JPS6029166B2 - Manufacturing method of superconducting compound wire - Google Patents

Manufacturing method of superconducting compound wire

Info

Publication number
JPS6029166B2
JPS6029166B2 JP52008364A JP836477A JPS6029166B2 JP S6029166 B2 JPS6029166 B2 JP S6029166B2 JP 52008364 A JP52008364 A JP 52008364A JP 836477 A JP836477 A JP 836477A JP S6029166 B2 JPS6029166 B2 JP S6029166B2
Authority
JP
Japan
Prior art keywords
superconducting compound
alloy
superconducting
manufacturing
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008364A
Other languages
Japanese (ja)
Other versions
JPS5394196A (en
Inventor
康男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52008364A priority Critical patent/JPS6029166B2/en
Publication of JPS5394196A publication Critical patent/JPS5394196A/en
Publication of JPS6029166B2 publication Critical patent/JPS6029166B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 この発明は超電導化合物線の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a superconducting compound wire.

超電導性物質の極細線を極低温で常伝導性の良導体と複
合した線材が超電導機器の巻線材として安定化特性上優
れていることは周知であり、NbTiなど可塑性に富む
超電導合金線においてはすでに実用化されている。
It is well known that wires made by combining ultrafine wires of superconducting materials with good normal conductors at extremely low temperatures have excellent stabilizing properties as winding materials for superconducting equipment, and superconducting alloy wires with high plasticity such as NbTi have already been developed. It has been put into practical use.

しかし一般的に知られるNbぶnやV30aの如き超電
導化合物は機械的に脆弱なためこのような極細線にして
複合化した超電導化合物とすることは必ずしも容易では
ない。超電導化合物線を製造する従来の一つの方法とし
て第1図で示される方法がある。この方法では同図aに
示す如く超電導化合物の高融点成分である基体金属の例
えばNbの管村1の中に、これと反応して超電導化合物
Nb3Snを形成する低融点成分のSnを含む反応金属
のCu−Sn合金から成る心材2を挿入し、4.〆Kの
極低温で常伝導性の例えはCuの被覆材3で包囲した組
合体を作る。この組合体を伸縮加工して熱処理すれば管
材1の内面にNbとCu−Sn合金中のSnが選択的に
反応して(Cuは媒介金属で反応にあずからない)超電
導化合物のN広Sn4が生成し、第1図bの断面図に示
す超電導化合物が得られる。この線はNb3Snが禾反
応のま)残ったNbを介してCuと接合しているが、こ
のNbは薄いため、得られた線は熱的電気的伝導性が高
く、通電使用の際の安定化特性も優れている。またこの
線は第1図bを単位とした多心線とすることができる。
しかし従来のこの製造方法の欠点は素材として基体金属
を管材の形で使用するために組合体の伸線が困難なこと
であり、特に多心の場合に顕著である。
However, since commonly known superconducting compounds such as Nbbn and V30a are mechanically fragile, it is not necessarily easy to make such ultra-fine wires into composite superconducting compounds. One conventional method for manufacturing superconducting compound wires is the method shown in FIG. In this method, as shown in FIG. 4. Insert the core material 2 made of Cu-Sn alloy. An example of normal conductivity at an extremely low temperature of K is to make an assembly surrounded by a coating material 3 of Cu. When this assembly is expanded and contracted and heat treated, Nb and Sn in the Cu-Sn alloy selectively react with each other on the inner surface of the tube material 1 (Cu is a mediating metal and does not participate in the reaction). is generated, and a superconducting compound shown in the cross-sectional view of FIG. 1b is obtained. This wire is bonded to Cu via the Nb remaining after the Nb3Sn reaction, but since this Nb is thin, the resulting wire has high thermal and electrical conductivity, and is stable when used with current. It also has excellent chemical properties. Further, this wire can be a multi-core wire with units of FIG. 1b.
However, a drawback of this conventional manufacturing method is that since the base metal is used in the form of a tube as a raw material, it is difficult to wire-draw the assembly, especially when the wire has a large number of cores.

