JPH04154938A - High mn non-magnetic steel low in stress corrosion cracking sensitivity - Google Patents
High mn non-magnetic steel low in stress corrosion cracking sensitivityInfo
- Publication number
- JPH04154938A JPH04154938A JP2275648A JP27564890A JPH04154938A JP H04154938 A JPH04154938 A JP H04154938A JP 2275648 A JP2275648 A JP 2275648A JP 27564890 A JP27564890 A JP 27564890A JP H04154938 A JPH04154938 A JP H04154938A
- Authority
- JP
- Japan
- Prior art keywords
- stress corrosion
- corrosion cracking
- steel
- magnetic steel
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 34
- 239000010959 steel Substances 0.000 title claims abstract description 34
- 238000005336 cracking Methods 0.000 title claims abstract description 16
- 230000007797 corrosion Effects 0.000 title claims abstract description 15
- 238000005260 corrosion Methods 0.000 title claims abstract description 15
- 230000035945 sensitivity Effects 0.000 title abstract 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- -1 0.01-2.0% Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は応力腐食割れ感受性の小さい高Mn非磁性鋼に
関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to high Mn nonmagnetic steels with low stress corrosion cracking susceptibility.
(従来の技術)
近年、強力なマグネット、特に超電導マグネットを利用
したリニアモーターカー、加速器、核融合実験炉、発電
機などの実用化研究が盛んである。(Prior Art) In recent years, there has been active research into the practical application of powerful magnets, particularly superconducting magnets, in linear motor cars, accelerators, experimental nuclear fusion reactors, generators, etc.
これらの構造部材の一部には非磁性鋼が使用される。こ
の非磁性鋼としてCr−Ni系のオーステナイト系ステ
ンレス鋼よりも安価なために最近では例えば特開昭52
−150720号公報に開示されているr C:0.2
〜1.5%、Si:0.1〜1.5%、Mn:5〜30
%、さらにNb、V、Zr、W、Pのlaもしくは2種
以上を含有して残部が実質的にFeからなる機械的性質
にすぐれた非磁性鋼」や、特公昭61−30017号公
報に開示されている[C:1.5%以下、Si:0.1
〜1.2%未満、Mn:5〜30%、N : 0.00
9〜0,5%を含有し、あるいはざらにNb、V、Zr
、W、Ti 、Al、P、Cu。Non-magnetic steel is used for some of these structural members. Since this non-magnetic steel is cheaper than Cr-Ni austenitic stainless steel, recently it has been used in
-r C: 0.2 disclosed in Publication No. 150720
~1.5%, Si: 0.1~1.5%, Mn: 5~30
%, and further contains la or two or more of Nb, V, Zr, W, and P, and the remainder is substantially Fe, and has excellent mechanical properties.'' Disclosed [C: 1.5% or less, Si: 0.1
~Less than 1.2%, Mn: 5-30%, N: 0.00
Contains 9-0.5% or roughly Nb, V, Zr
, W, Ti, Al, P, Cu.
Ni、Crの1種もしくは2種以上を含有して残部が実
質的にFeからなる機械的性質にすぐれた非磁性鋼」の
如き高Mnオーステナイト鋼が使用される場合がある。A high Mn austenitic steel such as a "non-magnetic steel containing one or more of Ni and Cr, with the remainder being substantially Fe and having excellent mechanical properties" may be used.
しかし、従来の高Mnオーステナイト鋼では降伏強度や
延性かすぐれているが、しばしばCg−イオンやサワー
ガスを含む環境では応力腐食割れのトラブルが起こった
ため、その改良を望まれている。However, although conventional high-Mn austenitic steels have excellent yield strength and ductility, they often suffer from stress corrosion cracking in environments containing Cg- ions and sour gas, so improvements are desired.
