JPS6028270A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS6028270A
JPS6028270A JP13523283A JP13523283A JPS6028270A JP S6028270 A JPS6028270 A JP S6028270A JP 13523283 A JP13523283 A JP 13523283A JP 13523283 A JP13523283 A JP 13523283A JP S6028270 A JPS6028270 A JP S6028270A
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon
polycrystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13523283A
Other languages
Japanese (ja)
Inventor
Takasumi Kobayashi
小林 隆澄
Tetsuro Yanai
矢内 鉄朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13523283A priority Critical patent/JPS6028270A/en
Publication of JPS6028270A publication Critical patent/JPS6028270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To contrive accomplishment of reduction in interelectrode parasitic capacitance and improvement in dielectric breakdown withstand voltage by a method wherein the first electrode is provided on the composite gate insulating film of SiO2 and Si3N4 located on an Si substrate, an etching reaching the surface of the substrate is performed, the second gate insulating film is formed by performing a two-stage oxidizing method, and the second electrode is formed thereon. CONSTITUTION:The first gate insulating film is formed by superposing a thermal oxidized film 12, a CVD Si3N4 film 13, and an SiO2 film 14 which is formed by thermally oxidizing on an Si substrate 11, and a P-added poly Si 15 is superposed thereon. A selective etching is performed on the layer 15 and the film 12 successively, the substrate 11 is exposed, and a gate structure is formed. Oxide films 16 and 17 are formed on the substrate 11 and the poly Si 15 by performing an H2 combustion oxidizing method. At this time, an edge 18 is generated at the end part of the poly Si 15. An oxide film 19 is left by performing an etching on an oxide film 16, the second gate oxide film 20 is formed on the surface of the substrate in a high temperature dried O2 atmosphere, and the oxide film 19 is converted into the film 20. At this time, said edge part 18 is eliminated. Then, the second electr?ode 22 of poly Si is coated, and the titled device is completed by performing the ordinary method. According to this constitution, an excellent thick oxide film can be formed between gate electrodes, parasitic capacitance is reduced, and the edge part 18 can be eliminated, thereby enabling to improve the dielectric breakdown withstand voltage.

Description

【発明の詳細な説明】 (技術分野) この発明は電気的に良好な電極間絶縁物を得ることがで
きる半導体集積回路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of manufacturing a semiconductor integrated circuit that can obtain an electrically good interelectrode insulator.

(従来技術) 一般に半導体集積回路では1素子型ダイナミックRAM
あるいはCODデバイスで高密度化を達成するため、2
層ポリシリコン構造が用いられている。このような2層
ポリシリコン構造の従来の半導体集積回路の製造方法を
第1図を用いて説明する。第1図(a)において、1は
シリコン基板、2は第1のゲート絶縁膜、3は多結晶シ
リコンである。このゲート絶縁膜2はシリコン基板1上
にその熱酸化によ膜形成したものであシ、膜厚はデ/ぐ
イスの集積度により異なるが通常20nm;6>ら11
00nが用いられる。そして第1の電極として多結晶シ
リコン3が被着され、導電性を持たせるために不純物が
導入される。不純物の導入方法としては、多結晶シリコ
ン形成時にホスフィンガス(P:H,)k 同時K 流
ス方法(イわゆるDoped −poly Si法)や
、多結晶シリコン形成後pactsソースによる拡散法
、あるいはイオン注入法鬼どがある。尚ここではNチャ
ンネル型を例にとって説明しているが、Pチャンネル型
でも不純物がN型からP型に代わるだけで本質的には同
一である。以上箱1の電極となる多結晶シリコン3がウ
ニ)S−全面に形成された状態が第1図(a)に示され
ている。次に通常のホトリンエツチング技術を用いて多
結晶シリコン3および酸化膜2をエツチング除去する。
(Prior art) In general, one-element dynamic RAM is used in semiconductor integrated circuits.
Alternatively, to achieve higher density in COD devices, 2
A layered polysilicon structure is used. A method of manufacturing a conventional semiconductor integrated circuit having such a two-layer polysilicon structure will be explained with reference to FIG. In FIG. 1(a), 1 is a silicon substrate, 2 is a first gate insulating film, and 3 is polycrystalline silicon. This gate insulating film 2 is formed on the silicon substrate 1 by thermal oxidation, and the film thickness varies depending on the degree of integration of the device, but is usually 20 nm;
00n is used. Then, polycrystalline silicon 3 is deposited as a first electrode, and impurities are introduced to make it conductive. Methods for introducing impurities include a simultaneous phosphine gas (P:H,)k flow method (so-called Doped-poly Si method) during polycrystalline silicon formation, a diffusion method using a pacts source after polycrystalline silicon is formed, or There is a method called ion implantation. Although the N-channel type is explained here as an example, the P-channel type is essentially the same except that the impurity is changed from the N-type to the P-type. A state in which the polycrystalline silicon 3 serving as the electrode of the box 1 is formed on the entire surface of the sea urchin (sea urchin) is shown in FIG. 1(a). Next, polycrystalline silicon 3 and oxide film 2 are etched away using a normal photolithography technique.

