JPH0286015A - Stabilized copper element wire for compound superconducting strand wire and manufacture of superconducting strand wire - Google Patents

Stabilized copper element wire for compound superconducting strand wire and manufacture of superconducting strand wire

Info

Publication number
JPH0286015A
JPH0286015A JP63236112A JP23611288A JPH0286015A JP H0286015 A JPH0286015 A JP H0286015A JP 63236112 A JP63236112 A JP 63236112A JP 23611288 A JP23611288 A JP 23611288A JP H0286015 A JPH0286015 A JP H0286015A
Authority
JP
Japan
Prior art keywords
wire
superconducting
copper
stabilized copper
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63236112A
Other languages
Japanese (ja)
Other versions
JP2719155B2 (en
Inventor
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Masaru Sugimoto
優 杉本
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP63236112A priority Critical patent/JP2719155B2/en
Publication of JPH0286015A publication Critical patent/JPH0286015A/en
Application granted granted Critical
Publication of JP2719155B2 publication Critical patent/JP2719155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To satisfactorily stabilize the superconductive characteristic by providing a core section made of pure copper and a diffusion preventing layer covering this core section then covering a cover metal layer on it. CONSTITUTION:An in situ ingot 10 of a bar with the diameter of about tens mm is first formed as the structure dispersed with numerous Nb dendrite crystals in a raw material made of Cu or Cu-Sn alloy. An insitu element wire 11 is then formed, and the torsion with the pitch of several mm is applied to it to obtain an insitu wire 12. An Sn-plated layer with the thickness of several mum to tens mum is formed on the outer periphery of the wire 12, and multiple (seven in the figure) plated wires 14 are collected and twisted to form a strand wire 15. On the other hand, a composite body 16 having a diffusion preventing layer 18 made of To or Nb and covered on a core section 17 made of pure copper and a cover layer 19 made of Cu-Sn alloy on its outer periphery is formed. This composite body 16 is shrunk to the same diameter as that of the strand wire 15 to obtain a stabilized copper element wire 20, multiple wires 15 and 20 are collected in turn and twisted, it is heat-treated at 500-650 deg.C, Nb and Sb are reacted, the strand wire 15 is made a superconducting strand wire 22, and a superconducting strand wire A is obtained together with the copper element wire 20.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明はNb3Snなどの化合物系の超電導撚線用安
定化銅素線おとび超電導撚線の製造方法に関するもので
、特に、超電導金属間化合物を生成させる拡散熱処理に
よって安定化銅の汚染がなされないようにするものであ
る。
Detailed Description of the Invention "Field of Industrial Application" This invention relates to stabilized copper wires for superconducting stranded wires based on compounds such as Nb3Sn, and methods for producing superconducting stranded wires, and in particular to methods for producing superconducting stranded wires. This is to prevent contamination of the stabilized copper due to the diffusion heat treatment that produces .

「従来の技術」 従来から、この種の化合物系超電導線を製造する方法の
代表例として、ブロンズ法と内部スズ拡散法と外部スズ
拡散法が知られている。
"Prior Art" Conventionally, the bronze method, internal tin diffusion method, and external tin diffusion method have been known as representative examples of methods for manufacturing this type of compound-based superconducting wire.

ブロンズ法とは、Cu−Sn合金(ブロンズ)製の基地
の内部に多数のNbフィラメントを配した素線を作成し
、この素線を拡散熱処理してSnを拡散させ、Nb、S
n超電導フィラメントを生成させる方法である。
The bronze method involves creating a wire with a large number of Nb filaments arranged inside a base made of a Cu-Sn alloy (bronze), and then performing diffusion heat treatment on this wire to diffuse Sn.
This is a method for producing n-superconducting filaments.

また、内部スズ拡散法とは、銅あるいは調合金製の基地
の内部にNbフィラメントを配する際に、基地の内部に
スズロッドあるいはスズメツキ層を被覆したNbロッド
を複合して縮重加工を行い、次いで拡散熱処理を施して
Snを拡散させ、Nbフィラメントの周囲にNb5Sn
超電導金属間化合物フィラメントを生成させる方法であ
る。
In addition, the internal tin diffusion method is when placing an Nb filament inside a base made of copper or a prepared alloy, a tin rod or a Nb rod coated with a tin plating layer is composited inside the base and degenerated processing is performed. Next, diffusion heat treatment is performed to diffuse Sn, and Nb5Sn is formed around the Nb filament.
This is a method for producing superconducting intermetallic compound filaments.

更に、外部スズ拡散法とは、銅あるいは銅合金基地の内
部にNbフィラメントを多数配置して線材を作成し、こ
の線材の外面にスズメツキ層を形成して素線を作成し、
この素線を拡散熱処理してSnを拡散させ、Nbフィラ
メントの外周部にNb。
Furthermore, the external tin diffusion method involves arranging a large number of Nb filaments inside a copper or copper alloy base to create a wire, forming a tin plating layer on the outer surface of this wire to create a wire,
This wire is subjected to diffusion heat treatment to diffuse Sn, and Nb is added to the outer periphery of the Nb filament.

Sn超電導フィラメントを生成させる方法である。This is a method for producing Sn superconducting filaments.

