result, they have found that fine high-melting oxides such as CaO and MgO are most suitable as the core for the above purpose. Oxide, Al 2 O 3 , SiO 2 , CaO, MgO, etc. have a maximum diameter of 1 μm.
When a coarse substance exceeding m was contained, no effect as a nucleus was observed.

【0010】本発明は、以上の知見をもとに完成された
もので、その要旨とするところは、下記のとおりであ
る。 (1)重量%で、C :0.05%以下、Si:2%以
下、Mn:0.1%以上16%以下、Cr:10%以上
24%以下、Ni:8%以上25%以下、N :0.1
%以上0.35%以下、およびCa:0.0003%以
上0.01%以下とMg:0.0003%以上0.01
%以下の1種または2種を含有し、残部Feおよび不可
避不純物からなり、オーステナイト単相で、かつ、析出
したCaおよびMgの一方または両方を含むすべての酸
化物の最大径が1μm以下であることを特徴とする溶接
部の極低温特性の優れた金属間化合物超伝導材支持用ス
テンレス鋼板。 (2)重量%で、C:0.05%以下、Si:2%以
下、Mn:0.1%以上16%以下、Cr:10%以上
24%以下、Ni:8%以上25%以下、N:0.1%
以上0.35%以下、およびCa:0.0003%以上
0.01%以下とMg:0.0003%以上0.01%
以下の1種または2種、さらにMo:4%以下とNb:
0.005%以上0.6%以下の1種または2種を含有
し、残部Feおよび不可避不純物からなり、オーステナ
イト単相で、かつ、析出したCaおよびMgの一方また
は両方を含むすべての酸化物の最大径が1μm以下であ
ることを特徴とする溶接部の極低温特性の優れた金属間
化合物超伝導材支持用ステンレス鋼板。 (3)溶解、鋳造、熱延、冷延および熱処理を実施して
薄鋼板とする工程において、上記ステンレス鋼の溶存酸
素量を20ppm以上100ppm以下とした後、Ca
およびMgの一方または両方を添加して、上記の添加量
とすることを特徴とする前記(1)または(2)に記載
の溶接部の極低温特性の優れた金属間化合物超伝導材支
持用ステンレス鋼板の製造方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows. (1) By weight%, C: 0.05% or less, Si: 2% or less, Mn: 0.1% or more and 16% or less, Cr: 10% or more and 24% or less, Ni: 8% or more and 25% or less, N: 0.1
% To 0.35%, Ca: 0.0003% to 0.01%, and Mg: 0.0003% to 0.01
% Or less, the balance consisting of Fe and unavoidable impurities, the austenitic single phase, and the maximum diameter of all oxides containing one or both of precipitated Ca and Mg is 1 μm or less. A stainless steel sheet for supporting an intermetallic compound superconducting material having excellent cryogenic characteristics at a welded portion. (2) By weight%, C: 0.05% or less, Si: 2% or less, Mn: 0.1% or more and 16% or less, Cr: 10% or more and 24% or less, Ni: 8% or more and 25% or less, N: 0.1%
Not less than 0.35%, Ca: 0.0003% to 0.01%, and Mg: 0.0003% to 0.01%
One or two of the following, and Mo: 4% or less and Nb:
All oxides containing one or two kinds of 0.005% or more and 0.6% or less, the balance being Fe and unavoidable impurities, an austenitic single phase, and containing one or both of precipitated Ca and Mg A stainless steel sheet for supporting an intermetallic compound superconducting material having excellent cryogenic characteristics at a welded portion, wherein the maximum diameter of the stainless steel is 1 μm or less. (3) In the step of forming a thin steel sheet by performing melting, casting, hot rolling, cold rolling and heat treatment, the dissolved oxygen content of the stainless steel is adjusted to 20 ppm or more and 100 ppm or less.
(1) or (2) for supporting an intermetallic compound superconducting material excellent in cryogenic characteristics of a welded part according to (1) or (2), wherein one or both of Mg and Mg are added to the above amount. Manufacturing method of stainless steel sheet.

【0011】[0011]

【発明の実施の形態】本発明は、溶鋼中にCa、Mgの
一方または両方を微量添加し、それらの元素の酸化物を
分散析出させることを要点としている。CaやMgは添
加した溶鋼状態で酸化物となるものもあるが、一部は凝
固と同時に酸化物として、粒内に析出する。この凝固と
同時に粒内に析出したような、微細なCaOやMgOに
代表される酸化物粒子が、金属間化合物生成のための熱
処理時にCr炭窒化物の析出核として作用する。この結
果、Cr炭窒化物は主として粒内に析出し、オーステナ
イト系ステンレス鋼の靭性劣化を抑制できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The main point of the present invention is to add a trace amount of one or both of Ca and Mg to molten steel to disperse and precipitate oxides of these elements. Some of Ca and Mg become oxides in the state of added molten steel, but some precipitate as oxides simultaneously with solidification in the grains. Fine oxide particles typified by CaO and MgO, which are precipitated in the grains at the same time as the solidification, act as precipitation nuclei of Cr carbonitride during heat treatment for generating an intermetallic compound. As a result, the Cr carbonitride mainly precipitates in the grains and can suppress the deterioration of the toughness of the austenitic stainless steel.

【0012】粒内に微細に析出したCaやMgの酸化物
は、溶接を行なっても消失しない。この機構は、溶接で
は固溶しないのか、一旦鋼中に固溶後再析出するものな
のかは現在のところ明確ではないが、溶接後にも存在
し、金属間化合物生成熱処理時にCr炭窒化物の析出核
として作用していることを発明者らは確認している。次
に、本発明鋼の成分限定理由を説明する。
The oxides of Ca and Mg finely precipitated in the grains do not disappear even when welding is performed. At present, it is not clear whether this mechanism does not form a solid solution by welding or re-precipitates after solid solution in steel, but it is present even after welding, and the Cr carbonitride The inventors have confirmed that they function as precipitation nuclei. Next, the reasons for limiting the components of the steel of the present invention will be described.

【0013】Cはオーステナイトを安定化し、耐力を向
上させる元素であるが、時効によりCrと結合して炭化
物を作り易く、金属間化合物生成熱処理後の靭性劣化の
原因となるため低く抑える必要があり、0.05%以下
とした。Siは、製鋼時の脱酸のために必要な元素では
あるが、フェライト安定化元素であり、2%を超えると
安定オーステナイト組織を得難くなるので、2%以下と
した。
C is an element that stabilizes austenite and improves proof stress. However, it is necessary to keep C low because it tends to combine with Cr by aging to form carbides and cause deterioration in toughness after heat treatment for forming an intermetallic compound. , 0.05% or less. Si is an element necessary for deoxidation at the time of steel making, but is a ferrite stabilizing element. If it exceeds 2%, it becomes difficult to obtain a stable austenite structure.

【0014】Mnは、Nの溶解度を大きくする作用があ
り、Nを多量に添加する場合に極めて有効な元素であ
る。0.1%未満ではこの効果が小さいので0.1%を
下限とし、16%を超えると溶製が困難となるのでその
上限を16%とした。Crは、フェライト安定化元素で
あるが、Nの溶解度を大きくする作用があり、Nを多量
に添加する場合に極めて有効な元素である。この効果
は、含有量が10%未満では小さいので10%を下限と
した。また、24%を超えると、金属間化合物生成熱処
理によりσ相を生じ、靭性が著しく劣化するため上限を
24%とした。
Mn has an effect of increasing the solubility of N, and is an extremely effective element when a large amount of N is added. If it is less than 0.1%, the effect is small, so the lower limit is 0.1%, and if it exceeds 16%, it becomes difficult to melt, so the upper limit is 16%. Cr is a ferrite stabilizing element, but has an effect of increasing the solubility of N, and is an extremely effective element when adding a large amount of N. Since this effect is small when the content is less than 10%, the lower limit is set to 10%. If it exceeds 24%, the heat treatment for forming an intermetallic compound generates a σ phase, and the toughness is significantly deteriorated. Therefore, the upper limit is set to 24%.

【0015】Niは、オーステナイトを安定化し、低温
靭性を向上させるために必要な元素である。本発明鋼で
は8%以上を必要とするが、多量に添加するとNの溶解
度が小さくなるので、時効によりCr窒化物を析出し易
くなり、金属間化合物生成熱処理後の靭性を劣化させる
のでその上限を25%とした。Nは、オーステナイト安
定化と耐力向上に必要な元素であり、極低温での耐力確
保のために0.1%以上必要である。しかし、時効によ
りCrと結合して窒化物を作り易く、金属間化合物生成
熱処理後の靭性劣化の原因となるため、上限を0.35
%とした。
Ni is an element necessary for stabilizing austenite and improving low-temperature toughness. In the steel of the present invention, 8% or more is required. However, when added in a large amount, the solubility of N becomes small, so that Cr nitride is easily precipitated by aging, and the toughness after the heat treatment for forming an intermetallic compound is deteriorated. Was set to 25%. N is an element necessary for stabilizing austenite and improving proof stress, and is required to be 0.1% or more in order to ensure proof stress at extremely low temperatures. However, it is easy to combine with Cr by aging to form a nitride, which causes deterioration of toughness after heat treatment for forming an intermetallic compound.
%.

【0016】Caは、溶存酸素と反応してCr炭窒化物
の生成核として寄与するためには、少なくとも0.00
03%が必要であるので下限とした。一方、Caの多量
添加は原理的には必ずしも不都合な点はないと考えられ
るが、本発明のステンレス鋼鋼の成分系では、0.01
%を超えて添加することは極めて困難であり、特殊な精
練方法を用いる必要が生じてコスト増加の大きな要因と
なるため、0.01%を上限とした。
In order for Ca to react with dissolved oxygen and to contribute as nuclei for forming Cr carbonitride, at least 0.001
The lower limit was set because 03% was required. On the other hand, it is considered that the addition of a large amount of Ca is not necessarily disadvantageous in principle, but in the stainless steel component system of the present invention, 0.01%
% Is extremely difficult to add, and a special scouring method needs to be used, which causes a large increase in cost. Therefore, the upper limit is set to 0.01%.

【0017】Mgもまた、溶存酸素と反応してCr炭窒
化物の生成核として寄与するためには、少なくとも0.
0003%が必要であるので下限とした。一方、Mgの
多量添加もまた原理的には必ずしも不都合な点はないと
考えられるが、本発明鋼の成分系では0.01%を超え
て添加することは極めて困難であり、特殊な精練方法を
用いる必要が生じてコスト増加の大きな要因となるた
め、0.01%を上限とした。
In order for Mg to also react with dissolved oxygen and contribute as a nucleus for forming Cr carbonitride, at least 0.1 mg of Mg is required.
Since 0003% is required, the lower limit was set. On the other hand, it is thought that the addition of a large amount of Mg is not necessarily disadvantageous in principle, but it is extremely difficult to add more than 0.01% in the component system of the steel of the present invention. Since it becomes necessary to use the iron oxide, which causes a large increase in cost, the upper limit is set to 0.01%.

【0018】上述した化学組成が一致したとしても、析
出したCaおよびMgの酸化物の最大径が1μmを超え
る粗大な場合は、金属間化合物生成熱処理でCr炭窒化
物の析出核として機能しないことから、CaおよびMg
の酸化物の最大径を1μm以下と限定した。上記酸化物
の大きさは、1μm程度の酸化物が十分に観察できる任
意の方法で測定すればよい。たとえば、透過型電子顕微
鏡により5000倍程度で数視野観察し、最大径が1μ
mを越えるものが、存在しないことを確認する程度でも
よい。本発明にて開示した方法により製造したステンレ
ス鋼においては、析出酸化物の異常粒成長が見られず、
上記酸化物の平均粒径は1μmより遥かに小さいので、
この方法で十分であった。
Even if the chemical compositions described above match, if the precipitated Ca and Mg oxides have a coarse maximum diameter exceeding 1 μm, they do not function as precipitation nuclei for Cr carbonitride in the heat treatment for forming an intermetallic compound. From Ca and Mg
The maximum diameter of the oxide was limited to 1 μm or less. The size of the oxide may be measured by any method by which an oxide of about 1 μm can be sufficiently observed. For example, observation of several fields at about 5,000 times with a transmission electron microscope shows that the maximum diameter is 1 μm.
It may be sufficient to confirm that the number exceeding m does not exist. In stainless steel manufactured by the method disclosed in the present invention, no abnormal grain growth of the precipitated oxide is seen,
Since the average particle size of the oxide is much smaller than 1 μm,
This method was sufficient.

【0019】また、特性の向上のために選択的に添加さ
れる元素は、次のような理由により添加量が限定されて
いる。Moは、固溶強化により低温強度を向上させる元
素であるが、4%超では金属間化合物生成熱処理により
結晶粒界にFe2 Moが多量に析出し、靭性を低下させ
るので、4%を上限とした。
The amount of the element selectively added for improving the characteristics is limited for the following reasons. Mo is an element that improves the low-temperature strength by solid solution strengthening, but if it exceeds 4%, a large amount of Fe 2 Mo precipitates at the crystal grain boundaries due to heat treatment for forming an intermetallic compound and lowers toughness, so the upper limit is 4%. And

【0020】Nbは、固溶強化と同時に、NbC、Nb
NおよびNbCrNの析出強化により低温強度を向上さ
せる元素であるが、0.005%未満ではこの効果が小
さいので下限とし、0.6%超ではNbC、NbNおよ
びNbCrNの粗大化に加えてFe2 Nbが多量に析出
し、靭性を低下させるので、0.6%を上限とした。本
発明の製造方法において、CaやMgを添加する際の溶
鋼の溶存酸素量は、多量に残存した状態で添加すると、
粗大な酸化物となり金属間化合物生成熱処理でCr炭窒
化物の析出核として機能しないだけでなく、それ自体が
極低温域での靭性を劣化させたり耐食性を劣化させる原
因となるため、CaやMgを添加時においての酸素濃度
は100ppmを上限とした。逆に溶存酸素量が少なす
ぎると、金属間化合物生成熱処理でCr炭窒化物の析出
核となるCaやMgの酸化物が少なく、粒界を核とする
Cr炭窒化物が増加し、所期の目的が達せられないこと
から、20ppmを下限とした。
Nb is simultaneously strengthened with NbC, Nb
N is an element that improves the low-temperature strength by strengthening the precipitation of N and NbCrN. However, if it is less than 0.005%, this effect is small, so the lower limit is set. If it is more than 0.6%, NbC, NbN, and NbCrN are coarsened and Fe 2 Since Nb precipitates in large amounts and lowers toughness, the upper limit is set to 0.6%. In the production method of the present invention, the dissolved oxygen amount of molten steel when adding Ca or Mg is added in a state where a large amount remains,
Since it becomes a coarse oxide and does not function as a precipitation nucleus of Cr carbonitride in the heat treatment for forming an intermetallic compound, it itself deteriorates toughness in a cryogenic temperature range and deteriorates corrosion resistance. The upper limit of the oxygen concentration at the time of addition was 100 ppm. Conversely, if the amount of dissolved oxygen is too small, the amount of Ca and Mg oxides serving as precipitation nuclei of Cr carbonitride during intermetallic compound formation heat treatment is small, and the amount of Cr carbonitrides with grain boundaries as nuclei increases. Since the purpose of (1) was not achieved, the lower limit was set to 20 ppm.

【0021】[0021]

【実施例】表1に示した化学組成のオーステナイト系ス
テンレス鋼を溶製し、20kgの鋳片とした。溶製にあた
っては、CaはCa−Si合金で、MgはMg−Ni合
金で添加した。この鋳片を熱間圧延により4.5mmの
薄鋼板とし、次いで1100℃−10分の溶体化処理を
実施し、さらに酸洗脱スケール後2.5mm厚まで冷間
圧延し、最終的に1050℃−5分の溶体化処理を実施
して冷延溶体化処理鋼板を製造した。その後、この薄鋼
板をArシールの下でTIG溶接し、次いで700℃−
200hの金属間化合物生成熱処理に相当する熱処理を
加えた。表1には、これらの鋼の溶製時におけるCaま
たは/およびMg添加時の溶鋼の溶存酸素量も合せて示
した。また表2に、これらの薄鋼板溶接部の4Kにおけ
る機械的性質を示した。
EXAMPLES Austenitic stainless steels having the chemical compositions shown in Table 1 were melted and cast into 20 kg slabs. In melting, Ca was added with a Ca-Si alloy, and Mg was added with a Mg-Ni alloy. The slab was hot-rolled into a thin steel sheet of 4.5 mm, then subjected to a solution treatment at 1100 ° C. for 10 minutes, further cold-rolled to a thickness of 2.5 mm after descaling by pickling, and finally to 1050 mm. A solution treatment was performed at -5 ° C for 5 minutes to produce a cold-rolled solution-treated steel sheet. Then, this thin steel plate was TIG-welded under an Ar seal,
A heat treatment corresponding to an intermetallic compound formation heat treatment of 200 h was applied. Table 1 also shows the dissolved oxygen content of the molten steel when Ca and / or Mg was added during the smelting of these steels. Table 2 shows the mechanical properties at 4K of these thin steel plate welds.