これは主として伸線初期の空隙が消滅する過程における
上記の管の形の素材、即ち管材の不整な変形、およびそ
の後の過程における肉厚の不均一化が原因で破断が起り
易いためである。したがって管村を損体として生成する
超電導化合物を極細化することは期待し難い。またこの
製造方法の他の大きな欠点はNbなどの基体金属の管村
を使用するため経済的に不利なことである。これらの金
属は一般金属に比べ高融点であり、高温で極度に被酸化
性であるため樟材に比べて管材に加工するためには多額
の費用を要し、更に榛材の如く長尺に製造することが設
備的に困難なため、超電導化合物線の製造能率の低下を
もたらすなどの欠点がある。この発明の製造方法は、こ
のような従来の方法における欠点を全て除去した改良さ
れた方法を提供することを目的としてなされたものであ
る。
This is mainly because breakage is likely to occur due to irregular deformation of the tube-shaped material, that is, the tube material, during the process of eliminating voids at the initial stage of wire drawing, and non-uniformity of wall thickness during the subsequent process. Therefore, it is difficult to expect that superconducting compounds produced using tubes as loss bodies will be made extremely fine. Another major drawback of this manufacturing method is that it is economically disadvantageous because it uses a tube made of a base metal such as Nb. These metals have higher melting points than general metals and are extremely susceptible to oxidation at high temperatures, so it costs a lot of money to process them into pipe materials compared to camphor wood, and they also cannot be made into long lengths like camphor wood. Since it is difficult to manufacture in terms of equipment, there are drawbacks such as a decrease in the manufacturing efficiency of superconducting compound wires. The manufacturing method of the present invention has been made with the object of providing an improved method that eliminates all the drawbacks of the conventional methods.

すなわち、この発明は超電導化合物の高融点成分を含む
基体金属の複数本の綾材から成る層を、該超電導化合物
の低融点成分を含む反応金属と4.20Kで常伝導性の
金属とを分離する様に両者の中間に配置した組合体を作
り、この組合体を加工して中間体とした後、熱処理する
か、城はこの中間体を更に集東して加工した後熱処理す
ることを特徴とする超電導化合物線の製造方法である。
この方法によれば従来の方法における如く基体金属を管
材とせず榛材のまま使用するので目的とする線材の加工
性が著しく改善され、多数の極細な超電導化合物の心線
から或る線材を製造することが容易となる。また蓬材は
管材に比でて安価であり、最尺化できるため、超電導化
合物線の大量生産を可能ならしめ、経済的利点も大きい
ことは明白である。
That is, this invention separates a layer consisting of a plurality of strands of a base metal containing a high melting point component of a superconducting compound from a reactive metal containing a low melting point component of the superconducting compound and a metal that is normal conductive at 4.20K. A combination body placed between the two is made, and this combination body is processed into an intermediate body, and then heat treated, or this intermediate body is further concentrated, processed, and then heat treated. This is a method for manufacturing a superconducting compound wire.
According to this method, the base metal is not used as a tube material as in the conventional method, but is used as a raw material, so the workability of the target wire is significantly improved, and a certain wire can be manufactured from a large number of ultra-fine superconducting compound core wires. It becomes easier to do so. In addition, it is clear that mulberry wood is cheaper than pipe material and can be made into the largest length, making it possible to mass-produce superconducting compound wires and having great economic advantages.

次にこの発明の一実施例を図にもとずし、て説明する。
第2図は超電導化合物がNCSnの場合の一実施例にお
ける線材類の横断面を示した図で、まず同函aの如くC
uから成る被覆材3とCu−Sn合金の心材2との間に
Nbから成る榛材5を複数本配列した層を設けて被覆材
と心材を分離せしめた構造の組合体をつくる。Nbの綾
体同志はできるだけ近接して配置されることが望ましく
、太さの異なる榛材で空隙を更に充填することもできる
。次にこの組合体を押出し、圧延、引抜きあるいは伸線
などの方法でCu−Sn合金の加工硬化に対する中間焼
純を附加しながら線状に加工して第2図bに示す中間体
をつくる。この線状に加工する工程でNbの榛村5は塑
性加工を受けて変形し、隣接する榛材間に一種のはめ合
い結合が起り強固に連結した層が形成され、Cuの被覆
材3とCu−Sn合金の心材2との間の隔壁となる。中
間体への加工は極めて容易であり、前記の従釆の方法の
Nbの管村における如き偏肉や破断も起らず安定である
。このような組合体から中間体への良好な加工性は主と
して組合体の空隙が消滅し素材が密接してゆく毅段でN
bの榛材が内部応力に従って互いにすべり合いながら平
衡し、局部的に極端な変形が起らないためであろうが、
機構の詳細は未だ明らかではない。組合体のNbの様村
5を多少とも暁錨して軟質化して使えば更に良好な加工
性と樺村間の連結性が得られる。さらに所望の太さに加
工した中間体を600〜100ぴ0の温度に加熱すれば
Cu−Sn合金の心材2に含まれるSnが綾村のNbと
選択的に反応して超電導化合物4としてN広Snを生成
する。Nbの榛材間の連結は必ずしも化学的結合をして
いないが、上記選択的反応で化学的に生成する上記NC
Snは連続した管状体となり、第2図cに示す超電導化
合物線となる。上記中間体の状態ではN材軍材の上記の
如き配列から成る隔壁が心材に含まれるSnを内部的に
封入し、即ち該NbかSn拡散のストッパーとなり、熱
処理の制御によって外側のCu被覆材3のSnによる汚
染を適切に防止することができ、結果的に外側にuの上
述の高い熱的及び電気的伝導性を保持することになる。
この実施例の組合体を構成する基体金属は、Nbの外に
Nb−Zr合金(Zr=0.5〜5W%)、Nb一Ti
合金(Ti=0.5〜11W%)とすることができ、生
成するNはSn超電導化合物の電流特性を向上せしめる
Next, one embodiment of the present invention will be described with reference to the drawings.
Figure 2 is a diagram showing a cross section of wire rods in an example in which the superconducting compound is NCSn.
A layer in which a plurality of Nb strips 5 are arranged is provided between a covering material 3 made of U and a core material 2 made of a Cu--Sn alloy to create an assembly having a structure in which the covering material and the core material are separated. It is desirable that the Nb twills be arranged as close to each other as possible, and the gaps may be further filled with comb materials of different thicknesses. Next, this assembly is extruded and processed into a wire shape by rolling, drawing, or wire drawing while adding intermediate sintering for work hardening of the Cu-Sn alloy to produce the intermediate shown in FIG. 2b. In this process of linear processing, the Nb material 5 undergoes plastic processing and deforms, and a kind of fitting connection occurs between the adjacent material to form a strongly connected layer, and the Cu covering material 3 and the Cu - It becomes a partition wall between the core material 2 of the Sn alloy. Processing into an intermediate is extremely easy, and is stable without uneven thickness or breakage as in the case of the Nb tube in the secondary method described above. Good processability from such an assembly to an intermediate is mainly due to the N stage in which the voids in the assembly disappear and the materials become close together.
This is probably because the bamboo wood in b slides against each other according to internal stress and balances, and no local extreme deformation occurs.
The details of the mechanism are still unclear. Even better workability and connectivity between the birch strips can be obtained if the Nb fibers 5 of the assembly are softened to some extent and used as anchors. Furthermore, if the intermediate body processed to the desired thickness is heated to a temperature of 600 to 100 mm, the Sn contained in the core material 2 of the Cu-Sn alloy will selectively react with the Nb of Ayamura, forming the superconducting compound 4. Generate wide Sn. The connections between the Nb bamboo materials are not necessarily chemically bonded, but the above-mentioned NCs are chemically generated by the above-mentioned selective reaction.
The Sn becomes a continuous tubular body and becomes a superconducting compound wire as shown in FIG. 2c. In the state of the intermediate, the partition wall consisting of the above arrangement of N materials internally encapsulates the Sn contained in the core material, that is, serves as a stopper for the diffusion of the Nb and Sn, and by controlling the heat treatment, the outer Cu coating is The contamination by Sn of No. 3 can be adequately prevented, and as a result, the above-mentioned high thermal and electrical conductivity of U is maintained on the outside.
In addition to Nb, the base metals constituting the combination of this example include Nb-Zr alloy (Zr=0.5-5W%), Nb-Ti
It can be made into an alloy (Ti=0.5 to 11 W%), and the generated N improves the current characteristics of the Sn superconducting compound.

合金の上限濃度はこの例の構造の組合体の縮径加工性の
限界である。またNb一Ta合金(Ta=0.5〜15
W%)、Nb−V合金(V=0.5〜7W%)は強度が
高く、加工性を高めるために有用である。心材2のCu
−Sn合金のSn濃度は、Snの絶体量を増すため高濃
度が望ましいが、16W%以上では均一固溶体が得られ
ないため極端に延性を失ない、また2W%以下ではNb
ぶnの生成速度が遅く実用的でないため2〜16W%の
範囲とするのが適当である。第8図はこの発明の多0の
NなSn超電導化合物線の製造実施例における多心の組
合体を示す図で、第2図aの組合体又は同図bの中間体
に相当する中間素材7の多数本を集東して、Cuの外部
被覆材6で包囲し排気密封した状態を示す。
The upper concentration limit of the alloy is the limit for the down-reduction processability of the structural assembly of this example. Also, Nb-Ta alloy (Ta=0.5~15
W%), Nb-V alloy (V=0.5 to 7W%) has high strength and is useful for improving workability. Heartwood 2 Cu
-A high Sn concentration in the Sn alloy is desirable in order to increase the absolute amount of Sn, but if it exceeds 16 W%, a uniform solid solution cannot be obtained and the ductility will not be extremely lost, and if it is below 2 W%, the Nb
Since the production rate of carbon is too slow to be practical, a range of 2 to 16 W% is appropriate. FIG. 8 is a diagram showing a multicore assembly in a manufacturing example of a multi-N Sn superconducting compound wire of the present invention, and shows an intermediate material corresponding to the assembly in FIG. 2a or the intermediate body in FIG. 2b. The figure shows a state in which a large number of Nos. 7 are gathered together, surrounded by a Cu outer covering material 6, and sealed for exhaust gas.

この多心の組合体を500〜800℃の温度で押出し加
工すれば第2図bの中間体に相当する部分を多数内蔵し
た多心の中間体となる。これを250〜600℃の温度
で中間燐鈍を適宜加えながら冷間伸線したのちアルゴン
気流中で加熱すれば、第2図cの4に対応する管状のN
QSnの心線を多数内包した多心超電導化合物線が得ら
れる。この時のNbぶル0線の直径は通常30ミクロン
以下であり、1ミクロンとすることも可能であるが、こ
の太さは母体となるNbの榛材5が形成する管状の層の
径によって制御することができる。多心の組合体を構成
する中間素材7は第2図aの組合体の状態のものを使用
してもよいが、これを加工してあらかじめ内部の空隙を
消滅せしめ、Nbの樟材間の連結を強化した同図bの如
き中間体を使用すればCu一Sn合金とCuとの遮断が
完全となりより効果的である。多心超電導化合物線はこ
のように前記実施例における単心線の場合と同様のプロ
セスで製造でき、複数本の基体金属の榛材の層によって
反応金属と常伝導金属を分離した構造の線材を作すて熱
処理するこの方法の特徴は共通であり、超電導化合物の
極細線を良導体に埋設した線が容易に得られる。第4図
は超電導化合物がV30aの場合の実施例における組合
体を示す図で、Cu−Ga合金(Ga=2〜13W%)
の被覆材10と高純度のCuから成る心材9との間に、
V又は、V−Zr合金(Zr=0.5〜6W%)の複数
本の榛材8の層を設けて作られる。
If this multi-core assembly is extruded at a temperature of 500 DEG to 800 DEG C., a multi-core intermediate containing many parts corresponding to the intermediate shown in FIG. 2b will be obtained. If this is cold drawn at a temperature of 250 to 600°C while adding intermediate phosphorus annealing as appropriate, and then heated in an argon stream, a tubular N
A multi-core superconducting compound wire containing a large number of QSn core wires is obtained. The diameter of the Nb blue wire at this time is usually 30 microns or less, and it can also be 1 micron, but this thickness depends on the diameter of the tubular layer formed by the base Nb bamboo material 5. can be controlled. The intermediate material 7 constituting the multi-core assembly may be the one in the state of the assembly shown in Figure 2a, but it is processed to eliminate the internal voids in advance, and the spaces between the Nb camphor wood are If an intermediate body with strengthened connection as shown in FIG. 2B is used, the Cu-Sn alloy and Cu will be completely blocked, which will be more effective. The multi-core superconducting compound wire can be manufactured by the same process as the single-core wire in the above example, and the wire has a structure in which the reactive metal and the normal conductive metal are separated by a plurality of base metal layers. This method of fabricating and heat-treating has common features, and it is easy to obtain wires in which ultrafine wires of superconducting compounds are embedded in a good conductor. FIG. 4 is a diagram showing an assembly in an example in which the superconducting compound is V30a, in which Cu-Ga alloy (Ga = 2 to 13 W%)
Between the coating material 10 and the core material 9 made of high purity Cu,
It is made by providing a plurality of layers of bamboo wood 8 made of V or V-Zr alloy (Zr=0.5 to 6 W%).