ところで従来から、前記様々の方法で製造されたNb、
Sn系の超電導線に適用されている安定化銅の構造例と
して、第6図と第7図に示される構造のものが知られて
いる。
By the way, conventionally, Nb produced by the various methods mentioned above,
As examples of structures of stabilized copper applied to Sn-based superconducting wires, structures shown in FIGS. 6 and 7 are known.

第6図に示す従来の安定化銅の構造例は、安定化母材か
らなる基地の内部に多数のNb3Sn超電導フィラメン
トを配して超電導導体部Iを構成し、この超電導導体部
■を拡散防止層2を介して安定化銅3で覆ってなる構造
である。また、第7図に示す安定化銅の構造例は、芯状
の安定化銅5の外周を拡散防止層6で覆い、さらにその
外周を安定化母材の内部に多数のNb5Sn超電導フイ
ラメントを配した筒状の超電導導体部7で覆ってなる構
造である。
In the conventional stabilized copper structure shown in Fig. 6, a large number of Nb3Sn superconducting filaments are arranged inside a base made of a stabilizing base material to form a superconducting conductor part I, and this superconducting conductor part ■ is prevented from diffusing. It has a structure in which a layer 2 is interposed and a stabilized copper layer 3 is covered. In addition, in the structure example of stabilized copper shown in FIG. 7, the outer periphery of a core-shaped stabilized copper 5 is covered with a diffusion prevention layer 6, and a large number of Nb5Sn superconducting filaments are arranged around the outer periphery inside the stabilizing base material. This structure is covered with a cylindrical superconducting conductor portion 7.

「発明が解決しようとする課題」 第6図に示す構造例では、前記ブロンズ法あるいは内部
スズ拡散法を適用できるものの、外部スズ拡散法には適
用できない問題がある。即ち、第6図に示す超電導線を
製造する場合、安定化銅3の外周にスズメツキを施して
拡散熱処理を行ったのでは、拡散熱処理によって安定化
銅がスズで汚染されて極低温時の電気抵抗が増加するた
めである。
``Problems to be Solved by the Invention'' In the structural example shown in FIG. 6, there is a problem in which the bronze method or the internal tin diffusion method can be applied, but the external tin diffusion method cannot be applied. That is, when manufacturing the superconducting wire shown in FIG. 6, if the outer periphery of the stabilized copper 3 is tinned and then subjected to diffusion heat treatment, the stabilized copper will be contaminated with tin due to the diffusion heat treatment, and the electricity at extremely low temperatures will deteriorate. This is because resistance increases.

第7図に示す構造例は、ブロンズ法や外部スズ拡散法に
適しているものの、この構造では安定化銅の比率(安定
化銅以外の部分に対する比率)を高めることができない
欠点がある。例えば、安定化鋼と、それ以外の部分の比
率をl=1とすると、線材の直径に対し、安定化鋼の直
径が70%を越えるようになる。しかも、このような超
電導線を製造する場合は、超電導線の構成として安定化
銅の比率を予め決定して製造を開始しているので、むや
みに安定化銅の比率を変更できない問題がある。
Although the structure example shown in FIG. 7 is suitable for the bronze method or the external tin diffusion method, this structure has the drawback that the ratio of stabilized copper (ratio to parts other than stabilized copper) cannot be increased. For example, if the ratio of the stabilizing steel to the other parts is l=1, the diameter of the stabilizing steel will exceed 70% of the diameter of the wire. Furthermore, when manufacturing such a superconducting wire, the ratio of stabilizing copper in the composition of the superconducting wire is determined in advance and manufacturing is started, so there is a problem that the ratio of stabilizing copper cannot be changed unnecessarily.

ところで、超電導発電機用あるいは大容量用に用いられ
る超電導線は素線のみでは電流容量が不足であるので撚
線導体化ずろことが一般的である。
By the way, superconducting wires used for superconducting power generators or large-capacity applications do not have sufficient current capacity if they are made only of strands, so they are generally made into stranded conductors.

特に化合物系の超電導線の場合は、第8図に示すように
複数本の超電導線8を成形撚線として設計し、超電導線
8の占積率を含め、線材全体を機械的強度に優れた撚線
とすることがなされている。
In particular, in the case of compound-based superconducting wires, multiple superconducting wires 8 are designed as formed strands as shown in Figure 8, and the entire wire, including the space factor of the superconducting wires 8, has excellent mechanical strength. Twisted wires are used.

しかも撚線化する場合、機械強度を更に高めるために、
第9図に示すように撚線の中央部にステンレス調帯など
の構造材9を複合することらなされている。
Moreover, when stranding the wires, in order to further increase the mechanical strength,
As shown in FIG. 9, a structural material 9 such as a stainless steel strip is composited in the center of the stranded wire.