この時酸化膜2のエツチングは通常多結晶シリコン3を
エツチングマスクとして用いるだめ、酸化膜2のエッヂ
は多結晶シリコン3のエッヂよシも内側に形成される(
第1図(b))。しかる後、多結晶シリコン30表面お
よびシリコン基板1の表面を熱酸化してシリコン酸化膜
4,5を形成する。4は多結晶シリコン3の酸化膜、5
はシリコン基板1の酸化膜を示す。そして第2の電極と
して導電性多結晶シリコン6を前述した第1の導電性多
結晶シリコン3と同様の方法で形成する(第1図(C)
)。このようにシリコン酸化膜4は2つの電極であるそ
れぞれの多結晶シリコン3,6の間を分離する絶縁膜と
して作用する。また、シリコン酸化膜5は第2のゲート
絶縁膜として用いられ、デバイス特性から比較的薄い膜
厚が要求される。この酸化膜5の膜厚は、通常筒1のゲ
ート絶縁膜2と91 ?1同等の膜厚が用いられている
At this time, when etching the oxide film 2, the polycrystalline silicon 3 is usually used as an etching mask, so the edges of the oxide film 2 are formed inside the edges of the polycrystalline silicon 3 (
Figure 1(b)). Thereafter, the surface of polycrystalline silicon 30 and the surface of silicon substrate 1 are thermally oxidized to form silicon oxide films 4 and 5. 4 is an oxide film of polycrystalline silicon 3, 5
indicates an oxide film on the silicon substrate 1. Then, a conductive polycrystalline silicon 6 is formed as a second electrode in the same manner as the first conductive polycrystalline silicon 3 (FIG. 1(C)).
). In this way, the silicon oxide film 4 acts as an insulating film that separates the polycrystalline silicon 3 and 6, which are the two electrodes. Further, the silicon oxide film 5 is used as a second gate insulating film, and is required to have a relatively thin film thickness due to device characteristics. The thickness of this oxide film 5 is normally the same as that of the gate insulating film 2 of the tube 1 91? 1 equivalent film thickness is used.

ところで、半導体集積回路の高性能イヒを達成するだめ
には、第2のゲート絶縁膜5の膜厚を一定に保ったまま
多結晶シリコン3(第1の電極)と多結晶シリコン6(
第2の電極)との間の寄生容量を減少させることが望ま
しく、このためシリコン酸化膜5の膜厚を一定としたま
まシリコン酸イし膜4の膜厚を出来るだけ厚くする工夫
が行われている。即ち多結晶シリコン中に高濃度のリン
を導入した時の比較的低温(700℃〜900℃)領域
における多結晶シリコンと単結晶シリコンとの酸イし速
度比を利用した技術である。しかしこのような技術を用
いてもシリコン酸化膜4″f、十分厚くするためには次
に述べる2つの点に関して問題力;あった。
By the way, in order to achieve high performance in a semiconductor integrated circuit, polycrystalline silicon 3 (first electrode) and polycrystalline silicon 6 (
It is desirable to reduce the parasitic capacitance between the silicon oxide film 4 and the second electrode, and for this reason, efforts have been made to make the silicon oxide film 4 as thick as possible while keeping the thickness of the silicon oxide film 5 constant. ing. That is, this is a technique that utilizes the oxidation rate ratio between polycrystalline silicon and single crystal silicon in a relatively low temperature (700° C. to 900° C.) region when a high concentration of phosphorus is introduced into polycrystalline silicon. However, even if such a technique is used, in order to make the silicon oxide film 4''f sufficiently thick, there are problems with the following two points.

第1の問題点は、多結晶シリコン3の酸化速度を大きく
するためにl X 10” cm−”レベルのリンを拡
散しておくと、シリコン酸化膜4,5の形成時に多結晶
シリコン3中のリンがシリコン基板1上に拡散され、そ
の部分に形成されたMOS)ランジスタのしきい値電圧
を低下させてしまうことである。その結果、所望の動作
特性が得られないはかシでなく、最悪の場合には誤動作
のおそれがあシ、このため多結晶シリコン中のリン濃度
はしきい値電圧の低下を生じないレベルである1 0”
 cm″″3レベル以下に制限されて多結晶シリコンと
単結晶シリコンとの酸化速度比を大きく出来なかった。
The first problem is that if phosphorus is diffused at a level of l x 10"cm-" in order to increase the oxidation rate of polycrystalline silicon 3, it will be difficult to diffuse into polycrystalline silicon 3 when forming silicon oxide films 4 and 5. The problem is that the phosphorus is diffused onto the silicon substrate 1, lowering the threshold voltage of the MOS transistor formed in that area. As a result, the desired operating characteristics may not be obtained, and in the worst case, there is a risk of malfunction. Therefore, the phosphorus concentration in the polycrystalline silicon must be kept at a level that does not cause a drop in the threshold voltage. There is 10"
The oxidation rate ratio between polycrystalline silicon and single crystal silicon could not be increased because the oxidation rate was limited to less than cm''3 level.

