JPH0559176B2 - - Google Patents

Info

Publication number
JPH0559176B2
JPH0559176B2 JP14012783A JP14012783A JPH0559176B2 JP H0559176 B2 JPH0559176 B2 JP H0559176B2 JP 14012783 A JP14012783 A JP 14012783A JP 14012783 A JP14012783 A JP 14012783A JP H0559176 B2 JPH0559176 B2 JP H0559176B2
Authority
JP
Japan
Prior art keywords
strength
steel
tempering
country tubular
tubular goods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14012783A
Other languages
Japanese (ja)
Other versions
JPS6033312A (en
Inventor
Kunihiko Kobayashi
Sadao Hasuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14012783A priority Critical patent/JPS6033312A/en
Publication of JPS6033312A publication Critical patent/JPS6033312A/en
Publication of JPH0559176B2 publication Critical patent/JPH0559176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は0.6%耐力80Kg/mm2以上の高強度油井
管の製造方法に係り、詳しくは、鋼にMo等の高
価な合金成分を添加せずに、鋼を熱間加工後、焼
入れならびに焼戻すことにより、Moなどの高価
な合金成分を添加した場合と同等若しくはそれ以
上の強度、0.6%耐力80Kg/mm2以上を有する油井
管が製造できる方法に係る。 一般に、深い油井の堀削に用いられる高強度の
油井管(たとえば0.6%耐力77Kg/mm2以上)はMo
などの高価な合金元素を加えた成分系の鋼を焼入
れ焼戻すことにより製造されている場合が多い。
この方法では、通常600℃附近で焼戻しが行なわ
れ、この際の焼戻し抵抗を高めて強度を確保する
上から、Mo等の高価な合金成分の添加が必要で
ある。しかし、Moなどの成分は、他の合金成分
に較べると、きわめて高く、この点が経済性から
大きな欠点であつた。更に、この方法では焼戻し
が600℃附近の如く高過ぎるほか、Moなどの合
金成分が添加されていても、600℃は焼戻し脆性
領域に入り、靱性が損なわれて好ましくない。 本発明は上記欠点の解決を目的とし、具体的に
は、鋼にMo等の高価な合金成分を添加せずに、
この鋼を焼入れ焼戻しを行ない、しかも、この焼
戻しは比較的低温の領域において行なつて、靱性
を損なうことがなく、安価に高強度油井管を製造
する方法を提案する。 すなわち、本発明方法は、鋼にMo添加せず
に、鋼を熱間加工後焼入れならびに焼戻して高強
度油井管を製造する際に、この鋼にC 0.20〜
0.35%、Si 0.10〜0.50%、Mn 1.0〜1.6%、P
0.03%以下、S 0.02%以下、Al 0.02〜0.10%、
Ti 0.005〜0.050%を含ませるほか、Cr 0.2〜1.0
%、V 0.02〜0.08%ならびにB 0.0005〜
0.0050%を含有させ、残部がFeならびに不可避的
不純物からなるものとし、この鋼を熱間加工後
Ac3点以上の温度より焼入れしてから、450℃以
上580℃以下で焼戻し、0.6%耐力80Kg/mm2以上の
高強度を得ることを特徴とする。 また、本発明方法は、鋼にMo添加せずに、鋼
を熱間加工後焼入れならびに焼戻して高強度油井
管を製造する際に、この鋼にC 0.20〜0.35%、
Si 0.10〜0.50%、Mn 1.0〜1.6%、P 0.03%以
下、S 0.02%以下、Al 0.02〜0.10%、Ti 0.005
〜0.050%を含ませるほか、Cr 0.2〜1.0%、V
0.02〜0.08%、B 0.0005〜0.0050%とともにNi
0.10〜0.30%若しくはNb 0.015〜0.035%の一種又
は2種を含有させ、残部がFeならびに不可避的
不純物からなるものとし、この鋼を熱間加工後
Ac3点以上の温度より焼入れしてから、続いて
450℃以上580℃以下で焼戻し、0.6%耐力80Kg/
mm2以上の高強度を得ることを特徴とする。 以下、本発明方法について詳しく説明する。 まず、油井に使用される高強度油井管は上記の
如く0.6%耐力77Kg/mm2以上が要求されている。
このような高強度の油井管の製造は、従来では鋼
成分系にMo,Nbなどの合金成分を添加するとと
もにこの成分系の鋼を焼入れ焼戻し処理により製
造されている。しかし、この成分系は高価であ
り、本発明方法ではこのような高価な合金成分を
添加することなく添加してもその量を少なくし、
しかも、Moなどの合金成分が添加されていなく
とも、焼戻し膨脹領域に入る600℃附近をさけて、
適切な条件で焼戻すことにより材質的にも、経済
的にも秀れた油井管を製造する。 すなわち、従来例によつて焼入れ焼戻しで油井
管を製造する場合は通常600℃付近で焼戻しを行
ない、焼戻し抵抗性をあげて強度を確保するため
に、Moなどの合金成分を添加する必要がある。
この点につき、本発明者らは高価な合金元素を低
減し、特に、Moを添加することなく、しかも材
質の劣化を生じさせることなく油井管を製造する
方法について研究を行つた。この結果、強化元素
としてMoを添加することなくCrおよびV、更
に、これに併せてBを適正範囲に添加し、450〜
580℃の比較的低い温度領域で焼戻しをすれば、
油井管として必要な強度、とくに、0.6%耐力80
Kg/mm2以上を得られるほか、いわゆる焼戻し脆化
領域(600℃付近)を避けることができるので、
靱性も良い油井管を製造できることを見出し、こ
の知見にもとずいて、本発明方法は成立したもの
である。 そこで、各成分の範囲を限定した理由から示す
と、次の通りである。 Cは鋼材の強度に最も影響する元素であり、
0.20%以下では目標の強度が得られず、0.35%以
上では焼割れ感受性を著しく高めるので下限を
0.20%、上限を0.35%に制限した。 Siは鋼の脱酸に必要な元素で0.10%以上は必要
であるが多すぎると靱性を害するので下限を0.10
%、上限を0.50%とした。 Mnは鋼の焼入性を上げて強化に有効な元素で
あり、最低1.0%は必要であり、多すぎると割れ
感受性を高めるので上限を1.6%とした。 Pは鋼中に必然的に含まれる不純物であつて焼
戻し脆性の原因ともなり、靱性に有害である。
0.03%を超すと著しく靱性が劣化するので上限を
0.030%と制限した。 SはPと同様に鋼中に不純物として含まれてお
り、脆性の原因ともなるので上限を0.02%にし
た。 Crは焼入性を高めて高強度を実現するために、
不可欠であり、なかでも、Moなどの合金成分を
添加せずに高強度を実現するのに不可欠である。
このところから、Crは比較的多く配合し、とく
に、0.2%以下では効果がないので下限を0.2%と
し、1.0%を超えると割れ感受性が高くなり、靱
性も劣化するので上限を1.0%とした。 Vは、Moなどの合金成分を添加しない条件下
では、焼戻し時の析出硬化によつて強度を高める
のにどうしても必要であり、更に、450〜580℃の
比較的低い温度領域で焼戻しするときに、その焼
戻し後の強度を安定して得るのに有効である。
0.02%以上では効果がなく、0.08%を超えると割
れ発生の原因となるので下限を0.02%、上限を
0.08%と制限した。 Alは脱酸材としても使用され、0.02%以下では
脱酸効果がなく、0.1%以上では靱性低下を招く
ので下限を0.02%。上限を0.1%とした。 Tiは鋼中のNを固定して後記のBの焼入性向
上などの効果を最大値に発揮させる為に必要であ
り、0.005%以下では効果がなく、又0.05%以上
添加すると靱性を著しく劣化させるので下限を
0.005%、上限を0.05%に制限した。 Bは、Vとともに焼入性向上ならびに焼戻し後
の強度安定化の効果を示し、Moを添加しない条
件の下ではどうしても必要な成分である。この効
果は0.0005〜0.005%の範囲が顕著であるので、
この範囲に限定した。 なお、上記成分系において、Ni若しくはNbの
一種または二種を添加でき、Niはその添加によ
り靱性が向上し、その効果を得るためには少なく
とも0.10%程度必要であるので、下限は0.10%と
した。上限は経済性から0.30%とした。また、
Nbは強度ならびに靱性を向上させ、有効な成分
であり、この点から下限は0.015%とし、上限は
経済性から0.035%とした。 以上の通りの成分系の鋼は熱間加工後Ac3点以
上の温度より焼入れし、続いて、450℃以上580℃
以下の温度の如く低温領域で焼戻す。そこで、こ
の焼戻し処理温度を比較的低温領域とする制限の
理由について示すと次の通りである。 すなわち、後記の第1表のDに示す組成の鋼を
Ac3点以上の温度からの焼入れと焼戻しを行なつ
て、この際の焼戻し温度と強度(0.6%耐力)な
らびに衝撃試験における破面遷移温度との関係を
求めると、第1図の通りであつた。 第1図に見られる如く、焼戻し温度が580℃を
超えると目標とする強度(0.6%耐力80Kg/mm2
が得られず、とくに、Moを含まないことから、
焼戻し脆性領域に入ると、靱性が劣る。また焼戻
し温度が450℃より低いと焼入れで生成されたマ
ルテンサイト中でのCの析出が不十分なために、
靱性が非常に悪い。 要するに、本発明方法では鋼が上記の通りの成
分系であるため、目標の強度を実現し、かつ靱性
が良好となる焼戻し温度領域が通常よりやや低目
の温度域に存在するのであり、このような理由よ
り焼戻し温度の下限を450℃、上限を580℃と制限
した。尚、焼入れ方法については通常の再加熱焼
入れ、あるいは近年発展を遂げている面接焼入れ
などの方法があるが、本発明方法ではその何れで
あつても実現できる。 次に、実施例について説明する。 第1表に示すA〜Gの7種の化学成分の鋼を、
第2表に示す焼入れ条件により焼入れし、続い
て、第2表に示す焼戻し条件で焼戻しを行なつ
て、第2表の備考に示す油井管をつくつた。これ
ら油井管の機械的性質を求めたところ、第2表の
通りであつた。 第1表で鋼A,BはCr,Moを含む成分系、鋼
CはV,Nb等による強化を画つた成分系である。
鋼D,Eは本発明に含まれる成分から成り、鋼E
は同じく請求範囲2に含まれる成分を有してい
る。また、焼入れ法は通常の再加熱焼入れおよび
近年発展の著しい直接焼入れについても比較をし
ている。 第1表、第2表に示す如く、本発明方法では
Moを含まない成分系であるが、温度領域で焼戻
しを施せば、いずれの焼入方法でも80Kg/mm2以上
の0.6%耐力とCrMo鋼A,Bと同等の切欠靱性を
示すことが明らかである。 このように本発明方法によれば、Moの如き効
果な元素を節約できる経済効果並びに最適焼戻し
処理温度が通常のCrMo鋼の場合よりも100℃程
度下がり、それに伴つた燃料を節減できる経済的
効果を極めて大きく、高強度で靱性の秀れた油井
管材料の経済的生産に寄与することが大である。
The present invention relates to a method for manufacturing high-strength oil country tubular goods having a 0.6% yield strength of 80 kg/mm 2 or more. Specifically, the present invention relates to a method for producing high-strength oil country tubular goods having a 0.6% yield strength of 80 kg/mm 2 or more. The method relates to a method that allows production of oil country tubular goods having a strength equal to or greater than that obtained by adding expensive alloy components such as Mo, and a 0.6% proof stress of 80 kg/mm 2 or more, by reconstitution. In general, high-strength oil country tubular goods (for example, 0.6% yield strength of 77 kg/mm 2 or more) used for drilling deep oil wells are made of Mo
It is often manufactured by quenching and tempering steel containing expensive alloying elements such as.
In this method, tempering is usually performed at around 600°C, and in order to increase the tempering resistance and ensure strength, it is necessary to add expensive alloying components such as Mo. However, the content of Mo and other components is extremely high compared to other alloy components, which is a major drawback from an economic standpoint. Furthermore, in this method, the tempering temperature is too high, around 600°C, and even if an alloy component such as Mo is added, 600°C falls into the tempering brittle region, which is undesirable because toughness is impaired. The present invention aims to solve the above-mentioned drawbacks, and specifically, the present invention aims to solve the above-mentioned drawbacks, and specifically, without adding expensive alloy components such as Mo to steel,
We propose a method for manufacturing high-strength oil country tubular goods at low cost without impairing toughness by quenching and tempering this steel and performing the tempering at a relatively low temperature. That is, in the method of the present invention, when manufacturing high-strength oil country tubular goods by quenching and tempering steel after hot working without adding Mo to the steel, C 0.20 to
0.35%, Si 0.10~0.50%, Mn 1.0~1.6%, P
0.03% or less, S 0.02% or less, Al 0.02-0.10%,
In addition to containing Ti 0.005~0.050%, Cr 0.2~1.0
%, V 0.02~0.08% and B 0.0005~
0.0050%, and the remainder consists of Fe and unavoidable impurities.
It is characterized by being quenched at a temperature of Ac 3 or higher, then tempered at a temperature of 450°C or higher and 580°C or lower to obtain a high strength of 0.6% yield strength of 80Kg/mm 2 or higher. In addition, the method of the present invention can add 0.20 to 0.35% C to the steel when manufacturing high-strength oil country tubular goods by quenching and tempering the steel after hot working without adding Mo to the steel.
Si 0.10-0.50%, Mn 1.0-1.6%, P 0.03% or less, S 0.02% or less, Al 0.02-0.10%, Ti 0.005
In addition to containing ~0.050%, Cr 0.2~1.0%, V
Ni with 0.02~0.08%, B 0.0005~0.0050%
One or two of 0.10 to 0.30% or 0.015 to 0.035% of Nb is contained, and the remainder consists of Fe and unavoidable impurities, and this steel is heated after hot working.
After quenching at a temperature of 3 points or above,
Tempered at 450℃ or higher and 580℃ or lower, 0.6% yield strength 80Kg/
It is characterized by obtaining high strength of mm 2 or more. The method of the present invention will be explained in detail below. First, as mentioned above, high-strength oil country tubular goods used in oil wells are required to have a 0.6% yield strength of 77 kg/mm 2 or more.