ここで超電導線8を成形撚線として設計する場合、成形
撚線に安定化銅線を撚り込めるならば超電導線8の安定
化を掻めて容易に実現でき、しかも撚り込む安定化銅線
の本数により安定化銅の比率を簡単に調整できる111
点がある。ところが、成形撚線として外部スズメツキ法
で用いろスズメツキ線を用い、このスズメツキ線と安定
化銅線を撚線化した後に拡散熱処理を施して超電導撚線
を製造すると、スズメツキのSnが拡散熱処理時に安定
化銅線側に拡散して安定化銅が汚染され、極低温時にお
ける安定化銅の電気抵抗が増加する問題がある。
Here, when designing the superconducting wire 8 as a shaped stranded wire, if the stabilized copper wire can be twisted into the shaped stranded wire, the superconducting wire 8 can be stabilized and easily realized. 111 The ratio of stabilizing copper can be easily adjusted depending on the number of pieces.
There is a point. However, when a superconducting stranded wire is used as a formed stranded wire using the external suzmetuki method, and the suzmetuki wire and stabilized copper wire are stranded and then subjected to diffusion heat treatment to produce a superconducting stranded wire, the Sn of the suzmetuki is absorbed during the diffusion heat treatment. There is a problem that the stabilized copper is contaminated by diffusion to the stabilized copper wire side, and the electrical resistance of the stabilized copper increases at extremely low temperatures.

本発明は、前記課題を解決するためになされたもので、
安定化銅の比率の制御が容易であり、超電導撚線の超電
導特性の安定化が容易にできる安定化銅素線、および、
交流用として優れ、超電導特性の安定した超電導撚線を
製造できる方法を提供することを目的とする。
The present invention has been made to solve the above problems,
A stabilized copper wire in which the ratio of stabilized copper can be easily controlled and the superconducting properties of the superconducting stranded wire can be easily stabilized, and
The object of the present invention is to provide a method for manufacturing a superconducting stranded wire that is excellent for AC use and has stable superconducting properties.

「課題を解決するための手段」 請求項!に記載した発明は前記課題を解決するために、
超電導金属間化合物を構成する2つ以上の元素を含む超
電導素線とともに撚線化され、撚線後に超電導素線とと
もに拡散熱処理される安定化銅素線であって、純銅から
なる芯部とこの芯部を被覆した拡散防止層とこの拡散防
止層を被覆した被覆金属層を具備させたものである。
“Means for solving the problem” Claim! In order to solve the above problems, the invention described in
A stabilized copper wire that is stranded together with a superconducting wire containing two or more elements constituting a superconducting intermetallic compound, and is subjected to diffusion heat treatment together with the superconducting wire after the stranding, and includes a core made of pure copper and a core made of pure copper. It is provided with a diffusion prevention layer covering the core and a coating metal layer covering the diffusion prevention layer.

請求項2に記載した発明は前記課題を解決するために、
純銅からなる芯部とこの芯部を被覆した拡散防止層とを
具備してなる安定化銅素線を超電導金属間化合物を構成
する2つ以上の元素を含む超電導素線とともに複数本集
合して撚線化し、撚線後に超電導金属間化合物を生成さ
せる拡散熱処理を施すものである。
In order to solve the above problem, the invention described in claim 2 has the following features:
A plurality of stabilized copper wires each having a core made of pure copper and a diffusion prevention layer covering this core are assembled together with superconducting wires containing two or more elements constituting a superconducting intermetallic compound. The wires are twisted, and after the wires are twisted, a diffusion heat treatment is performed to generate a superconducting intermetallic compound.

「作用 」 純銅製の芯部を拡散防止層で覆って安定化銅素線が構成
されているので、超電導素線と安定化鋼素線を撚線化し
た後に拡散熱処理する際に、超電導素線に含有されてい
る元素が安定化銅素線側に拡散した場合でもこの元素が
芯部まで拡散することがない。また、安定化銅素線と超
電導素線を撚り込むので、撚り込む本数により安定化銅
の比率が容易に調整され、超電導特性の安定化が容易に
なされる。
``Function'' Since the stabilized copper strand is constructed by covering the pure copper core with a diffusion prevention layer, when the superconducting strand and the stabilized steel strand are stranded and then subjected to diffusion heat treatment, Even if an element contained in the wire diffuses toward the stabilized copper strand, this element will not diffuse into the core. Furthermore, since the stabilized copper wire and the superconducting wire are twisted, the ratio of the stabilized copper wire can be easily adjusted by adjusting the number of twisted wires, and the superconducting properties can be easily stabilized.

「実施例」 第1図(a)ないしくh)は、本発明方法とインサイチ
ュ法を利用してNb3Si系の超電導撚線を装填する場
合の一実施例を示すもので、超電導撚線を製造するには
、まず、第1図(a)に断面構造を示すような直径数1
On+m程度の棒状のインサイチュインコツトlOを作
成する。このインサイチュインゴット10を作成するに
は、特定の組成のCuNb合金あるいはCu−N b−
S n合金などをアーク溶解法などで溶製することによ
り得ることができる。
"Example" Figures 1 (a) to h) show an example of loading Nb3Si-based superconducting stranded wires using the method of the present invention and the in-situ method, and manufacturing superconducting stranded wires. In order to do this, first, the diameter number 1 is
A rod-shaped in-situ in-situ tip lO of about On+m is created. To create this in-situ ingot 10, a CuNb alloy of a specific composition or a Cu-Nb-
It can be obtained by melting a Sn alloy or the like using an arc melting method or the like.

このインサイチュインゴット10は、CuあるいはCu
−Sn合金からなる基地の内部に無数のNbの樹枝状晶
が分散された構造のものであり、加工性の良好なしので
ある。
This in-situ ingot 10 is made of Cu or Cu.
It has a structure in which countless Nb dendrites are dispersed inside a base made of -Sn alloy, and has poor workability.