第2の問題点は、酸化膜4を厚くしていくと多結晶シリ
コン3のエッヂ部分が形成された酸化膜4で持ち上げら
れ、第1図(C)で示すように持ち上がシ部8と酸化膜
に凹部7が生じることである。
The second problem is that as the oxide film 4 becomes thicker, the edge portion of the polycrystalline silicon 3 is lifted by the formed oxide film 4, and as shown in FIG. This means that a recess 7 is formed in the oxide film.

この凹部7が発生することによシ、この部分に形成され
た第2の多結晶シリコン6がそのパターン形成時に除去
されずに残9短絡不良を往々にして生じ、またこの部分
の多結晶シリコン3の酸化膜が他の部分よシ薄くなシ、
多結晶シリコン3と多結晶シリコン6との間の絶縁破壊
耐圧が低下してしまう。さらに多結晶シリコン3の酸化
膜4を厚くしていくと該エッチ部分の持ち上がシが大き
くなシ、甚だしい場合には多結晶シリコンにクラツりが
生じてしまうものであった。
Due to the occurrence of this recessed portion 7, the second polycrystalline silicon 6 formed in this portion is not removed during pattern formation, often resulting in a short-circuit failure, and the second polycrystalline silicon 6 formed in this portion is not removed. The oxide film in step 3 is thinner than other parts.
The dielectric breakdown voltage between polycrystalline silicon 3 and polycrystalline silicon 6 is reduced. Furthermore, as the oxide film 4 of the polycrystalline silicon 3 is made thicker, the etched portions are lifted up significantly, and in extreme cases, the polycrystalline silicon becomes distorted.

(発明の目的) この発明は上記従来の問題点に鑑みなされたもので、電
極間の寄生容量を少々くし得、しかもその絶縁破壊耐圧
を向上することができる半導体集積回路の製造方法を提
供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and provides a method for manufacturing a semiconductor integrated circuit that can slightly reduce the parasitic capacitance between electrodes and improve its dielectric breakdown voltage. The purpose is to

(実施例) 以下この発明の一実施例を第2図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第2図(a)において、11はシリコン基板、12は酸
化膜、13はシリコン窒化膜である。これらは、シリコ
ン基板11である単結晶シリコンを熱酸化し薄い酸化膜
12 (100人)を形成した後、酸化膜12の表面に
薄いシリコン窒化膜13 (100入)をCVD法によ
膜形成したものである。次にシリコン窒化膜13を通常
の熱酸化法によって酸化しシリコン酸化膜14(50人
)を形成する(第2図(b))。以上これら酸化膜12
、シリコン窒化膜およびシリコン酸化膜14にょシ第1
のゲート絶縁膜が形成される。
In FIG. 2(a), 11 is a silicon substrate, 12 is an oxide film, and 13 is a silicon nitride film. These are made by thermally oxidizing single crystal silicon, which is a silicon substrate 11, to form a thin oxide film 12 (100 pieces), and then forming a thin silicon nitride film 13 (100 pieces) on the surface of the oxide film 12 using the CVD method. This is what I did. Next, the silicon nitride film 13 is oxidized by a normal thermal oxidation method to form a silicon oxide film 14 (50 layers) (FIG. 2(b)). These oxide films 12
, silicon nitride film and silicon oxide film 14 first
A gate insulating film is formed.

次に通常の減圧CVD法により第1の電極として多結晶
シリコン15を形成する。この多結晶シリコン15の膜
厚は350 nmを用いた。そしてオキシ塩化リン(P
OC1!りを拡散ソースとして通常の拡散炉で多結晶シ
リコン中にリンを導入する。導入するリンの濃度は3 
X 10” cm−3〜6 X 1020cm−3程度
が多結晶シリコンのシート抵抗を低下させること、多結
晶シリコンと単結晶シリコンとの酸化速度比を大きくす
ることおよび多結晶シリコンからのオートドーピングを
少なくすることの観点から好ましい結果が得られ、ここ
では4 X 10” cm−”を用いた(第2図(C)
)。
Next, polycrystalline silicon 15 is formed as a first electrode by a normal low pressure CVD method. The film thickness of this polycrystalline silicon 15 was 350 nm. and phosphorus oxychloride (P
OC1! Phosphorus is introduced into polycrystalline silicon in an ordinary diffusion furnace using the phosphorus as a diffusion source. The concentration of phosphorus introduced is 3
About X 10" cm-3 to 6 X 1020 cm-3 lowers the sheet resistance of polycrystalline silicon, increases the oxidation rate ratio between polycrystalline silicon and single crystal silicon, and inhibits autodoping from polycrystalline silicon. A preferable result was obtained from the viewpoint of reducing the amount of space, and here 4
).