(発明が解決しようとする課題)
本発明は上記要望に応えるべくなされたものであって、
良好な強度・延性や加工性を有すると共にすぐれた耐応
力腐食割れ感受性をもつ高Mn非磁性鋼を提供すること
を目的とする。(Problems to be solved by the invention) The present invention has been made to meet the above-mentioned demands, and includes:
The object of the present invention is to provide a high-Mn nonmagnetic steel having good strength, ductility, and workability as well as excellent stress corrosion cracking susceptibility.
(課題を解決するための手段)
上記目的を達成するために本発明は重量%として
C、OJO〜0.75%、
St;0゜05〜2.0%、
Mn ; 14.0−20.0%、
NL ;3.0%以下、
Mo;2.0%以下、
Cu ;0.1−3.0%、
N ;o、[lt〜0.20%
あるいは、さらに、
Nb ;o、ot〜0,20%、
V 、0.01〜2.0%、
T i ; 0.01〜0.20%
の1種または2種以上を含有し、残部がFcおよび不可
避的不純物から成る応力腐食割れ感受性の小さい高Mn
非磁性鋼を要旨とする。(Means for Solving the Problems) In order to achieve the above object, the present invention includes C, OJO~0.75%, St: 0°05~2.0%, Mn: 14.0~20. 0%, NL; 3.0% or less, Mo; 2.0% or less, Cu; 0.1-3.0%, N; o, [lt ~ 0.20%, or further, Nb; o, ot -0.20%, V, 0.01-2.0%, Ti; 0.01-0.20%, and the remainder consists of Fc and inevitable impurities. High Mn with low cracking susceptibility
The main topic is non-magnetic steel.
以下本発明の成分限定について詳細に説明する。The ingredient limitations of the present invention will be explained in detail below.
Cニオ−ステナイト安定化元素で、非磁性化に極めて有
効な元素である。それとともに、強度を上げる働きをも
つ。そのためには、0.30%以上を含有させる必要が
ある。しかし、0.75%を越えて含有すると熱間加工
性を劣化して熱間圧延が不可能になる。C is a niostenite stabilizing element and is an extremely effective element for making it non-magnetic. At the same time, it also works to increase strength. For that purpose, it is necessary to contain 0.30% or more. However, if the content exceeds 0.75%, hot workability deteriorates and hot rolling becomes impossible.
S■ :高強度化には有効な元素であるか、多量の含有
は非磁性化に不利である。したがって、0.05〜2.
0%とした。S■: Is it an effective element for increasing strength, but its inclusion in a large amount is disadvantageous for making it non-magnetic. Therefore, 0.05-2.
It was set to 0%.
Mn:オーステナイト安定化元素で、非磁性化に極めて
有効な元素として、14%以上を含有させる。しかし、
20%を越えて含有するのは合金コストによる製造コス
トをいたずらに高くするだけである。Mn: An austenite stabilizing element that is extremely effective in making it non-magnetic, and is contained in an amount of 14% or more. but,
Containing more than 20% only unnecessarily increases manufacturing costs due to alloy costs.
Ni ニオ−ステナイト安定化元素で、非磁性化および
靭性向上に極めて有効な元素であるため、できるだけ含
有することが望ましいか、多量の含有は合金コストによ
る製造コストアップとなるため3 、 D 9t5以下
とした。Ni is a niostenite stabilizing element and is an extremely effective element for making it non-magnetic and improving toughness, so it is desirable to contain it as much as possible, or because containing a large amount increases manufacturing costs due to alloy costs, 3, D 9t5 or less And so.
Cu:この元素の添加により応力腐食割れ感受性を低下
させる有効な成分で、0.1%未満の少ない量では、そ
の効果が小さく、また3、0%を越えると効果が減少す
る傾向にある。従ってCu含有量は0.1〜3.0%に
限定した。Cu: This element is an effective component that reduces stress corrosion cracking susceptibility by adding this element.If the amount is less than 0.1%, the effect is small, and if it exceeds 3.0%, the effect tends to decrease. Therefore, the Cu content was limited to 0.1 to 3.0%.