次にこのインサイチュインゴット10に、鍛造加工ある
いは溝ロール加工または線引加工などの縮径加工を適宜
施して直径0.2〜1mm程度の第1図(b)に示すイ
ンサイチュ素線11を作成する。
Next, this in-situ ingot 10 is suitably subjected to a diameter reduction process such as forging, groove rolling, or wire drawing to create an in-situ wire 11 having a diameter of approximately 0.2 to 1 mm as shown in FIG. 1(b). .

次いでこのインサイチュ素線11に数1ピッチでねじり
を加えるツイスト加工を施してツイストした後に最終伸
線加工を施して第1図(c)に示すインサイチュ線12
を得る。以上のようにインサイチュインゴット10を縮
径することによりNbの樹枝状晶を微細なフィラメント
状に加工することができるとともに、ツイスト加工を施
すことにより微細なフィラメントにねじりを加えること
ができる。
Next, this in-situ strand 11 is subjected to a twisting process in which the wire is twisted at several pitches, and after being twisted, a final wire drawing process is performed to form the in-situ wire 12 shown in FIG. 1(c).
get. By reducing the diameter of the in-situ ingot 10 as described above, the Nb dendrites can be processed into fine filaments, and by performing the twisting process, the fine filaments can be twisted.

続いて前記インサイチュ線12の外周に厚さ数μm〜数
lθμm程度のSnメツキ層を形成して第1図(d)に
示すメツキインサイチュ線14を作成し、このメツキイ
ンサイチュ線(超電導撚線材4を複数本(この実施例で
は7本)集合して撚線化することにより第1図(e)に
示す撚線15を作成する。
Subsequently, a Sn plating layer with a thickness of several μm to several lθ μm is formed on the outer periphery of the in-situ wire 12 to create the plating in-situ wire 14 shown in FIG. 1(d). A plurality of wires (seven in this example) are collected and twisted to create the twisted wire 15 shown in FIG. 1(e).

一方、第1図(「)に示す複合体16を作成する。On the other hand, a composite body 16 shown in FIG. 1 ('') is created.

この複合体i6は、純銅製の芯部17とこの芯部17に
被覆されたTaあるいはNbからなる拡散防止層18と
、拡散防止層18の外周面に被覆されたCu−Sn合金
製の金属被覆層19とから構成され、銅ロッドとTa管
とCu−Sn合金管を複合するなどの手段により作成さ
れる。なお、この例では、芯部17の全体を純銅から構
成したが、芯部17の内部に補強用の金属線などを複合
することば自由である。
This composite i6 includes a core 17 made of pure copper, a diffusion prevention layer 18 made of Ta or Nb coated on the core 17, and a metal made of a Cu-Sn alloy coated on the outer peripheral surface of the diffusion prevention layer 18. It is made up of a coating layer 19, and is made by combining a copper rod, a Ta tube, and a Cu-Sn alloy tube. In this example, the entire core portion 17 is made of pure copper, but the core portion 17 may optionally be provided with reinforcing metal wire or the like.

次に前記複合体16を前記撚線15と同等の外径まで縮
径して第1図(g)に示す安定化銅素線20を得る。
Next, the composite body 16 is reduced in diameter to the same outer diameter as the stranded wire 15 to obtain a stabilized copper wire 20 shown in FIG. 1(g).

続いて前記撚線!5と安定化銅素線2oを複数本用意し
て第1図(h)に示すように交互に複数本集合して撚線
化する。そしてこの撚線を500〜650℃で数10〜
数loo時間加熱する拡散熱処理を施す。この拡散熱処
理によってNbの繊維状フィラメントにSnが拡散して
NbとSnが反応し、Nb*Sn金属間化合物超電導フ
ィラメントが生成して撚線15は超電導撚線材22とな
り、超電導撚線材22と安定化銅素線2oが撚線化され
た第1図(h)に示す超電導撚線Aが得られる。
Next is the twisted wire! A plurality of stabilized copper wires 2o are prepared, and the plurality of stabilized copper wires 2o are alternately assembled and twisted as shown in FIG. 1(h). Then, this twisted wire is heated at 500 to 650℃ to several tens of
Diffusion heat treatment is performed by heating for several hours. Through this diffusion heat treatment, Sn diffuses into the Nb fibrous filament, Nb and Sn react, and a Nb*Sn intermetallic compound superconducting filament is generated. A superconducting stranded wire A shown in FIG. 1(h) in which the copper chloride wires 2o are twisted is obtained.

このように製造された超電導撚線Aにあっては、超電導
撚線材22と安定化銅素線2oが撚線化されているため
に、超電導特性が極めて安定したものとなる。また、超
電導撚線材22の内部にはツイスト加工されたNb3S
n超電導フィラメントが設けられているために、交流通
電時の損失も少なく、超電導発電機用などの交流用超電
導線として好適な構造となっている。
In the superconducting stranded wire A manufactured in this way, since the superconducting stranded wire material 22 and the stabilized copper wire 2o are twisted, the superconducting properties are extremely stable. In addition, inside the superconducting stranded wire 22, twisted Nb3S
Since the n-superconducting filament is provided, there is little loss when AC current is applied, and the structure is suitable as an AC superconducting wire for use in superconducting generators and the like.