しかる後、通常のホトリソエツチング技術を用いて多結
晶シリコン15を部分的に除去する。この工程では、ホ
トレジストをエツチングマスクとして用いエツチング装
置としては平行平板型プラズマエツチング装置を用いた
。条件はRFパワー300W、エツチングガス5%02
−CF、、 ガス流量95 cc/n1in、真空度0
 、5 Torrである。次K I X 弗e溶液によ
シ多結晶シリコン15をエツチングマスクとして酸化膜
14をエツチングし、多結晶シリコン15をエツチング
する時に用いたホトレジストを120℃の硫酸で除去す
る。そして170℃に熱したリン酸液でシリコン窒化膜
13を、多結晶シリコン15をマスクとしてエツチング
除去し、次に酸化膜12を酸化膜]4と同様にエツチン
グ除去する(第2図(d))。
Thereafter, polycrystalline silicon 15 is partially removed using conventional photolithography techniques. In this step, a photoresist was used as an etching mask, and a parallel plate plasma etching apparatus was used as an etching apparatus. Conditions are RF power 300W, etching gas 5%02
-CF, gas flow rate 95 cc/n1in, degree of vacuum 0
, 5 Torr. Next, the oxide film 14 is etched using a KIXF solution and the polycrystalline silicon 15 is used as an etching mask, and the photoresist used in etching the polycrystalline silicon 15 is removed with 120° C. sulfuric acid. Then, the silicon nitride film 13 is removed by etching with a phosphoric acid solution heated to 170° C. using the polycrystalline silicon 15 as a mask, and then the oxide film 12 is removed by etching in the same manner as the oxide film 4 (FIG. 2(d)). ).

次に850℃の水素バーニング酸化(水素31/A−。Next, hydrogen burning oxidation at 850°C (hydrogen 31/A-).

酸素3t153−)でシリコン基板11上に酸化膜16
を300人形成する。この時多結晶シリコン15には酸
化膜17が約1000人形成される。また多結晶シリコ
ン15のエッヂ部は角部18が形成される(第2図(e
))。そして酸化膜16を5%弗酸で除去しシリコン基
板11表面を露出させる。この時酸化膜17も同様にエ
ツチングされ、酸化膜16が除去された時には約700
穴の酸化膜19が残る(第2図(f))。次に950℃
の乾燥酸素中でシリコン基板11の表面に300Åの酸
化膜20を形成し第2のゲート絶縁膜とする。この時多
結晶シリコン15も同時に酸化され酸化膜19は約to
ooAの酸化膜21に変わる。また第2図(e)および
(f)に示した角部18も消滅し良好な断面形状が得ら
れる。さらに多結晶シリコン15と同様に第2の電極と
して多結晶シリコン22を被着する(第2図(g))。
An oxide film 16 is formed on the silicon substrate 11 using oxygen (3t153-).
300 people. At this time, about 1000 oxide films 17 are formed on the polycrystalline silicon 15. Further, a corner portion 18 is formed at the edge portion of the polycrystalline silicon 15 (FIG. 2(e)
)). Then, the oxide film 16 is removed with 5% hydrofluoric acid to expose the surface of the silicon substrate 11. At this time, the oxide film 17 is also etched in the same way, and when the oxide film 16 is removed, approximately 700
The oxide film 19 in the hole remains (FIG. 2(f)). Next 950℃
An oxide film 20 of 300 Å is formed on the surface of the silicon substrate 11 in dry oxygen to serve as a second gate insulating film. At this time, the polycrystalline silicon 15 is also oxidized at the same time, and the oxide film 19 is about to
It changes to the oxide film 21 of ooA. Furthermore, the corner portions 18 shown in FIGS. 2(e) and 2(f) also disappear, resulting in a good cross-sectional shape. Furthermore, similarly to the polycrystalline silicon 15, polycrystalline silicon 22 is deposited as a second electrode (FIG. 2(g)).

そして以下通常行われるMO8型集積回路プロセスによ
シブバイスが形成される。
Thereafter, a SiVe is formed by a commonly used MO8 type integrated circuit process.