Conventionally, such high-strength oil country tubular goods are manufactured by adding alloy components such as Mo and Nb to a steel composition system and then subjecting the steel of this composition system to quenching and tempering treatment. However, this component system is expensive, and the method of the present invention reduces the amount of such expensive alloy components even if they are added without adding them.
Moreover, even if alloy components such as Mo are not added, avoid temperatures near 600℃, which enters the tempering expansion region.
By tempering under appropriate conditions, we manufacture oil country tubular goods that are excellent both in terms of material and economy. In other words, when manufacturing oil country tubular goods by quenching and tempering in the conventional manner, tempering is usually carried out at around 600°C, and it is necessary to add alloying elements such as Mo to increase tempering resistance and ensure strength. .
In this regard, the present inventors have conducted research on a method for manufacturing oil country tubular goods by reducing the amount of expensive alloying elements, especially without adding Mo, and without causing deterioration of the material. As a result, we added Cr and V without adding Mo as reinforcing elements, and also added B in an appropriate range.
If tempered at a relatively low temperature of 580℃,
Strength required for oil country tubular goods, especially 0.6% yield strength 80
In addition to obtaining Kg/mm 2 or more, it is possible to avoid the so-called tempering embrittlement region (near 600℃).
It was discovered that oil country tubular goods with good toughness could be manufactured, and based on this knowledge, the method of the present invention was established. Therefore, the reasons for limiting the range of each component are as follows. C is the element that most affects the strength of steel,
If it is less than 0.20%, the target strength cannot be obtained, and if it is more than 0.35%, the susceptibility to quench cracking will increase significantly, so the lower limit should be set.
0.20%, with an upper limit of 0.35%. Si is an element necessary for deoxidizing steel, and 0.10% or more is necessary, but too much will harm the toughness, so the lower limit is set at 0.10%.
%, with an upper limit of 0.50%. Mn is an effective element for increasing the hardenability of steel and strengthening it, and requires a minimum content of 1.0%. Too much Mn increases cracking susceptibility, so the upper limit was set at 1.6%. P is an impurity inevitably contained in steel, which causes temper brittleness and is harmful to toughness.
If it exceeds 0.03%, the toughness will deteriorate significantly, so the upper limit should be
It was limited to 0.030%. Like P, S is contained in steel as an impurity and causes brittleness, so the upper limit was set at 0.02%. Cr is used to improve hardenability and achieve high strength.
In particular, it is essential for achieving high strength without adding alloying components such as Mo.
From this point of view, a relatively large amount of Cr is added, and in particular, if it is less than 0.2%, it is ineffective, so the lower limit is set to 0.2%, and if it exceeds 1.0%, cracking susceptibility increases and toughness deteriorates, so the upper limit was set to 1.0%. . V is absolutely necessary to increase strength through precipitation hardening during tempering under conditions where alloying components such as Mo are not added. , is effective in stably obtaining strength after tempering.
If it exceeds 0.02%, it will not be effective, and if it exceeds 0.08%, it will cause cracking, so the lower limit should be set at 0.02%, and the upper limit should be set at 0.02%.
It was limited to 0.08%. Al is also used as a deoxidizing material, and if it is less than 0.02%, it has no deoxidizing effect, and if it is more than 0.1%, it will cause a decrease in toughness, so the lower limit should be 0.02%. The upper limit was set at 0.1%. Ti is necessary to fix N in the steel and maximize the effects of B, such as improving the hardenability described below, and if it is less than 0.005%, it will not be effective, and if it is added more than 0.05%, it will significantly reduce the toughness. Since it causes deterioration, set the lower limit.
0.005%, with an upper limit of 0.05%. B, together with V, exhibits the effect of improving hardenability and stabilizing strength after tempering, and is an essential component under conditions where Mo is not added. This effect is significant in the range of 0.0005 to 0.005%, so
limited to this range. In addition, in the above component system, one or both of Ni or Nb can be added, and the addition of Ni improves the toughness, and in order to obtain this effect, at least about 0.10% is required, so the lower limit is 0.10%. did. The upper limit was set at 0.30% for economic reasons. Also,
Nb improves strength and toughness and is an effective component. From this point of view, the lower limit was set at 0.015%, and the upper limit was set at 0.035% from economical considerations. After hot working, steel with the above composition is quenched at a temperature of Ac 3 or higher, and then heated to a temperature of 450℃ or higher to 580℃.
Temper in a low temperature range as shown below. The reasons for limiting the tempering temperature to a relatively low temperature range are as follows. That is, steel with the composition shown in D in Table 1 below
Figure 1 shows the relationship between the tempering temperature and strength (0.6% proof stress) as well as the fracture surface transition temperature in the impact test by quenching and tempering at temperatures of 3 or more Ac points. Ta. As shown in Figure 1, when the tempering temperature exceeds 580℃, the target strength (0.6% proof stress 80Kg/mm 2 )
cannot be obtained, especially since it does not contain Mo.
When it enters the temper brittle region, the toughness is poor. Furthermore, if the tempering temperature is lower than 450°C, precipitation of C in the martensite produced by quenching will be insufficient.
Very poor toughness. In short, in the method of the present invention, since the steel has the above-mentioned compositional system, the tempering temperature range in which the target strength is achieved and the toughness is good exists in a slightly lower temperature range than usual. For these reasons, the lower limit of the tempering temperature was set at 450°C and the upper limit was set at 580°C. As for the quenching method, there are conventional reheating quenching methods and surface quenching methods that have been developed in recent years, and the method of the present invention can realize any of these methods. Next, examples will be described. Steels with the seven chemical compositions A to G shown in Table 1 are
Hardening was performed under the hardening conditions shown in Table 2, followed by tempering under the tempering conditions shown in Table 2, to produce oil country tubular goods shown in the notes of Table 2. The mechanical properties of these oil country tubular goods were determined and were as shown in Table 2. In Table 1, steels A and B have a composition system containing Cr and Mo, and steel C has a composition system that is reinforced by V, Nb, etc.
Steels D and E consist of the components included in the present invention, and steel E
also has components falling within claim 2. Furthermore, the quenching methods are compared between ordinary reheating quenching and direct quenching, which has been significantly developed in recent years. As shown in Tables 1 and 2, the method of the present invention
Although the composition does not contain Mo, it is clear that if tempered in the temperature range, it will exhibit a 0.6% yield strength of 80 kg/mm 2 or more and notch toughness equivalent to CrMo steels A and B, regardless of the tempering method. be. As described above, the method of the present invention has the economic effect of saving effective elements such as Mo, as well as the economic effect of reducing the optimum tempering temperature by about 100 degrees Celsius compared to ordinary CrMo steel, thereby saving fuel. It will greatly contribute to the economical production of oil country tubular materials with extremely large, high strength and excellent toughness.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る成分系における焼戻し温
度と強度ならびに靱性との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between tempering temperature and strength and toughness in the component system according to the present invention.

Claims (1)

【特許請求の範囲】 1 鋼にMo添加せずに、鋼を熱間加工後焼入れ
ならびに焼戻して高強度油井管を製造する際に、
この鋼にC 0.20〜0.35%、Si 0.10〜0.50%、
Mn 1.0〜1.6%、P 0.03%以下、S 0.02%以
下、Al 0.02〜0.10%、Ti 0.005〜0.050%を含ま
せるほか、Cr 0.2〜1.0%、V 0.02〜0.08%なら
びにB 0.0005〜0.0050%を含有させ、残部がFe
ならびに不可避的不純物からなるものとし、この
鋼を熱間加工後Ac3点以上の温度より焼入れして
から、450℃以上580℃以下で焼戻し、0.6%耐力
80Kg/mm2以上の高強度を得ることを特徴とする高
強度油井管の製造方法。 2 鋼にMoを添加せずに、鋼を熱間加工後焼入
れならびに焼戻して高強度油井管を製造する際
に、この鋼にC 0.20〜0.35%、Si 0.10〜0.50%、
Mn 1.0〜1.6%、P 0.03%以下、S 0.02%以
下、Al 0.02〜0.10%、Ti 0.005〜0.050%を含ま
せるほか、Cr 0.2〜1.0%、V 0.02〜0.08%、B
0.0005〜0.0050%とともにNi 0.10〜0.30%若し
くはNb 0.015〜0.035%の一種又は2種を含有さ
せ、残部がFeならびに不可避的不純物からなる
ものとし、この鋼を熱間加工後Ac3点以上の温度
より焼入れしてから、続いて450℃以上580℃以下
で焼戻し、0.6%耐力80Kg/mm2以上の高強度を得
ることを特徴とする高強度油井管の製造方法。
[Claims] 1. When manufacturing high-strength oil country tubular goods by quenching and tempering steel after hot working without adding Mo to the steel,
This steel contains 0.20-0.35% C, 0.10-0.50% Si,
In addition to containing Mn 1.0-1.6%, P 0.03% or less, S 0.02% or less, Al 0.02-0.10%, Ti 0.005-0.050%, Cr 0.2-1.0%, V 0.02-0.08% and B 0.0005-0.0050%. The remainder is Fe.
After hot working, this steel is quenched at a temperature of Ac 3 or higher, and then tempered at a temperature of 450°C or higher and 580°C or lower to achieve a yield strength of 0.6%.
A method for manufacturing high-strength oil country tubular goods characterized by obtaining high strength of 80 Kg/mm 2 or more. 2. When producing high-strength oil country tubular goods by quenching and tempering steel after hot working without adding Mo to the steel, C 0.20 to 0.35%, Si 0.10 to 0.50%,
In addition to containing Mn 1.0-1.6%, P 0.03% or less, S 0.02% or less, Al 0.02-0.10%, Ti 0.005-0.050%, Cr 0.2-1.0%, V 0.02-0.08%, B
In addition to 0.0005 to 0.0050%, one or two of Ni 0.10 to 0.30% or Nb 0.015 to 0.035% is contained, and the remainder consists of Fe and unavoidable impurities, and this steel is heated at a temperature of Ac 3 or higher after hot working. A method for producing high-strength oil country tubular goods, which is characterized by hardening and then tempering at 450°C or higher and 580°C or lower to obtain high strength of 0.6% yield strength of 80Kg/mm 2 or higher.
JP14012783A 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength Granted JPS6033312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14012783A JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14012783A JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Publications (2)

Publication Number Publication Date
JPS6033312A JPS6033312A (en) 1985-02-20
JPH0559176B2 true JPH0559176B2 (en) 1993-08-30

Family

ID=15261523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14012783A Granted JPS6033312A (en) 1983-07-29 1983-07-29 Manufacture of high strength oil-well pipe of 80kg/mm2 min. in 0.6% yield strength

Country Status (1)

Country Link
JP (1) JPS6033312A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064276C (en) * 1994-10-20 2001-04-11 住友金属工业株式会社 Method of manufacturing seamless steel pipes and manufacturing equipment therefor
JP3855300B2 (en) * 1996-04-19 2006-12-06 住友金属工業株式会社 Manufacturing method and equipment for seamless steel pipe

Also Published As

Publication number Publication date
JPS6033312A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US6056833A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
US4062705A (en) Method for heat treatment of high-toughness weld metals
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JPH039168B2 (en)
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPH0559176B2 (en)
JPS61284554A (en) Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JPS5819438A (en) Production of steel pipe having high strength and high toughness
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPH0790380A (en) Production of induction-hardened part
KR920010228B1 (en) Making process for mooring chain steel having a good weldabilty
JP2735161B2 (en) High-strength, high-toughness non-heat treated steel for hot forging
JPH04371547A (en) Production of high strength and high toughness steel
JPH0159333B2 (en)
JP2986601B2 (en) High-strength, tough steel for high-temperature pressure vessels
JPS5819439A (en) Production of high strength steel pipe having excellent low temperature toughness
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JPH0530883B2 (en)
JP2752505B2 (en) High strength low alloy oil well steel with excellent low temperature toughness and sulfide stress corrosion cracking resistance
JPS58171558A (en) Tough nitriding steel
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JPS6256929B2 (en)
JPH049847B2 (en)