なおここで、前記拡散熱処理時に撚線15の外周部に存
在するスズメツキ層から各安定化銅素線20側にSnが
拡散するおそれがある。安定化銅素線20の芯部17に
Snが拡散すると、芯部17の株低温における電気抵抗
が増加して超電導特性の安定化の効果が損なわれるおそ
れがある。ところが前記安定化銅素線20においては、
芯部17が拡散防止層18により覆われているために、
接触している撚線15のSnが拡散熱処理時に拡散して
も拡散防止層18で拡散が抑制され、芯部17h<Sn
で汚染されることがない。従って安定化銅素線20の芯
部17の汚染は防止され、超電導撚線材22は安定化さ
れるので超電導撚線Aの超電導特性は優秀なものとなる
。なお、安定化銅素線20の外周部には、Cu−Sn合
金からなる金属被覆層19が形成されているが、この金
属被覆層19は、Cu−8n−P合金、Cu−S n−
N i合金、Cu−Ni合金などの高抵抗金属材料から
形成してら差し支えない。ただし金属被覆層19の構成
材料は、拡散熱処理時に超電導撚線材22側に拡散して
超電導特性に悪影響を及ぼさないような元素が望ましい
。この点においてCu−Sn合金であると前記影響がな
いばかりか、拡散熱処理時にメツキインサイチュ線14
のスズメツキ層からSnを奪うこともない。すなわち、
金属被覆層19を純銅から形成すると拡散熱処理時にス
ズメツキ層のSnが安定化銅素線20側に多く拡散して
Nb1Sn超電導金属間化合物の生成量が減少するおそ
れがある。なおまた、安定化銅素線20と超電導撚線材
22を撚線化する場合に、それぞれの本数を適宜調節す
るならば、安定化銅部分と超電導導体部分の割合を所望
の値に容易に調節することができる。
Here, during the diffusion heat treatment, there is a possibility that Sn may diffuse from the tin layer existing on the outer periphery of the stranded wires 15 to the side of each stabilized copper wire 20. When Sn diffuses into the core 17 of the stabilized copper strand 20, the electrical resistance of the core 17 at low temperatures increases, which may impair the effect of stabilizing superconducting properties. However, in the stabilized copper wire 20,
Since the core portion 17 is covered with the diffusion prevention layer 18,
Even if the Sn of the stranded wires 15 in contact diffuses during the diffusion heat treatment, the diffusion is suppressed by the diffusion prevention layer 18, and the core 17h<Sn
will not be contaminated. Therefore, contamination of the core portion 17 of the stabilized copper wire 20 is prevented, and the superconducting stranded wire material 22 is stabilized, so that the superconducting strand A has excellent superconducting properties. Note that a metal coating layer 19 made of a Cu-Sn alloy is formed on the outer periphery of the stabilized copper wire 20, but this metal coating layer 19 is made of Cu-8n-P alloy, Cu-Sn-
It may be formed from a high resistance metal material such as a Ni alloy or a Cu-Ni alloy. However, the constituent material of the metal coating layer 19 is preferably an element that does not diffuse to the superconducting stranded wire material 22 side during the diffusion heat treatment and do not adversely affect the superconducting properties. In this respect, the Cu-Sn alloy not only does not have the above-mentioned effect, but also causes the metal in-situ line to 14 during the diffusion heat treatment.
It does not take Sn away from the sparrow layer. That is,
If the metal coating layer 19 is made of pure copper, there is a risk that a large amount of Sn in the tin plating layer will diffuse toward the stabilized copper wire 20 side during the diffusion heat treatment, reducing the amount of Nb1Sn superconducting intermetallic compound produced. Furthermore, when the stabilized copper element wire 20 and the superconducting stranded wire material 22 are twisted, if the number of each is adjusted appropriately, the ratio of the stabilized copper part to the superconducting conductor part can be easily adjusted to a desired value. can do.

第2図は超電導撚線の他の構造例を示すもので、この例
の超電導撚線Bは、超電導素線25と安定化銅素線26
を複数本寄り合わせて形成した導体を更に複数本寄り合
わせて超電導導体Bを形成した構造である。なお、ここ
で用いる超電導素線25は前記超電導撚線Aのメツキイ
ンサイチュ線!4と同等の構造であり、安定化銅素線2
6は前記超電導撚線Aの安定化銅素線20と同等の構造
である。
FIG. 2 shows another example of the structure of the superconducting stranded wire. In this example, the superconducting stranded wire B consists of a superconducting strand 25 and a stabilized copper strand 26.
This structure has a structure in which a superconducting conductor B is formed by aligning a plurality of conductors and then aligning a plurality of conductors. The superconducting strands 25 used here are in-situ wires of the superconducting stranded wires A! It has the same structure as 4, and stabilized copper wire 2
6 has the same structure as the stabilized copper wire 20 of the superconducting stranded wire A.

第2図に示す構造の超電導撚線Bであっても先に説明し
た超電導撚線Aと同等の効果が得られる。
Even with the superconducting stranded wire B having the structure shown in FIG. 2, the same effect as the superconducting stranded wire A described above can be obtained.