このように実施例では第1のゲート絶縁膜に複合膜を使
用していることおよび第2のグー146&膜を2段階の
酸化で行っていることから以下に述べる利点を有する。
As described above, in this embodiment, since a composite film is used for the first gate insulating film and the second goo 146& film is oxidized in two stages, the following advantages are obtained.

即ち第1の利点は第1図(e)で示した多結晶シリコン
3の持ち上がシ部8の発生を少なく出来ることである。
That is, the first advantage is that the lifting of polycrystalline silicon 3 shown in FIG. 1(e) can reduce the occurrence of wrinkles 8.

この多結晶シリコン3の持ち上が9を説明すると次の通
シである。先ず酸化膜4,5を形成する時に酸素がゲー
ト絶縁膜2の中を拡散して多結晶シリコン3の下部面に
供給され該下部面を酸化する。その結果形成された酸化
膜の厚さは消費された多結晶シリコン3の厚さの約2倍
となるためその酸化膜が多結晶シリコン3を押し上げ持
ち上がシ部8が発生する。この場合供給される酸素の量
はゲート絶縁膜2が厚い程多くなる。ところが実施例の
如く多結晶シリコン15の下部の酸化膜に薄いシリコン
窒化膜13の酸化膜を用いれば多結晶シリコン15の下
部に供給される酸素の量は無視出来る程になシ持ち上が
シはほとんど生じない。また、従来技術でも酸化膜の膜
厚を実施例で用いた膜厚と同程度にすれば同様の効果が
期待できるが、その場合にはデバイスの動作時に酸化膜
に印加される電界による制限が生じ、酸化膜の破壊を引
き起こしやすい。実施例の如く、第1のゲート絶縁膜を
酸化膜/シリコン窒化膜/酸化膜の構成にすれば、多結
晶シリコンに接する部分の酸化膜を薄くして第1の多結
晶シリコンの持ち上がシの少ない良好なエッヂ形状を保
持しつつ他の部分の酸化膜/シリコン窒化膜を厚くして
第1のゲート絶縁膜に印加される電界を小さくすること
が可能となシ、ゲート破壊に対する安定性を向上するこ
とが出来る。尚、酸化膜にシリコン窒化物の酸化膜14
を用いることは、シリコン窒化物の遅い酸化速度を利用
したもので、こうすることによシ薄い酸化膜を安定に得
ることができ、また酸化膜14は第1のゲート絶縁膜の
絶縁性を向上させる働きをする。
The lifting of the polycrystalline silicon 3 9 can be explained as follows. First, when forming oxide films 4 and 5, oxygen diffuses through gate insulating film 2 and is supplied to the lower surface of polycrystalline silicon 3, oxidizing the lower surface. As a result, the thickness of the oxide film formed is approximately twice the thickness of the consumed polycrystalline silicon 3, so that the oxide film pushes up the polycrystalline silicon 3, causing a raised portion 8. In this case, the amount of oxygen supplied increases as the gate insulating film 2 becomes thicker. However, if the thin oxide film of the silicon nitride film 13 is used as the oxide film under the polycrystalline silicon 15 as in the embodiment, the amount of oxygen supplied to the underside of the polycrystalline silicon 15 will be negligible and the lift will be reduced. rarely occurs. In addition, similar effects can be expected with conventional technology if the thickness of the oxide film is made comparable to the thickness used in the example, but in that case, there is a limit due to the electric field applied to the oxide film during device operation. This tends to cause damage to the oxide film. If the first gate insulating film has a structure of oxide film/silicon nitride film/oxide film as in the embodiment, the oxide film in the portion in contact with polycrystalline silicon can be thinned and the first polycrystalline silicon can be lifted up. It is possible to reduce the electric field applied to the first gate insulating film by making the oxide film/silicon nitride film thicker in other parts while maintaining a good edge shape with less damage, which increases stability against gate breakdown. You can improve your sexuality. Note that an oxide film 14 of silicon nitride is added to the oxide film.
The use of silicon nitride takes advantage of the slow oxidation rate of silicon nitride, which allows a thin oxide film to be stably obtained, and the oxide film 14 improves the insulation properties of the first gate insulating film. It works to improve.