【0022】No.1〜6は本発明鋼であり、4Kにお
ける溶接部の0.2%耐力およびシャルピー衝撃値が高
いことがわかる。析出物を調査した結果、結晶粒内に微
細なCaまたはMg酸化物を核としたCr炭窒化物が析
出しており、粒界へのCr炭窒化物の析出が抑制されて
いることが認められた。No.7はCa添加時の溶存酸
素量が多過ぎたため、微細なCaOも認められたものの
粗大なCaOが多量に析出していた。このため、0.2
%耐力は高いが、シャルピー衝撃値が低い値を示した。
No.8はCa添加時の溶存酸素量が少なすぎるため、
結晶粒内にCaOがほとんど見られず、Cr炭窒化物が
結晶粒界に析出していた。No.9はMg添加量が少な
いために結晶粒内にMgOがほとんど見られず、Cr炭
窒化物が結晶粒界に析出していた。No.10はCaも
Mgも添加しないために、大半のCr炭窒化物が結晶粒
界に析出していた。この結果、No.8〜10の鋼はい
ずれも0.2%耐力は高いが、シャルピー衝撃値が低い
値を示した。
No. Nos. 1 to 6 are steels of the present invention, and show that the 0.2% proof stress and the Charpy impact value of the weld at 4K are high. As a result of examining the precipitates, it was confirmed that Cr carbonitrides with fine Ca or Mg oxide nuclei were precipitated in the crystal grains, and that precipitation of Cr carbonitrides at the grain boundaries was suppressed. Was done. No. In No. 7, since the amount of dissolved oxygen at the time of adding Ca was too large, fine CaO was recognized, but a large amount of coarse CaO was precipitated. Therefore, 0.2
% Proof stress was high, but the Charpy impact value was low.
No. 8 has too little dissolved oxygen when Ca is added,
Almost no CaO was found in the crystal grains, and Cr carbonitride was precipitated at the crystal grain boundaries. No. In No. 9, MgO was hardly found in the crystal grains due to the small amount of added Mg, and Cr carbonitride was precipitated at the crystal grain boundaries. No. In No. 10, since neither Ca nor Mg was added, most of the Cr carbonitrides were precipitated at the crystal grain boundaries. As a result, no. Steels 8 to 10 all had a high 0.2% proof stress, but exhibited low Charpy impact values.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上示したとおり、本発明により、超伝
導金属間化合物を生成するための熱処理による特性劣化
を抑制し、溶接部の極低温特性の優れた金属間化合物超
伝導材支持用ステンレス鋼板とその製造方法の提供が可
能となった。したがって、本発明は超伝導を産業におい
て利用するうえで、非常に価値の高い発明であるといえ
る。
As described above, according to the present invention, a stainless steel for supporting an intermetallic compound superconducting material excellent in cryogenic characteristics of a welded part by suppressing deterioration of characteristics due to heat treatment for producing a superconducting intermetallic compound. It has become possible to provide a steel sheet and its manufacturing method. Therefore, it can be said that the present invention is a very valuable invention in using superconductivity in industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 秀夫 茨城県那珂郡那珂町大字向山801番地の1 日本原子力研究所那珂研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideo Nakajima 1 801 Mukaiyama, Nakamachi, Naka-gun, Ibaraki Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C :0.05%以下、S
i:2%以下、Mn:0.1%以上16%以下、Cr:
10%以上24%以下、Ni:8%以上25%以下、N
:0.1%以上0.35%以下、およびCa:0.0
003%以上0.01%以下とMg:0.0003%以
上0.01%以下の1種または2種を含有し、残部Fe
および不可避不純物からなり、オーステナイト単相で、
かつ、析出したCaおよびMgの一方または両方を含む
すべての酸化物の最大径が1μm以下であることを特徴
とする溶接部の極低温特性の優れた金属間化合物超伝導
材支持用ステンレス鋼板。
C .: 0.05% or less by weight, C: S
i: 2% or less, Mn: 0.1% or more and 16% or less, Cr:
10% or more and 24% or less, Ni: 8% or more and 25% or less, N
: 0.1% or more and 0.35% or less, and Ca: 0.0
003% or more and 0.01% or less and one or two kinds of Mg: 0.0003% or more and 0.01% or less, with the balance being Fe
And unavoidable impurities, a single phase of austenite,
A stainless steel sheet for supporting an intermetallic compound superconducting material excellent in cryogenic characteristics of a weld portion, wherein the maximum diameter of all oxides containing one or both of precipitated Ca and Mg is 1 μm or less.
【請求項2】 重量%で、C:0.05%以下、Si:
2%以下、Mn:0.1%以上16%以下、Cr:10
%以上24%以下、Ni:8%以上25%以下、N:
0.1%以上0.35%以下、およびCa:0.000
3%以上0.01%以下とMg:0.0003%以上
0.01%以下の1種または2種を、さらにMo:4%
以下とNb:0.005%以上0.6%以下の1種また
は2種を含有し、残部Feおよび不可避不純物からな
り、オーステナイト単相で、かつ、析出したCaおよび
Mgの一方または両方を含むすべての酸化物の最大径が
1μm以下であることを特徴とする溶接部の極低温特性
の優れた金属間化合物超伝導材支持用ステンレス鋼板。
2. In% by weight, C: 0.05% or less, Si:
2% or less, Mn: 0.1% or more and 16% or less, Cr: 10
% To 24%, Ni: 8% to 25%, N:
0.1% or more and 0.35% or less, and Ca: 0.000
One or two of 3% or more and 0.01% or less and Mg: 0.0003% or more and 0.01% or less, and Mo: 4%
And Nb: one or two of 0.005% or more and 0.6% or less, the balance being Fe and unavoidable impurities, an austenitic single phase, and containing one or both of precipitated Ca and Mg A stainless steel sheet for supporting an intermetallic compound superconducting material having excellent cryogenic characteristics of a weld, wherein the maximum diameter of all oxides is 1 μm or less.
【請求項3】 溶解、鋳造、熱延、冷延および熱処理を
実施して薄鋼板とする工程において、上記ステンレス鋼
の溶存酸素量を20ppm以上100ppm以下とした
後、CaおよびMgの一方または両方を添加して、上記
の添加量とすることを特徴とする請求項1または2に記
載の溶接部の極低温特性の優れた金属間化合物超伝導材
支持用ステンレス鋼板の製造方法。
3. In the step of performing melting, casting, hot rolling, cold rolling and heat treatment to form a thin steel sheet, after adjusting the dissolved oxygen content of the stainless steel to 20 ppm or more and 100 ppm or less, one or both of Ca and Mg are used. The method for producing a stainless steel sheet for supporting an intermetallic compound superconducting material having excellent cryogenic characteristics of a welded portion according to claim 1 or 2, wherein the amount of addition is adjusted to the above-mentioned amount.
JP23286997A 1997-08-28 1997-08-28 Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production Withdrawn JPH1171655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23286997A JPH1171655A (en) 1997-08-28 1997-08-28 Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23286997A JPH1171655A (en) 1997-08-28 1997-08-28 Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production

Publications (1)

Publication Number Publication Date
JPH1171655A true JPH1171655A (en) 1999-03-16

Family

ID=16946111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23286997A Withdrawn JPH1171655A (en) 1997-08-28 1997-08-28 Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production

Country Status (1)

Country Link
JP (1) JPH1171655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541121B2 (en) * 2000-02-01 2003-04-01 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft Mbh Superconducting element
US7396421B2 (en) * 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541121B2 (en) * 2000-02-01 2003-04-01 Zentrum Fuer Funktionswerkstoffe Gemeinnuetzige Gesellschaft Mbh Superconducting element
US7396421B2 (en) * 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material

Similar Documents

Publication Publication Date Title
CN113564463B (en) Austenitic stainless steel billet with ultra-low ferrite content and manufacturing method thereof
EP1337678B1 (en) Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
CN108374119B (en) Non-magnetic stainless steel hot rolled plate with tensile strength of 1100MPa and manufacturing method thereof
JP2004514060A (en) Steel plate having deposited TiN + CuS for welded structure, method for producing the same, and welded structure using the same
JP3256118B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
EP1143023B1 (en) Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JP3749616B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP3752075B2 (en) High strength steel for super large heat input welding
JP3851394B2 (en) High Mn stainless steel welding wire for cryogenic temperatures with excellent resistance to welding hot cracking
JPH1171655A (en) Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production
KR20000058123A (en) Heavy wall steel material having superior weldability and method for producing the same
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP2546549B2 (en) Method for producing B-containing austenitic stainless steel
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JPH07109550A (en) Stainless steel for superconducting material conduit excellent in cryogenic characteristic
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP2940647B2 (en) Method for producing low-temperature high-toughness steel for welding
JPH021901B2 (en)
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JPH04154938A (en) High mn non-magnetic steel low in stress corrosion cracking sensitivity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102