第3図は安定化鋼素線の第2の構造例を示すもので、こ
の例の安定化銅素線30は、純銅製の芯部31の外周を
TaあるいはNbからなる拡散防止層32て覆った構成
である。また、第4図は安定化銅素線の第3の構造例を
示すもので、この例の安定化銅素線35は、芯部36を
拡散防止層37で覆い、その外側を銅製の金属被覆層3
8で覆った構造である。
FIG. 3 shows a second structural example of a stabilized steel wire, in which a stabilized copper wire 30 has a core 31 made of pure copper and a diffusion prevention layer 32 made of Ta or Nb surrounding the outer periphery. It has a covered structure. Further, FIG. 4 shows a third structural example of the stabilized copper wire, in which the stabilized copper wire 35 of this example has a core portion 36 covered with a diffusion prevention layer 37, and the outer side of the stabilized copper wire 35 covered with a diffusion prevention layer 37. Covering layer 3
It has a structure covered with 8.

第3図と第4図に示す構造の安定化銅素線3035を用
いた場合でも先に説明した例と同等の効果を得ろことが
できる。
Even when the stabilized copper wire 3035 having the structure shown in FIGS. 3 and 4 is used, the same effect as in the example described above can be obtained.

第5図は超電導撚線の更に別の構造例を示すもので、こ
の例の超電導撚線は、複数(図面では13本)の超電導
素線114を安定化銅素線−20の外周に隙間なく配置
した構造であり、このような構造を採用した場合にも前
記の例と同等の効果が得られる。
FIG. 5 shows yet another structural example of the superconducting stranded wire, in which a plurality of (13 in the drawing) superconducting strands 114 are placed around the outer periphery of the stabilized copper strands 20 with gaps between them. Even if such a structure is adopted, the same effect as the above example can be obtained.

なお、前記実施例においてはNb3Sn系の超電導撚線
用の安定化銅素線およびNb3Sn系の超電導撚線の製
造方法にこの発明を適用した例について説明したが、こ
の発明をNbaGa系、V3Ga系などの化合物系超電
導撚線用の安定化銅素線あるいは超電導撚線の製造方法
に適用できるのは勿論である。
In the above embodiments, an example in which the present invention is applied to a method for manufacturing a stabilized copper wire for a Nb3Sn-based superconducting stranded wire and a method for producing a Nb3Sn-based superconducting stranded wire has been described. It goes without saying that the present invention can be applied to a method for producing stabilized copper wires for compound-based superconducting stranded wires or superconducting stranded wires such as.

「製造例」 ルツボ溶解法によってCu−N b合金製の直径501
1Ilのインサイチュインゴットを作成し、このインサ
イチュインゴットをスウエージング加工と伸線加工によ
り縮径加工して0.215mmのインサイチュ素線を作
成した。このインサイチュ素線を5o+o+のピッチで
ツイスト加工するとともに更に伸線加工を施して0.2
m+sのインサイチュ線を得た。
"Manufacturing example" Made of Cu-Nb alloy with a diameter of 50 mm using the crucible melting method.
An in-situ ingot of 1Il was prepared, and this in-situ ingot was reduced in diameter by swaging and wire drawing to produce an in-situ wire of 0.215 mm. This in-situ wire was twisted at a pitch of 5o+o+ and further wire-drawn to a pitch of 0.2
An m+s in situ line was obtained.

この後に前記インサイチュ線の表面に電気メツキにより
厚さ30μmのスズメツキ層を形成し、更にスズメツキ
後のインサイチュ線を7本実合して外径0.6mmの撚
線を得た。
Thereafter, a tin plating layer with a thickness of 30 μm was formed on the surface of the in-situ wire by electroplating, and seven in-situ wires after tin plating were further assembled to obtain a stranded wire with an outer diameter of 0.6 mm.

一方、RRR(残留抵抗比)300の純銅からなる直径
10amの芯部と、外径11 mms内径l0041の
Ta管と、外径14.5mm、内径11.5mi+の6
重量%Snブロンズからなる管体を一体化して複合体を
得、全体を0.6+amまで縮径して安定化銅素線を得
た。
On the other hand, a core part with a diameter of 10 am made of pure copper with an RRR (residual resistance ratio) of 300, a Ta tube with an outer diameter of 11 mm and an inner diameter of 10041 mm, and a 6mm diameter tube with an outer diameter of 14.5 mm and an inner diameter of 11.5 mi
A composite body was obtained by integrating the tube bodies made of Sn bronze with a weight percent of Sn, and the diameter of the whole was reduced to 0.6+am to obtain a stabilized copper wire.

次に前記撚線を6本とインサイチュ線を5本用意し、そ
れぞれを第1図(h)に示すように交互に撚り合わせて
成形し、幅3.4mm、高さ1.2mmの帯状導体とし
た。この帯状導体をNtガス雰囲気中において550℃
で250時間加熱する拡散熱処理を施して超電導導体を
得た。
Next, prepare 6 of the stranded wires and 5 in-situ wires, twist each wire alternately as shown in FIG. And so. This strip conductor was placed at 550°C in an Nt gas atmosphere.
A superconducting conductor was obtained by performing diffusion heat treatment for 250 hours.