また第2の利点は、第2図(e)および(f)で示した
角部18が最終的に消滅することである。この角部18
の発生は以下の様に説明される。即ち、多結晶シリコン
15の酸化膜17を単結晶シリコン酸化膜16と比べて
厚くするため実施例の如く低温で酸化を行った場合、多
結晶シリコン15の酸化速度は、少なくとも酸化膜厚が
2oooA以下の領域では表面に拡散されてくる酸素の
量には律速されす、シリコンと酸素の反応速度に律速さ
れるといわれている。しかし角部18はシリコン窒化膜
13に近接しているため酸素の供給量が少なくなシ酸素
濃度が低下しやすい。また酸化膜17の膜厚が厚くなる
程角部18では圧縮応力が増大し、酸素が拡散しにくく
酸素とシリコンの反応速度より酸素の供給量が酸化速度
を律速してしまい、この部分が他の部分よp酸化速度が
遅くなシ角部18が発生するものである。実施例では酸
化膜16を除去後、950℃の高温で酸化を行うため、
多結晶シリコン15は全面で酸化膜19中を拡散する酸
素量で決まる速度で酸化され、結果として角部18が消
滅する。
A second advantage is that the corners 18 shown in FIGS. 2(e) and 2(f) eventually disappear. This corner 18
The occurrence of this is explained as follows. That is, when oxidation is performed at a low temperature as in the embodiment in order to make the oxide film 17 of the polycrystalline silicon 15 thicker than the single crystal silicon oxide film 16, the oxidation rate of the polycrystalline silicon 15 is such that the oxide film thickness is at least 200A. It is said that in the following regions, the rate is determined by the amount of oxygen diffused to the surface, and the rate is determined by the rate of reaction between silicon and oxygen. However, since the corner portion 18 is close to the silicon nitride film 13, the amount of oxygen supplied is small and the oxygen concentration tends to decrease. In addition, as the thickness of the oxide film 17 increases, the compressive stress increases at the corners 18, making it difficult for oxygen to diffuse, and the amount of oxygen supplied determines the oxidation rate rather than the reaction rate between oxygen and silicon. A corner portion 18 is generated where the p oxidation rate is slower than the portion . In the example, after removing the oxide film 16, oxidation is performed at a high temperature of 950°C.
The entire surface of the polycrystalline silicon 15 is oxidized at a rate determined by the amount of oxygen diffused in the oxide film 19, and as a result, the corners 18 disappear.

上述したように多結晶シリコン15に角部18が存在す
ると、その部分の酸化膜厚が薄くなシ絶縁破壊を生じや
すく、また電界集中も起こることからも絶縁破壊を生じ
やすくなるが、実施例では角部18が消滅したことによ
p1第1の多結晶シリコン15と第2の多結晶シリコン
22との間の絶縁破壊電圧を15Vから26Vに向上さ
せることができた。
As described above, if the corner portion 18 exists in the polycrystalline silicon 15, dielectric breakdown is likely to occur because the oxide film thickness at that portion is thin, and electric field concentration also occurs, making dielectric breakdown likely to occur. By eliminating the corner portion 18, the dielectric breakdown voltage between the p1 first polycrystalline silicon 15 and the second polycrystalline silicon 22 could be increased from 15V to 26V.

尚、前記実施例では第1のゲート電極材料として多結晶
シリコンを用いたが、この代りにモリブデンシリサイド
の様な高融点金属シリサイドを用いても良く、また第2
のゲート電極材料も多結晶シリコンの代シに高融点シリ
サイドを用いても同様の効果を奏する。また、第1のゲ
ート絶縁膜として、シリコン酸化膜/シリコン窒化膜/
シリコン酸化膜を用いたが、多結晶シリコン15側のシ
リコン酸化膜14は必ずしも必要では々く、第1のゲー
ト絶縁膜の許容されるリーク電流によっては省くことが
可能である。さらに、シリコン基板は多結晶シリコン基
板であっても上記実施例と同様の効果を奏する。
In the above embodiment, polycrystalline silicon was used as the first gate electrode material, but a high melting point metal silicide such as molybdenum silicide may be used instead.
Similar effects can be obtained even when high melting point silicide is used in place of polycrystalline silicon for the gate electrode material. In addition, as the first gate insulating film, silicon oxide film/silicon nitride film/silicon oxide film/silicon nitride film/
Although a silicon oxide film is used, the silicon oxide film 14 on the polycrystalline silicon 15 side is not necessarily necessary and can be omitted depending on the allowable leakage current of the first gate insulating film. Furthermore, even if the silicon substrate is a polycrystalline silicon substrate, the same effects as in the above embodiment can be achieved.