Nニオ−ステナイト安定化元素で、非磁性化に極めて有
効な元素である。また、強度を上げるのに著しい働きを
もつ。そのためには、少なくとも0.010%以上含有
していなければならない。しかし、0.20%を越える
添加は著しく靭性を損なう。N is a stabilizing element for niostenite and is an extremely effective element for making it non-magnetic. It also has a remarkable effect on increasing strength. For this purpose, the content must be at least 0.010% or more. However, addition of more than 0.20% significantly impairs toughness.
Nb:0.01%以上含有することにより製品の組織を
細粒化し耐力を上げる。しかし、多量の含有は熱間加工
性の低下を招くので0.20%以下とした。Nb: By containing 0.01% or more, the structure of the product becomes finer and the yield strength is increased. However, since a large amount of content leads to a decrease in hot workability, the content is set to 0.20% or less.
不純物元素として、Sは靭性を低下さすために少ない方
がよく、0.05%以下が望ましい。また、Pも靭性を
下げるためにその含有量は少ないことが必要で、0.0
40%以下が望ましい。上記のような成分組成を含有し
た残部が鉄および不可避的不純物からなる鋼は、応力腐
食割れ感受性の小さい高Mn非磁性鋼となる。As an impurity element, it is better to have a small amount of S because it reduces toughness, and preferably 0.05% or less. In addition, in order to lower the toughness, the content of P must be small, and 0.0
40% or less is desirable. Steel containing the above-mentioned composition with the remainder consisting of iron and unavoidable impurities becomes a high-Mn nonmagnetic steel with low stress corrosion cracking susceptibility.
さらに本発明は、上記のような成分組成の高Mn非磁性
鋼の強度や加工性を向上させるために、Nb、V、Ti
の少量を選択的に含有させることができる。Furthermore, in order to improve the strength and workability of high-Mn nonmagnetic steel having the above-mentioned composition, the present invention
may optionally be included in small amounts.
Tj:Nbと同様に鋼の耐力の向上と熱間加工性の劣化
を配慮してその含有量を0,01〜0,20%と限定し
た。Tj: Like Nb, its content was limited to 0.01 to 0.20% in consideration of improving the yield strength of steel and deteriorating hot workability.
V:細粒化および微細析出物形成により強度を上げる。V: Strength is increased by grain refinement and formation of fine precipitates.
そのためには0.01%以上の含有が必要である。しか
し、多量の含有は合金コストによる製造コストアップと
なるため2.0%以下とした。For this purpose, the content must be 0.01% or more. However, since a large amount of content increases manufacturing costs due to alloy costs, it is set at 2.0% or less.
上記のような成分組成をさらに含有した鋼は、応力腐食
割れ感受性が小さく、しかも高強度で熱間加工性のすぐ
れた高Mn非磁性鋼を提供することができる。A steel further containing the above-mentioned composition can provide a high-Mn nonmagnetic steel with low stress corrosion cracking susceptibility, high strength, and excellent hot workability.
また、本発明においては特に限定するものではないが、
Crの2%以下の含有は鋼の非磁性化を安定にし、また
AΩとCaを各々0,20%以下と0.02%以下含有
させることは鋼の清浄度を上げ靭性および熱間加工性を
向上させるのに白“効である。In addition, although the present invention is not particularly limited,
Containing Cr of 2% or less stabilizes the demagnetization of the steel, and containing AΩ and Ca of 0.20% or less and 0.02% or less, respectively, increases the cleanliness of the steel and improves toughness and hot workability. White is effective in improving
上記のような成分組成の本発明鋼は次の工程で製造され
る。The steel of the present invention having the above-mentioned composition is manufactured in the following steps.
すなわち、電気炉または転炉で溶製し、連続鋳造によっ
てスラブとするか、−旦造塊作業によって鋼塊とした後
分塊圧延によってスラブとする。That is, the steel is melted in an electric furnace or a converter and then made into a slab by continuous casting, or the steel is made into a steel ingot by an ingot operation and then made into a slab by blooming.
このスラブは一旦室温近くまで冷却されるかあるいは冷
却されることなく加熱炉に挿入して熱間圧延により厚板
に加工される。この厚板圧延において、仕上出口温度は
1050〜700℃の範囲が好ましく、その後の室温ま
での冷却は自然冷却でもよいが、700℃以上の温度か
ら500℃以下の温度に30℃/分以上の速度で冷却さ
れるならば、炭化物の生成を防止して靭性が向上する。This slab is once cooled to near room temperature or inserted into a heating furnace without being cooled and processed into a thick plate by hot rolling. In this thick plate rolling, the finish exit temperature is preferably in the range of 1050 to 700°C, and the subsequent cooling to room temperature may be natural cooling, but the temperature is increased from 700°C or higher to 500°C or lower by 30°C/min or more. If cooled at a high rate, toughness is improved by preventing the formation of carbides.
次いで、必要に応じて、900〜1200℃の温度領域
で溶体化熱処理が行われる。したがって、最終製品とし
ては、用途に応じ溶体化熱処理を行われていても行われ
ていなくてもよい。Then, if necessary, solution heat treatment is performed in a temperature range of 900 to 1200°C. Therefore, the final product may or may not be subjected to solution heat treatment depending on the application.
以下に、本発明の詳細な説明する。The present invention will be explained in detail below.
実施例 1
実験室真空溶解炉により第1表に示すような鋼塊を作製
し、第2表に示すような条件で厚さ13mmの厚板に厚
板圧延し、溶体化熱処理を行った。Example 1 Steel ingots as shown in Table 1 were prepared in a laboratory vacuum melting furnace, rolled into a thick plate with a thickness of 13 mm under the conditions shown in Table 2, and subjected to solution heat treatment.
これらの鋼板について、室温における引張試験、0℃に
おけるシャルピー衝撃試験および20%の引張歪を付与
した場合の磁場200エルステツドでの透磁率測定を行
った。それぞれの結果を第3表に示した。また、これら
の鋼板について、0.11%C−0,58%5t−15
,6%Mn−15,1%Cr−2,5%Ni成分の4m
mφの溶接棒で被覆アーク溶接しく入熱13.4kJ)
この継手部から試験片を切り出してUベンド法による5
0℃の人工海水中30日間浸漬後の応力腐食割れ判定結
果も併せて第3表に示した。These steel plates were subjected to a tensile test at room temperature, a Charpy impact test at 0° C., and a magnetic permeability measurement in a magnetic field of 200 oersted when a tensile strain of 20% was applied. The results are shown in Table 3. In addition, regarding these steel plates, 0.11%C-0.58%5t-15
,6%Mn-15,1%Cr-2,5%Ni component 4m
(Heat input is 13.4 kJ during covered arc welding with a mφ welding rod)
A test piece was cut out from this joint part and 5
Table 3 also shows the stress corrosion cracking determination results after immersion in artificial seawater at 0°C for 30 days.
第3表から鋼No、 1から12の本発明鋼については
所望の強度靭性および非磁性が得られると共に応力腐食
割れは発生していないことがわかる。しかし本発明成分
から逸脱した鋼No、 13から15については応力腐
食割れは発生している。From Table 3, it can be seen that the steels of the present invention, Nos. 1 to 12, have the desired strength and toughness and non-magnetism, and no stress corrosion cracking occurs. However, stress corrosion cracking occurred in steel Nos. 13 to 15, which deviated from the composition of the present invention.
= 14
(発明の効果)
以上説明したように、本発明においては、鋼成分を改善
することによって、耐応力腐食割れ感受性のすぐれた非
磁性高Mn鋼を得ることができ、この鋼の実用範囲を拡
大できて産業上極めて効果が大きい。= 14 (Effects of the Invention) As explained above, in the present invention, by improving the steel components, a non-magnetic high Mn steel with excellent stress corrosion cracking susceptibility can be obtained, and the practical range of this steel can be improved. can be expanded, which is extremely effective industrially.
Claims (2)
食割れ感受性の小さい高Mn非磁性鋼。(1) C: 0.30-0.75%, Si: 0.05-2.0%, Mn: 14.0-20.0%, Ni: 3.0% or less, Mo: 2 as weight% A high Mn nonmagnetic steel with low stress corrosion cracking susceptibility, containing Cu: 0.1 to 3.0%, N: 0.01 to 0.20%, and the remainder consisting of iron and inevitable impurities.
可避的不純物から成る応力腐食割れ感受性の小さい高M
n非磁性鋼。(2) C: 0.30-0.75%, Si: 0.05-2.0%, Mn: 14.0-20.0%, Ni: 3.0% or less, Mo: 2 as weight% .0% or less, Cu: 0.1-3.0%, N: 0.01-0.20%, further Nb: 0.01-0.20%, V: 0.01-2.0 %, Ti: 0.01 to 0.20%, and the balance is iron and unavoidable impurities. High M with low stress corrosion cracking susceptibility.
nNon-magnetic steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2275648A JPH07107187B2 (en) | 1990-10-15 | 1990-10-15 | High Mn non-magnetic steel with low susceptibility to stress corrosion cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2275648A JPH07107187B2 (en) | 1990-10-15 | 1990-10-15 | High Mn non-magnetic steel with low susceptibility to stress corrosion cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04154938A true JPH04154938A (en) | 1992-05-27 |
JPH07107187B2 JPH07107187B2 (en) | 1995-11-15 |
Family
ID=17558390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2275648A Expired - Lifetime JPH07107187B2 (en) | 1990-10-15 | 1990-10-15 | High Mn non-magnetic steel with low susceptibility to stress corrosion cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107187B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2431492A2 (en) * | 2009-04-28 | 2012-03-21 | Hyundai Steel Company | High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same |
EP2520684A2 (en) * | 2009-12-28 | 2012-11-07 | Posco | Austenite steel material having superior ductility |
CN104060194A (en) * | 2014-02-25 | 2014-09-24 | 南通东方科技有限公司 | Fine-grain centrifugal casted high manganese steel sleeve |
JP2019502814A (en) * | 2015-12-04 | 2019-01-31 | ポスコPosco | Wire material excellent in low temperature impact toughness and method for producing the same |
JP2022031163A (en) * | 2020-08-07 | 2022-02-18 | Jfeスチール株式会社 | Steel material and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116856A (en) * | 1980-01-31 | 1981-09-12 | Sumitomo Metal Ind Ltd | High-mn steel to be used as corrosion-resistant material |
JPS57152445A (en) * | 1981-03-13 | 1982-09-20 | Sumitomo Metal Ind Ltd | Nonmagnetic roll and its manufacture |
JPS58224151A (en) * | 1982-06-24 | 1983-12-26 | Kawasaki Steel Corp | High manganese steel with superior local corrosion resistance |
JPS6036647A (en) * | 1983-08-06 | 1985-02-25 | Kawasaki Steel Corp | High manganese steel with superior local corrosion resistance |
JPS60128242A (en) * | 1983-12-15 | 1985-07-09 | Nippon Steel Corp | High manganese steel for nonmagnetic drill collar |
JPH0215148A (en) * | 1988-07-02 | 1990-01-18 | Sumitomo Metal Ind Ltd | High mn nonmagnetic steel having excellent corrosion resistance |
-
1990
- 1990-10-15 JP JP2275648A patent/JPH07107187B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116856A (en) * | 1980-01-31 | 1981-09-12 | Sumitomo Metal Ind Ltd | High-mn steel to be used as corrosion-resistant material |
JPS57152445A (en) * | 1981-03-13 | 1982-09-20 | Sumitomo Metal Ind Ltd | Nonmagnetic roll and its manufacture |
JPS58224151A (en) * | 1982-06-24 | 1983-12-26 | Kawasaki Steel Corp | High manganese steel with superior local corrosion resistance |
JPS6036647A (en) * | 1983-08-06 | 1985-02-25 | Kawasaki Steel Corp | High manganese steel with superior local corrosion resistance |
JPS60128242A (en) * | 1983-12-15 | 1985-07-09 | Nippon Steel Corp | High manganese steel for nonmagnetic drill collar |
JPH0215148A (en) * | 1988-07-02 | 1990-01-18 | Sumitomo Metal Ind Ltd | High mn nonmagnetic steel having excellent corrosion resistance |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2431492A2 (en) * | 2009-04-28 | 2012-03-21 | Hyundai Steel Company | High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same |
EP2431492A4 (en) * | 2009-04-28 | 2014-01-22 | Hyundai Steel Co | High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same |
EP2520684A2 (en) * | 2009-12-28 | 2012-11-07 | Posco | Austenite steel material having superior ductility |
JP2013515864A (en) * | 2009-12-28 | 2013-05-09 | ポスコ | Austenitic steel with excellent ductility |
EP2520684A4 (en) * | 2009-12-28 | 2015-01-14 | Posco | Austenite steel material having superior ductility |
CN104060194A (en) * | 2014-02-25 | 2014-09-24 | 南通东方科技有限公司 | Fine-grain centrifugal casted high manganese steel sleeve |
JP2019502814A (en) * | 2015-12-04 | 2019-01-31 | ポスコPosco | Wire material excellent in low temperature impact toughness and method for producing the same |
JP2022031163A (en) * | 2020-08-07 | 2022-02-18 | Jfeスチール株式会社 | Steel material and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH07107187B2 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62270721A (en) | Production of high-mn austenitic stainless steel for cryogenic service | |
JPH04154938A (en) | High mn non-magnetic steel low in stress corrosion cracking sensitivity | |
JP3851394B2 (en) | High Mn stainless steel welding wire for cryogenic temperatures with excellent resistance to welding hot cracking | |
JPH06184700A (en) | Alloy with high strength, non-magnetism, and low thermal expansion | |
JPH0717946B2 (en) | Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion | |
JPS6054374B2 (en) | Method for manufacturing austenitic steel plates and steel strips | |
WO2021221003A1 (en) | Alloy material and method for producing same | |
KR20000058123A (en) | Heavy wall steel material having superior weldability and method for producing the same | |
JPH0657379A (en) | Non-magnetic steel excellent in hot workability and corrosion resistance | |
JP2007262582A (en) | Superconducting magnetic component | |
JPS59226151A (en) | Austenitic high-alloy stainless steel with superior weldability and hot workability | |
JPH04272130A (en) | Production of high mn nonmagnetic steel having superior drillability | |
JP3004784B2 (en) | High toughness ferritic stainless steel for high temperatures | |
JP2782745B2 (en) | Free-cutting stainless steel for cold working | |
JPH07109550A (en) | Stainless steel for superconducting material conduit excellent in cryogenic characteristic | |
JPH06212358A (en) | Nonmagnetic pc steel wire and its production | |
JPH0317245A (en) | High strength non-magnetic stainless steel having excellent machinability | |
JPH04116141A (en) | High-hardness and low-permeability nonmagnetic functional alloy and its production | |
JP3439062B2 (en) | High Mn stainless steel with excellent hot workability and cryogenic toughness | |
JP2533935B2 (en) | Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness | |
JPS61170545A (en) | High manganese steel for very low temperature use having superior rust resistance | |
JPH07310144A (en) | Stainless steel excellent in cryogenic strength and toughness after superconducting material forming heat treatment | |
JPH1171655A (en) | Stainless steel sheet excellent in cryogenic characteristic in weld zone for supporting intermetallic compound superconducting material and its production | |
JPH0390536A (en) | High strength non-magnetic stainless steel | |
JP3379760B2 (en) | Manufacturing method of high strength and high permeability steel |