この超電導導体は、l0T(テスラ)の磁界下で95O
Aの臨界電流特性を示した。しかもこの超電導導体はイ
ンサイチュ撚線からなる超電導撚線と安定化銅素線とが
交互に撚線化されているために極めて安定した特性を示
した。
This superconducting conductor is 95O under a magnetic field of 10T (Tesla).
The critical current characteristics of A are shown. Moreover, this superconducting conductor exhibited extremely stable characteristics because superconducting twisted wires made of in-situ twisted wires and stabilized copper wires were twisted alternately.

「実施例2」 実施例1で作成した安定化銅素線を直径0.2mmまで
伸線し、更に、実施例1で作成したインサイチュ線を0
.2mmまで伸線し、安定化銅素線4本とインサイチュ
線3本を第2図に示すように撚り合わせて撚線を得、こ
の撚線を11本集合して撚線とし、更に拡散熱処理を施
して第2図に示す構造の超電導導体を得た。
"Example 2" The stabilized copper wire created in Example 1 was drawn to a diameter of 0.2 mm, and the in-situ wire created in Example 1 was further drawn to a diameter of 0.2 mm.
.. The wire is drawn to 2 mm, and four stabilized copper wires and three in-situ wires are twisted together as shown in Figure 2 to obtain a stranded wire, and 11 of these stranded wires are assembled to form a stranded wire, which is then subjected to diffusion heat treatment. A superconducting conductor having the structure shown in FIG. 2 was obtained.

この超電導導体も実施例1の超電導導体と同等に極めて
安定した超電導特性を示した。
This superconducting conductor also exhibited extremely stable superconducting properties similar to the superconducting conductor of Example 1.

「発明の効果」 以上説明したように本発明の安定化銅素線を用いて超電
導撚線を製造すると、超電導素線と安定化銅素線を撚線
化した後に拡散熱処理ずろ際に、超電導素線に含有され
ている元素が安定化銅素線側に拡散した場合であっても
、前記元素が芯部側まで拡散することがない。従って極
低温時におけろ芯部の電気抵抗増加が防止されるので、
超電導撚線の超電導特性を良好に安定化できる効果があ
る。また、安定化銅素線と超電導素線を撚り込んで熱処
理を行い、超電導撚線を製造するので、撚り込む本数に
より安定化銅の比率を容易に調整することができ、超電
導特性の安定化が容易に実現できる。従ってこの発明の
構造の安定化銅素線を用いて超電導撚線を製造するなら
ば、交流通電時などにおいても優れた安定性を発揮する
超電導撚線を提供することができる。
"Effects of the Invention" As explained above, when a superconducting stranded wire is manufactured using the stabilized copper strands of the present invention, the superconducting Even if the element contained in the strand diffuses toward the stabilized copper strand, the element will not diffuse to the core side. Therefore, an increase in the electrical resistance of the core is prevented at extremely low temperatures.
This has the effect of favorably stabilizing the superconducting properties of the superconducting stranded wire. In addition, since the stabilized copper strands and superconducting strands are twisted together and heat treated to produce superconducting stranded wires, the ratio of stabilizing copper can be easily adjusted by the number of strands twisted, and the superconducting properties are stabilized. can be easily realized. Therefore, if a superconducting stranded wire is manufactured using the stabilized copper wire having the structure of the present invention, it is possible to provide a superconducting stranded wire that exhibits excellent stability even when AC current is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は、本発明の製造方法の一例を示
すもので、第1図(a)はインサイチュインゴットの断
面図、第1図(b)はインサイチュインゴットの縮径状
態を示す断面図、第1図(e)はインサイチュ線の断面
図、第1図(d)はメツキインサイチュ線の断面図、第
1図(e)はメツキインサイチュ線の集合状態を示す断
面図、第1図(f)は複合体の断面図、第1図(g)は
安定化銅素線の断面図、第1図(h)は超電導撚線の断
面図、第2図は超電導撚線の他の例を示す断面図、第3
図は安定化銅素線の第2の構造例を示す断面図、第4図
は安定化銅素線の第3の構造例を示す断面図、第5図は
超電導撚線の他の例を示す断面図、第6図は従来の安定
化銅の一橋造例を示す断面図、第7図は従来の安定化銅
の他の構造例を示す断面図、第8図は従来の超電導撚線
の斜視図、第9図は従来の超電導撚線の他の例を示す斜
視図である。 lO・・・インサイチュインゴット、12・・・インサ
イチュ線、14・・・メツキインサイチュ線(超電導素
線)、15・・・撚線、17・・・芯部、18・・・拡
散防止層、I9・・・Cu−8n合金層、20・・・安
定化銅素線、25・・・超電導素線、26・・・安定化
銅素線、30゜35・・・安定化銅素線、31,36・
・・芯部、32,37・・・拡散防止層。
FIGS. 1(a) to (h) show an example of the manufacturing method of the present invention. FIG. 1(a) is a cross-sectional view of an in-situ ingot, and FIG. 1(b) is a reduced diameter state of the in-situ ingot. FIG. 1(e) is a cross-sectional view of the in-situ line, FIG. 1(d) is a cross-sectional view of the met in-situ line, and FIG. 1(e) is a cross-sectional view showing the assembled state of the met in-situ line. Figure 1(f) is a cross-sectional view of the composite, Figure 1(g) is a cross-sectional view of a stabilized copper wire, Figure 1(h) is a cross-sectional view of a superconducting stranded wire, and Figure 2 is a cross-sectional view of a superconducting stranded wire. A cross-sectional view showing another example of
The figure is a sectional view showing a second structural example of a stabilized copper strand, FIG. 4 is a sectional view showing a third structural example of a stabilized copper strand, and FIG. 5 is a sectional view showing another example of a superconducting stranded wire. 6 is a cross-sectional view showing an example of a conventional stabilized copper bridge structure, FIG. 7 is a cross-sectional view showing another example of a conventional stabilized copper structure, and FIG. 8 is a conventional superconducting stranded wire. FIG. 9 is a perspective view showing another example of a conventional superconducting stranded wire. lO... In-situ ingot, 12... In-situ wire, 14... Metsuki in-situ wire (superconducting wire), 15... Twisted wire, 17... Core, 18... Diffusion prevention layer, I9 ...Cu-8n alloy layer, 20... Stabilized copper strand, 25... Superconducting strand, 26... Stabilized copper strand, 30° 35... Stabilized copper strand, 31 ,36・
... core, 32, 37... diffusion prevention layer.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導金属間化合物を構成する2つ以上の元素を
含む超電導素線とともに撚線化され、撚線後に超電導素
線とともに拡散熱処理される安定化銅素線であって、純
銅からなる芯部とこの芯部を被覆した拡散防止層とこの
拡散防止層を被覆した被覆金属層を具備してなる化合物
系超電導撚線用安定化銅素線。
(1) A stabilized copper wire that is stranded together with a superconducting wire containing two or more elements constituting a superconducting intermetallic compound, and subjected to diffusion heat treatment together with the superconducting wire after the stranding, with a core made of pure copper. A stabilized copper strand for a compound-based superconducting stranded wire, comprising a core part, a diffusion prevention layer covering the core part, and a coating metal layer covering the diffusion prevention layer.
(2)純銅からなる芯部とこの芯部を被覆した拡散防止
層とを具備してなる安定化銅素線を超電導金属間化合物
を構成する2つ以上の元素を含む超電導素線とともに複
数本集合して撚線化し、撚線後に超電導金属間化合物を
生成させる拡散熱処理を施すことを特徴とする化合物系
超電導撚線の製造方法。
(2) A plurality of stabilized copper wires each having a core made of pure copper and a diffusion prevention layer covering this core along with superconducting wires containing two or more elements constituting a superconducting intermetallic compound. 1. A method for producing a compound-based superconducting stranded wire, which comprises gathering together, stranding, and then subjecting the stranded wire to diffusion heat treatment to generate a superconducting intermetallic compound.
JP63236112A 1988-09-20 1988-09-20 Superconducting stranded wire manufacturing method Expired - Fee Related JP2719155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236112A JP2719155B2 (en) 1988-09-20 1988-09-20 Superconducting stranded wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236112A JP2719155B2 (en) 1988-09-20 1988-09-20 Superconducting stranded wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH0286015A true JPH0286015A (en) 1990-03-27
JP2719155B2 JP2719155B2 (en) 1998-02-25