(発明の効果) 以上のように、この発明の半導体集積回路の製造方法に
よれば、シリコン基板上に酸化膜とシリコン窒化膜の複
合膜を形成して第1のゲート絶縁膜とし、この第1のゲ
ート絶縁膜上に第1の電極を形成した後シリコン基板表
面までエツチングし、しかる後に第2のゲート絶縁膜を
2段階の酸化で形成し、この第2のゲート絶縁膜上に第
2の電極を形成するようにしたので、第1のゲート電極
と第2のゲート電極との間に厚い酸化膜を良好に形成す
ることができ、その寄生容量が減少し、さらに電極間の
絶縁破壊耐圧が向上する利点があり、高密度、高性能な
l素子型ダイナミックRAMあるいはCODデバイス等
に利用することができる。
(Effects of the Invention) As described above, according to the method of manufacturing a semiconductor integrated circuit of the present invention, a composite film of an oxide film and a silicon nitride film is formed on a silicon substrate to serve as the first gate insulating film. After forming a first electrode on the first gate insulating film, etching is performed to the surface of the silicon substrate, then a second gate insulating film is formed by two-step oxidation, and a second electrode is formed on the second gate insulating film. As the electrodes are formed, a thick oxide film can be effectively formed between the first gate electrode and the second gate electrode, reducing parasitic capacitance, and further preventing dielectric breakdown between the electrodes. It has the advantage of improved breakdown voltage and can be used for high-density, high-performance l-element type dynamic RAM or COD devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路の製造方法の工程説明図
、第2図はこの発明の半導体集積回路の製造方法の一実
施例を示す工程説明図である。 11・・・シリコン基板、12・・・シリコン酸化膜、
13・・・シリコン窒化膜、14・・・シリコン酸化膜
、15・・・第1のゲート電極、16.17,19,2
0゜21・・・シリコン酸化膜、18・・・角部、22
・・・第2のゲート電極。 第1図 第2図 手続補正書(自発) 特許庁長官 若杉和失敗 1 事件の表示 昭和58年特許願第135232号 2 発明の名称 半導体集積回路の製造方法 3、?+I]正をする者 事件との関係 特許出願人 (029)沖電気工業株式会社 4代理人 5 補正の対象 明細書の発明の詳細な説明の欄 6 補正の内容 明細書7頁19行「膜および」を1膜13、および」と
訂正する。 3M−
FIG. 1 is a process explanatory diagram of a conventional semiconductor integrated circuit manufacturing method, and FIG. 2 is a process explanatory diagram showing an embodiment of the semiconductor integrated circuit manufacturing method of the present invention. 11... Silicon substrate, 12... Silicon oxide film,
13... Silicon nitride film, 14... Silicon oxide film, 15... First gate electrode, 16.17, 19, 2
0°21...Silicon oxide film, 18...Corner, 22
...Second gate electrode. Figure 1 Figure 2 Procedural amendment (voluntary) Commissioner of the Patent Office Kazu Wakasugi Failure 1 Display of the case 1982 Patent Application No. 135232 2 Name of the invention Method for manufacturing semiconductor integrated circuits 3, ? +I] Relationship with the person making the correction Patent applicant (029) Oki Electric Industry Co., Ltd. 4 Agent 5 Detailed explanation of the invention in the specification subject to amendment 6 Contents of the amendment Page 7, line 19 of the specification “Membrane Correct "and" to "1 film 13, and". 3M-

Claims (7)

【特許請求の範囲】[Claims] (1)シリコン基板表面を酸化して酸化膜を形成する工
程と、この酸化膜上にシリコン窒化膜を形成する工程と
、前記シリコン窒化膜上に、このシリコン窒化膜を酸化
した後または酸化することなく第1の電極膜を形成する
工程と、これらの複合膜を前記シリコン基板表面までエ
ツチングしゲート構造を形成する工程と、前記ゲート構
造部を酸化してこの表面に酸化膜を形成した後この酸化
膜のシリコン基板上に形成された膜厚分を除去する工程
と、酸化膜が形成された前記ゲート構造部表面を再酸化
した後このゲート構造部上に第2の電極膜を形成する工
程とからなることを特徴とする半導体集積回路の製造方
法。
(1) A step of oxidizing the silicon substrate surface to form an oxide film, a step of forming a silicon nitride film on the oxide film, and a step of forming the silicon nitride film on the silicon nitride film after or after oxidizing the silicon nitride film. a step of etching these composite films to the surface of the silicon substrate to form a gate structure; and a step of oxidizing the gate structure to form an oxide film on this surface. A step of removing the thickness of this oxide film formed on the silicon substrate, and re-oxidizing the surface of the gate structure on which the oxide film is formed, and then forming a second electrode film on this gate structure. A method for manufacturing a semiconductor integrated circuit, comprising the steps of:
(2)シリコン基板は単結晶シリコン基板であることを
特徴とする特許請求の範囲第1項記載の半導体集積回路
の製造方法。
(2) The method for manufacturing a semiconductor integrated circuit according to claim 1, wherein the silicon substrate is a single crystal silicon substrate.
(3)シリコン基板は多結晶シリコン基板であることを
特徴とする特許請求の範囲第1項記載の半導体集積回路
の製造方法。
(3) The method for manufacturing a semiconductor integrated circuit according to claim 1, wherein the silicon substrate is a polycrystalline silicon substrate.
(4)第1の電極は導電性多結晶シリコンであることを
特徴とする特許請求の範囲第1項ないし第3項のいずれ
かに記載の半導体集積回路の製造方法。
(4) The method for manufacturing a semiconductor integrated circuit according to any one of claims 1 to 3, wherein the first electrode is made of conductive polycrystalline silicon.
(5)第1の電極は高融点金属シリサイドであることを
特徴とする特許請求の範囲第1項ないし第3項のいずれ
かに記載の半導体集積回路の製造方法。
(5) The method for manufacturing a semiconductor integrated circuit according to any one of claims 1 to 3, wherein the first electrode is made of high melting point metal silicide.
(6)第2の電極は導電性多結晶シリコンであることを
特徴とする特許請求の範囲第1項ないし第5項のいずれ
かに記載の半導体集積回路の製造方法。
(6) The method for manufacturing a semiconductor integrated circuit according to any one of claims 1 to 5, wherein the second electrode is made of conductive polycrystalline silicon.
(7)第2の電極は高融点金属シリサイドであることを
特徴とする特許請求の範囲第1項ないし第5項のいずれ
かに記載の半導体集積回路の製造方法。
(7) The method for manufacturing a semiconductor integrated circuit according to any one of claims 1 to 5, wherein the second electrode is made of high melting point metal silicide.
JP13523283A 1983-07-26 1983-07-26 Manufacture of semiconductor integrated circuit Pending JPS6028270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523283A JPS6028270A (en) 1983-07-26 1983-07-26 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523283A JPS6028270A (en) 1983-07-26 1983-07-26 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6028270A true JPS6028270A (en) 1985-02-13

Family

ID=15146896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523283A Pending JPS6028270A (en) 1983-07-26 1983-07-26 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6028270A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105484A (en) * 1983-11-11 1985-06-10 Iki Syuzo Kk Preparation of algae liquor
JPH01101654A (en) * 1987-10-15 1989-04-19 Nec Corp Manufacture of semiconductor integrated circuit device
US5972800A (en) * 1995-05-10 1999-10-26 Nec Corporation Method for fabricating a semiconductor device with multi-level structured insulator
JP2007081027A (en) * 2005-09-13 2007-03-29 Fujifilm Corp Manufacturing method of solid-state imaging device
JP2007218425A (en) * 2006-01-17 2007-08-30 Denso Corp Solenoid valve device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105484A (en) * 1983-11-11 1985-06-10 Iki Syuzo Kk Preparation of algae liquor
JPS626776B2 (en) * 1983-11-11 1987-02-13 Oki Shuzo Kk
JPH01101654A (en) * 1987-10-15 1989-04-19 Nec Corp Manufacture of semiconductor integrated circuit device
US5972800A (en) * 1995-05-10 1999-10-26 Nec Corporation Method for fabricating a semiconductor device with multi-level structured insulator
US6037651A (en) * 1995-05-10 2000-03-14 Nec Corporation Semiconductor device with multi-level structured insulator and fabrication method thereof
JP2007081027A (en) * 2005-09-13 2007-03-29 Fujifilm Corp Manufacturing method of solid-state imaging device
JP2007218425A (en) * 2006-01-17 2007-08-30 Denso Corp Solenoid valve device

Similar Documents

Publication Publication Date Title
JP4093855B2 (en) Manufacturing method of semiconductor device
JPS607389B2 (en) Manufacturing method of semiconductor device
JP2001308207A (en) Method for fabricating nonvolatile semiconductor memory device
JP2001176883A (en) High-voltage semiconductor element and manufacturing method therefor
JPS6028270A (en) Manufacture of semiconductor integrated circuit
US20070184592A1 (en) Method for manufacturing semiconductor device
JPH0697190A (en) Manufacture of mos transistor
JP2000058780A (en) Semiconductor device and manufacture thereof
JPH05291499A (en) Semiconductor device and fabrication thereof
JPH04316333A (en) Manufacture of thin-film transistor
JP3312683B2 (en) MOS type semiconductor device and manufacturing method thereof
KR100806136B1 (en) Method for fabricating semiconductor device having meta-gate electrode
JPH0454390B2 (en)
KR100268776B1 (en) A manufacturing method of semiconductor device
TW396403B (en) Method for fabricating a semiconductor device having leakage current reducing regions
KR100335274B1 (en) Manufacturing method of semiconductor device
JPS6178138A (en) Manufacture of semiconductor device
KR100268101B1 (en) Polyside gate
JPH07106559A (en) Manufacture of semiconductor device
JPH0621369A (en) Manufacture of mos integrated circuit
JP2005252052A (en) Semiconductor device and its manufacturing method
TW393767B (en) Production method of transistor gate electrode by using a recessed conductor
JPH0669518A (en) Manufacture of semiconductor device
JPS6018935A (en) Manufacture of semiconductor device
JPS63299262A (en) Semiconductor device