ここでCu−Ga合金とV一Zr合金の組成範囲は前述
の例におけるCu−Sn合金およびNb−Zr合金の組
成と同様の理由によって選択される。この組合体250
〜550午0の温度で適宜中間擬錨して引抜き、伸線加
工したのち500〜80び○の温度で熱処理すれば被覆
材101こ含まれるGaと、V又はV一Zr合金の綾材
との反応によってV3Gaをその外側に生成し、心材の
CuはV一Zて合金によって遮略されGaによって応梁
されることはない。この例において作られるV3Ga超
電導化合物線の構造は第2図cのN広Sn超電導化合物
線の実施例における構造との対比において反応金属と常
伝導金属の内外位置が逆になっているが、複数本の基体
金属の榛材から成る層によって分離される基本的意味に
は変りがない。また第3図の管状の被覆材6をCu−G
a合金で作り、第4図の組立体又は加工した中間体を中
間素材7として挿入すれば、前記NはSn超電導線の例
と同様に多心のVやa超電導化合物線を容易に作ること
ができる。
Here, the composition ranges of the Cu--Ga alloy and the V-Zr alloy are selected for the same reasons as the compositions of the Cu--Sn alloy and the Nb--Zr alloy in the previous example. This combination 250
If the wire is drawn using an appropriate intermediate pseudo-anchor at a temperature of ~550 pm and then heat treated at a temperature of 500 ~ 80 pm, the coating material 101 contains Ga and V or V-Zr alloy twill material. By this reaction, V3Ga is generated on the outside, and the core Cu is blocked by the V-Z alloy and is not exposed to Ga. The structure of the V3Ga superconducting compound wire made in this example is different from the structure of the example of the N-broad Sn superconducting compound wire in FIG. The basic meaning of the book being separated by a layer of metal base material remains the same. In addition, the tubular covering material 6 in Fig. 3 is made of Cu-G.
By inserting the assembled or processed intermediate material shown in FIG. 4 as the intermediate material 7 made of a-alloy, it is possible to easily create a multi-core V or a superconducting compound wire in the same way as the example of the N-Sn superconducting wire. Can be done.

第2図aの組立体の基体金属たるNbの榛材5の横断面
形状は円形であり、第4図の穣材8はかまぼこ形である
が、組立体が縮怪加工を受ける段階で榛材が塑性変形し
て相互に連結した連続層を形成できるものであればよく
、楕円体や当初からはめ合い形の形状でも効果を上げる
ことができる。
The cross-sectional shape of the Nb bar material 5, which is the base metal of the assembly shown in FIG. 2a, is circular, and the material 8 of FIG. Any material can be used as long as the material can be plastically deformed to form interconnected continuous layers, and an ellipsoidal shape or a shape that fits from the beginning can also be effective.

しかし薄板状の基体金属では塑性体変形量が少なく、隣
接する板同志の結合を不完全たらしめるため不適当であ
り、綾材の横断面における最短径と最長径の比はその形
状の種類によらず1〜1/10の範囲であることが望ま
しい。第5図は他の実施例において用いられる反応金属
の心材を示す図で、Sn又はSnに富むSu−Cn合金
(Sn=1〜6肌%)の固体又は粉体から成る内部心材
11をCuから成る内部被覆材12で包囲した混成体で
ある。
However, a thin plate-shaped base metal is not suitable because the amount of plastic deformation is small and the bond between adjacent plates is incomplete, and the ratio of the shortest diameter to the longest diameter in the cross section of the twill material depends on the type of shape. Regardless, it is desirable that it be in the range of 1 to 1/10. FIG. 5 is a diagram showing the reactive metal core material used in another embodiment, in which the inner core material 11 made of a solid or powder of Sn or Sn-rich Su-Cn alloy (Sn=1 to 6%) is replaced with Cu. It is a composite body surrounded by an inner covering material 12 consisting of.

この混成体から成る心材を第2図aのCu−Sn合金か
ら成る心材2の代りに用いれば、この混成体の構成素材
であるCuとSn又はSu−Cn合金はCu−Sn合金
の如く冷間加工によって硬化して延性を失うことがなく
、中間焼鎚なしでも通常必要とされる太さまで加工でき
、熱処理によって最終的に第2図cに類似の超電導化合
物線とすることができる。また多心線の製造にも等しく
適用できることは明らかである。しかしこの構造の心材
は強度的に弱いSn又はSn−Cu合金の内部心材11
をCuの内部被覆材12によって強化したものであり、
これが薄過ぎると被断することから、内部被覆材の心材
に占める容積率は20〜5びol.%とすることが組合
体の一体製線性を高めるために適当である。以上限られ
た数の実施例について、この発明を説明した。
If the core material made of this hybrid is used in place of the core material 2 made of the Cu-Sn alloy shown in Fig. 2a, the constituent materials of this composite, Cu and Sn or the Su-Cn alloy, will cool as well as the Cu-Sn alloy. It does not harden and lose its ductility during processing, can be processed to the normally required thickness without an intermediate hammer, and can finally be made into a superconducting compound wire similar to that shown in FIG. 2c by heat treatment. It is clear that it is equally applicable to the production of multi-filament wires. However, the core material of this structure is an internal core material 11 made of Sn or Sn-Cu alloy, which has weak strength.
is reinforced with an internal coating material 12 of Cu,
If it is too thin, it will break, so the volume ratio of the inner covering material to the core material should be 20 to 5 mol. % is suitable for improving the integral wire manufacturing properties of the assembly. The invention has been described above with respect to a limited number of embodiments.

この発明の説明における用語として基体金属とは超電導
化合物の高融点成分であるNb,Vまたはこれらの金属
を主成分とする合金を指す。低融点金属とは該超電導化
合物の低融点成分であるSn,Ga,AI,W,Siか
ら選ばれる単体又は合金、或はこれらの単体又は合金と
媒介金属のCuとの合金又は混成構造の金属を指す。常
伝導金属とは4.〆Kで電気的熱的良導体であるCu,
Ag,AIから選ばれる金属である。したがってこの発
明の方法はNb3SnやV30aから成る超電導化合物
線を対象とするだけでなく、VぶiやN広Snx(AI
,一x)などNb,Vをベースとする他の多元超電導化
合物の線にも適用できる。また第3図に示す組合体又は
これを加工した中間体を中間素材7に用い、集東して加
工する工程を繰り返せば超電導化合物○の本数を更に増
大することができ、基体金属の榛材から成る層によって
常伝導金属と反応金属とを分離した組合体、又は中間体
を用いて実施するこの発明方法は、心数によらないもの
であることが理解されよう。以上の説明から明らかなよ
うに、この発明は、超電導化合物の高融点成分を含む基
体金属の複数本の綾材の配列から成る層を、該超電導化
合物の低融点成分を含む反応金属及び4.20Kで電気
的熱的良導体である常伝導金属とを分離する様にそれら
の中間に配置した組合体を作り、この組合体を棒状に加
工したのち熱処理するようにしたものである。
In the description of this invention, the term "base metal" refers to Nb, V, which are high melting point components of a superconducting compound, or alloys containing these metals as main components. The low melting point metal is a simple substance or alloy selected from Sn, Ga, AI, W, and Si, which are low melting point components of the superconducting compound, or a metal with an alloy or hybrid structure of these simple substances or alloys and Cu as a mediating metal. refers to 4. What is a normal conducting metal? Cu, which is a good electrical and thermal conductor at 〆K,
It is a metal selected from Ag and AI. Therefore, the method of this invention not only targets superconducting compound wires made of Nb3Sn and V30a, but also
, 1x) and other multicomponent superconducting compounds based on Nb and V. In addition, if the assembly shown in Fig. 3 or an intermediate processed from this is used as the intermediate material 7, and the process of focusing and processing is repeated, the number of superconducting compounds ○ can be further increased, and the number of superconducting compounds ○ can be further increased. It will be appreciated that the method of the present invention, carried out using an assembly or intermediate in which a normal metal and a reactive metal are separated by a layer comprising: As is clear from the above description, the present invention provides a layer consisting of an arrangement of a plurality of strands of a base metal containing a high melting point component of a superconducting compound, a reactive metal containing a low melting point component of the superconducting compound, and 4. At 20K, a normal conductive metal, which is a good electrical and thermal conductor, is separated and placed in the middle to form an assembly, and this assembly is processed into a rod shape and then heat treated.

従って、上述基体金属、より具体的にはNbの管状体を
用いる方法に比し製造コストの著しい低減及び生産性の
向上が得られ、かつ上記例えばCuに対するSn拡散に
よる汚染が適切に防止され高い熱的及び電気伝導性を保
ち得るなど特性の安定化が得られる効果ががある。
Therefore, compared to the method using the above-mentioned base metal, more specifically, the Nb tubular body, a significant reduction in manufacturing cost and an improvement in productivity can be obtained, and the above-mentioned contamination due to Sn diffusion to Cu, for example, can be appropriately prevented and high It has the effect of stabilizing properties such as maintaining thermal and electrical conductivity.

【図面の簡単な説明】 第1図a,bはそれれぞれ従来の方法による素材の組合
体と超電導化合物線の断面図である。 第2図a,b,cはそれぞれこの発明の実施例における
組合体、中間体および超電導化合物線の断面図である。
また第3図、第4図はこの発明の他の実施例における組
合体の断面図、第5図は他の実施例における混成体から
成る心材の断面図である。
.図面において、1はNbの管材、2はCu−S
n合金の心材、3はCuの被覆材、4はNb3Snの生
成物、5はNbの機材、7は中間素材、8はV又はV−
Zr合金の榛材、9はCuの心材、10はCu−Ga合
金の被覆材、11は内部心材である。 第1図第2図 第3図 第4図 第5図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1a and 1b are cross-sectional views of a material assembly and a superconducting compound wire, respectively, obtained by a conventional method. FIGS. 2a, 2b, and 2c are sectional views of an assembly, an intermediate, and a superconducting compound wire in an embodiment of the present invention, respectively.
3 and 4 are cross-sectional views of an assembly according to another embodiment of the present invention, and FIG. 5 is a cross-sectional view of a core material comprising a composite body according to another embodiment.
.. In the drawing, 1 is Nb tube material, 2 is Cu-S
n alloy core material, 3 is Cu covering material, 4 is Nb3Sn product, 5 is Nb material, 7 is intermediate material, 8 is V or V-
9 is a core material of Cu, 10 is a covering material of Cu--Ga alloy, and 11 is an internal core material. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 超電導化合物の高融点成分を含む基体金属の複数本
の棒材の配列から成る層を、該超電導化合物の低融点成
分を含む反応金属及び4.2°Kで電気的熱的良導体で
ある常伝導金属とを分離する様にそれらの中間に配置し
た組合体を作り、この組合体を線状に加工したのち熱処
理して、超電導化合物を生成せしめることを特徴とする
超電導化合物線の製造方法。 2 組合体が、上記基体金属の複数本の棒材を相互に連
結した層を内蔵する中間体の複数本を集束した組合体で
あることを特徴とする特許請求の範囲第1項記載の超電
導化合物線の製造方法。 3 基体金属棒材の横断面における最短径と最長径との
比が1〜1/10の範囲にあることを特徴とする特許請
求の範囲第1項または第2項記載の超電導化合物線の製
造方法。 4 基体金属が、Nb又はNb−Zr合金(Zrの濃度
が0.5〜5w%)であり、反応金属がCu−Sn合金
(Snの濃度が2〜16w%)であることを特徴とする
特許請求の範囲第1項ないし第3項のいずれかに記載の
超電導化合物線の製造方法。 5 基体金属が、V又はV−Zr合金(Zrの濃度が0
.5〜6w%)であり、反応金属がCu−Ga合金(G
aの濃度が2〜13w%)であることを特徴とする特許
請求の範囲第1項ないし第3項のいずれかに記載の超電
導化合物線の製造方法。 6 反応金属が、Snの固体又は粉体をCuで外部的に
被覆した混成体から成り、この混成体に占めるCuの容
積率が20〜50vol.%であることを特徴とする特
許請求の範囲第4項記載の超電導化合物線の製造方法。 7 超電導化合物線に含まれる超電導化合物から成る心
線の直径が1〜30ミクロンであることを特徴とする特
許請求の範囲第1項ないし第6項のいずれかに記載の超
電導化合物線の製造方法。
[Claims] 1. A layer consisting of an array of a plurality of rods of a base metal containing a high melting point component of a superconducting compound is electrically heated at 4.2°K with a reactive metal containing a low melting point component of the superconducting compound. A superconductor characterized in that a normal conductive metal, which is a good thermal conductor, is separated from the other and placed in the middle to form an assembly, and this assembly is processed into a linear shape and then heat-treated to produce a superconducting compound. Method for manufacturing compound wire. 2. The superconductor according to claim 1, wherein the assembly is a bundle of a plurality of intermediate bodies each containing a layer in which a plurality of bars of the base metal are interconnected. Method for manufacturing compound wire. 3. Production of a superconducting compound wire according to claim 1 or 2, wherein the ratio of the shortest diameter to the longest diameter in the cross section of the base metal bar is in the range of 1 to 1/10. Method. 4. The base metal is Nb or Nb-Zr alloy (Zr concentration 0.5 to 5 w%), and the reaction metal is Cu-Sn alloy (Sn concentration 2 to 16 w%). A method for manufacturing a superconducting compound wire according to any one of claims 1 to 3. 5 The base metal is V or V-Zr alloy (Zr concentration is 0)
.. 5 to 6 w%), and the reactive metal is Cu-Ga alloy (G
The method for manufacturing a superconducting compound wire according to any one of claims 1 to 3, wherein the concentration of a is 2 to 13 w%). 6. The reactive metal consists of a hybrid body in which Sn solid or powder is externally coated with Cu, and the volume fraction of Cu in this composite body is 20 to 50 vol. % of the superconducting compound wire according to claim 4. 7. The method for producing a superconducting compound wire according to any one of claims 1 to 6, wherein the diameter of the core wire made of the superconducting compound contained in the superconducting compound wire is 1 to 30 microns. .
JP52008364A 1977-01-28 1977-01-28 Manufacturing method of superconducting compound wire Expired JPS6029166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008364A JPS6029166B2 (en) 1977-01-28 1977-01-28 Manufacturing method of superconducting compound wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008364A JPS6029166B2 (en) 1977-01-28 1977-01-28 Manufacturing method of superconducting compound wire

Publications (2)

Publication Number Publication Date
JPS5394196A JPS5394196A (en) 1978-08-17
JPS6029166B2 true JPS6029166B2 (en) 1985-07-09

Family

ID=11691169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008364A Expired JPS6029166B2 (en) 1977-01-28 1977-01-28 Manufacturing method of superconducting compound wire

Country Status (1)

Country Link
JP (1) JPS6029166B2 (en)

Also Published As

Publication number Publication date
JPS5394196A (en) 1978-08-17

Similar Documents

Publication Publication Date Title
EP0054421B1 (en) Method of manufacture of multifilamentary intermetallic superconductors
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JPS61194155A (en) Production of nb3sn superconductive wire
EP0045584B1 (en) Methods of making multifilament superconductors
JPS6215967B2 (en)
JPS6029166B2 (en) Manufacturing method of superconducting compound wire
JP3534428B2 (en) Manufacturing method of oxide high temperature superconducting wire
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JPS6021212B2 (en) Method for manufacturing superconducting materials
JP3070969B2 (en) Superconducting wire manufacturing method
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH0492316A (en) Manufacture of compound linear material
JPH0381247B2 (en)
JPS596004B2 (en) V3SI
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPS5832308A (en) Method of producing compound series composite superconductive wire
JPS604573B2 (en) Manufacturing method of compound hollow superconducting magnet
JPH0286015A (en) Stabilized copper element wire for compound superconducting strand wire and manufacture of superconducting strand wire
JPH0315115A (en) Metal-coated oxide superconductor wire
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH03230421A (en) Manufacture of nb3al superconducting wire
JPS6050012B2 (en) Manufacturing method of composite superconducting wire