Family

ID=16995917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236112A Expired - Fee Related JP2719155B2 (en) 1988-09-20 1988-09-20 Superconducting stranded wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2719155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218736A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Straight-angle superconducting mold twisted wire and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430486A (en) * 1977-08-11 1979-03-06 Vacuumschmelze Gmbh Superconductive composite conductor and method of making same
JPS5918509A (en) * 1982-07-21 1984-01-30 古河電気工業株式会社 Method of producing compound superconductive wire
JPS61221356A (en) * 1985-03-27 1986-10-01 Furukawa Electric Co Ltd:The Manufacture of superconducting wire of compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430486A (en) * 1977-08-11 1979-03-06 Vacuumschmelze Gmbh Superconductive composite conductor and method of making same
JPS5918509A (en) * 1982-07-21 1984-01-30 古河電気工業株式会社 Method of producing compound superconductive wire
JPS61221356A (en) * 1985-03-27 1986-10-01 Furukawa Electric Co Ltd:The Manufacture of superconducting wire of compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010218736A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Straight-angle superconducting mold twisted wire and manufacturing method therefor

Also Published As

Publication number Publication date
JP2719155B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US3954572A (en) Method of manufacturing an intermetallic superconductor
US3429032A (en) Method of making superconductors containing flux traps
US5100481A (en) Compound superconducting wire and method of manufacturing the same
US4195199A (en) Superconducting composite conductor and method of manufacturing same
CN109564802B (en) Production of multifilament Nb3Method for Sn superconducting wire
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
JPH0286015A (en) Stabilized copper element wire for compound superconducting strand wire and manufacture of superconducting strand wire
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPS60727B2 (en) Manufacturing method of aluminum stabilized composite superconducting wire
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2742421B2 (en) Superconducting wire and its manufacturing method
JP2854596B2 (en) Compound superconducting conductor and method for producing the same
JPH0796698B2 (en) Manufacturing method of multi-core superconducting conductor for alternating current
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPH024931A (en) Manufacture of nb3x super conducting material
JPH01274318A (en) Manufacture of compound for ac superconductive wire
JPH0290415A (en) Manufacture of compound superconducting wire
JPH041446B2 (en)
JPH02103812A (en) Compound superconducting wire
JPH04298914A (en) Compound superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees