JPH07106559A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07106559A
JPH07106559A JP24900693A JP24900693A JPH07106559A JP H07106559 A JPH07106559 A JP H07106559A JP 24900693 A JP24900693 A JP 24900693A JP 24900693 A JP24900693 A JP 24900693A JP H07106559 A JPH07106559 A JP H07106559A
Authority
JP
Japan
Prior art keywords
active region
film
insulating film
gate electrode
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24900693A
Other languages
Japanese (ja)
Inventor
Masatoshi Arai
雅利 荒井
Takashi Nakabayashi
隆 中林
Hiroaki Nakaoka
弘明 中岡
Shohei Shinohara
昭平 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24900693A priority Critical patent/JPH07106559A/en
Publication of JPH07106559A publication Critical patent/JPH07106559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize high reliability and low-cost by simultaneously forming an insulating film covering the side surface of a gate electrode and an insulating film covering the boundary between an element isolating region and a transistor active region. CONSTITUTION:After a field oxide film 102 is formed and a gate oxide film 103 is formed on a P-type silicon substrate 101, a polycrystalline silicon film 104 is deposited thereon to form a gate electrode in the predetermined position by the patterning. Next, after an oxide silicon film 105 is deposited thereon, a silicon oxide film 107 covering simultaneously the side surface of gate electrode and bondary between the element isolating region and transistor active region is formed by the dry etching technology. Next, after the source, drain layer 108 are formed using the silicon oxide film 107 as the mask and titanium film 109 is deposted thereon, a titanium silicide layer is formed on the transistor active region sourrounded by the gate electrodes and silicon oxide film 107.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低コスト、高信頼性の半
導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device of low cost and high reliability.

【0002】[0002]

【従来の技術】近年、半導体装置の高速化、低消費電力
化にともなって、活性領域及びゲート電極に自己整合的
に高融点金属層(シリサイド層)を形成する方法(サリ
サイド)の必要性が高まっている。しかしながら、半導
体装置のフィールド酸化膜と活性領域の境界付近では応
力が集中し、結晶欠陥が多く存在しているため、サリサ
イド化する際、上記欠陥でシリサイド層が異常成長し、
シリサイド層がソース、ドレイン拡散層を突き抜けてし
まうことにより、ソース、ドレイン拡散層と基板間でリ
ーク電流が発生するという問題点を有している。上記問
題を解決する半導体装置の製造方法は、例えば、特開昭
62ー221156号公報に発表されている。
2. Description of the Related Art In recent years, with the increase in speed and power consumption of semiconductor devices, there is a need for a method (salicide) of forming a refractory metal layer (silicide layer) in a self-aligned manner on an active region and a gate electrode. It is rising. However, stress concentrates near the boundary between the field oxide film and the active region of the semiconductor device, and there are many crystal defects. Therefore, when salicided, the silicide layer abnormally grows due to the above defects.
Since the silicide layer penetrates through the source / drain diffusion layer, there is a problem that a leak current is generated between the source / drain diffusion layer and the substrate. A method of manufacturing a semiconductor device that solves the above problem is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-221156.

【0003】以下に、上記した従来の半導体装置の製造
方法を詳しく説明する。まず、図2(a)に示すよう
に、シリコン基板201の上に局所酸化法により酸化膜
202を形成することにより、活性領域を決定し、その
後、多結晶シリコンでゲート電極203を形成した後、
イオン注入法により拡散層204を形成する。次に、図
2(b)に示すように、窒化シリコン膜205を全面に
堆積してフォトレジスト206をマスクとして選択的に
窒化シリコン膜205とその下の酸化膜をエッチングで
取り除いた後、図2(c)に示すように、メタル膜20
7を全面に堆積する。次に、図2(d)に示すように熱
工程を加えることにより、シリサイド層208を形成
し、メタル膜207を全面エッチングして取り除けば、
半導体装置が完成する。
A method of manufacturing the above-mentioned conventional semiconductor device will be described in detail below. First, as shown in FIG. 2A, an active region is determined by forming an oxide film 202 on a silicon substrate 201 by a local oxidation method, and after that, a gate electrode 203 is formed of polycrystalline silicon. ,
The diffusion layer 204 is formed by the ion implantation method. Next, as shown in FIG. 2B, a silicon nitride film 205 is deposited on the entire surface and the silicon nitride film 205 and the oxide film thereunder are selectively removed by etching using the photoresist 206 as a mask. As shown in FIG. 2C, the metal film 20
7 is deposited on the entire surface. Next, as shown in FIG. 2D, a thermal process is applied to form a silicide layer 208, and the metal film 207 is entirely etched and removed.
The semiconductor device is completed.

【0004】このように従来の半導体装置の製造方法で
は、ソース、ドレイン拡散層を形成後、絶縁膜を全面に
堆積し選択的に前記絶縁膜を取り除くことによって、素
子分離領域と活性領域の境界付近でシリサイド化され
ず、素子分離領域と活性領域の境界付近で発生するシリ
サイド層の異常成長によるソース、ドレイン拡散層と基
板間のリーク電流の発生を防止している。
As described above, according to the conventional method of manufacturing a semiconductor device, after the source and drain diffusion layers are formed, an insulating film is deposited on the entire surface and the insulating film is selectively removed to form a boundary between the element isolation region and the active region. It is not silicidized in the vicinity, and prevents generation of leak current between the source / drain diffusion layer and the substrate due to abnormal growth of the silicide layer which occurs near the boundary between the element isolation region and the active region.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような半導体装置では、ゲート側面に絶縁膜が自己整合
的に形成されず、また形成しようとした場合には、ゲー
ト側面に第1の絶縁膜を形成後、第2の絶縁膜を堆積
し、選択的に第2の絶縁膜をエッチングすることにより
素子分離領域と活性領域の境界を覆う第3の絶縁膜を形
成する工程を必要とするために、コストが増加するとい
う問題点を有していた。
However, in the semiconductor device as described above, the insulating film is not formed on the gate side surface in a self-aligned manner, and when it is attempted to be formed, the first insulating film is formed on the gate side surface. After forming the second insulating film, a step of depositing a second insulating film and selectively etching the second insulating film to form a third insulating film covering the boundary between the element isolation region and the active region is required. Moreover, there is a problem that the cost increases.

【0006】本発明は上記従来の課題を解決するもの
で、素子分離領域と活性領域の境界で発生するソース、
ドレイン拡散層と基板間のリーク電流を防ぐことにより
信頼性を向上させ、かつ、低コスト化を実現した半導体
装置の製造方法を提供することを目的とする。
The present invention is to solve the above-mentioned conventional problems, and a source generated at a boundary between an element isolation region and an active region,
An object of the present invention is to provide a method for manufacturing a semiconductor device, which improves reliability by preventing a leak current between a drain diffusion layer and a substrate and realizes cost reduction.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の半導体装置の製造方法は、シリコン基板上
に、フィールド酸化膜を形成した後に、前記トランジス
タ活性領域上にゲート酸化膜を形成する工程と、前記半
導体基板上に多結晶シリコン膜を堆積した後、前記多結
晶シリコンのパターニングを行い、ゲート電極を形成す
る工程と、前記半導体基板上全面に第1の絶縁膜を堆積
する工程と、前記素子分離領域とトランジスタ活性領域
の境界をフォトレジストで覆った後、ドライエッチング
技術によりゲート電極側部及び、前記素子分離領域と前
記トランジスタ活性領域の境界を同時に覆う第2の絶縁
膜を形成する工程と、前記絶縁膜をマスクとしてソー
ス、ドレイン拡散層を形成する工程と、前記半導体基板
上全面に金属膜を形成する工程と、前記第2の絶縁膜で
囲まれた前記活性領域及び、前記ゲート電極上をシリサ
イド化する工程とを有する。
In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention comprises forming a field oxide film on a silicon substrate and then forming a gate oxide film on the transistor active region. Forming step, depositing a polycrystalline silicon film on the semiconductor substrate, patterning the polycrystalline silicon to form a gate electrode, and depositing a first insulating film on the entire surface of the semiconductor substrate. And a second insulating film that covers the boundary between the element isolation region and the transistor active region with a photoresist and then simultaneously covers the gate electrode side and the boundary between the device isolation region and the transistor active region by a dry etching technique. Forming a source and drain diffusion layer using the insulating film as a mask, and forming a metal film on the entire surface of the semiconductor substrate. A step of, said active region surrounded by the second insulating film and a step of siliciding said gate electrode electrode.

【0008】[0008]

【作用】上記した構成によって、活性領域とフィールド
酸化膜の境界がシリサイド化しないため、フィールド絶
縁膜と活性領域の境界でのシリサイド層の異常成長が発
生せず、ソース、ドレイン拡散層と基板間のリーク電流
の発生が防止でき、かつ、ゲート電極の側面を覆う絶縁
膜と素子分離領域とトランジスタ活性領域の境界を覆う
絶縁膜を同時に形成することによって低コスト化を実現
できる。
With the above structure, since the boundary between the active region and the field oxide film is not silicidized, abnormal growth of the silicide layer at the boundary between the field insulating film and the active region does not occur, and the source / drain diffusion layer and the substrate The leakage current can be prevented from occurring and the cost can be reduced by simultaneously forming the insulating film covering the side surface of the gate electrode and the insulating film covering the boundary between the element isolation region and the transistor active region.

【0009】[0009]

【実施例】以下本発明の実施例における半導体装置の製
造方法について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明おける半導体装置の製造方法
の工程断面図である。まず、図1(a)に示すように、
P型シリコン基板101の上に熱酸化によりフィールド
酸化膜102を300nm形成し、熱酸化によりゲート酸化
膜103を8nm形成した後、減圧CVD法により多結晶
シリコン膜104を300nm堆積し、ドライエッチング技
術を用いて所定の位置にパターニングを行いゲート電極
を形成する。
1A to 1D are sectional views showing steps in a method of manufacturing a semiconductor device according to the present invention. First, as shown in FIG.
A field oxide film 102 of 300 nm is formed by thermal oxidation on a P-type silicon substrate 101, a gate oxide film 103 of 8 nm is formed by thermal oxidation, and a polycrystalline silicon film 104 of 300 nm is deposited by a low pressure CVD method, followed by a dry etching technique. Is used to form a gate electrode by patterning at a predetermined position.

【0011】次に、図1(b)に示すように、その上に
減圧CVD法を用いて酸化シリコン膜105を140nm堆
積する。次に、図1(c)に示すように、フォトレジス
ト106を素子分離領域とトランジスタ活性領域の境界
を覆うようにパターニングし、図1(d)に示すよう
に、ドライエッチング技術を用いてゲート電極側面、及
び素子分離領域とトランジスタ活性領域の境界を同時に
覆う酸化シリコン膜107を形成した後、シリコン酸化
膜107をマスクとしてイオン注入法によりソース、ド
レイン層108を形成する。
Next, as shown in FIG. 1B, a silicon oxide film 105 is deposited thereon to a thickness of 140 nm by the low pressure CVD method. Next, as shown in FIG. 1C, the photoresist 106 is patterned so as to cover the boundary between the element isolation region and the transistor active region, and as shown in FIG. 1D, a gate is formed by using a dry etching technique. After forming the silicon oxide film 107 that covers the electrode side surface and the boundary between the element isolation region and the transistor active region at the same time, the source and drain layers 108 are formed by ion implantation using the silicon oxide film 107 as a mask.

【0012】次に、図1(e)に示すように、その上に
スパッタ法を用いてチタン膜109を50nm堆積した後、
図1(f)に示すように、625℃60secのランプアニール
を行い、ゲート電極及び酸化シリコン膜107で囲まれ
たトランジスタ活性領域上にチタンシリサイド層110
を形成した後、硫化水素と過酸化水素水混合液を用いて
チタン膜109を除去し、825℃60secのランプアニール
を行いチタンシリサイド層110を活性化することによ
りトランジスタが完成する。
Next, as shown in FIG. 1 (e), a titanium film 109 having a thickness of 50 nm is deposited thereon by sputtering,
As shown in FIG. 1F, lamp annealing is performed at 625 ° C. for 60 seconds to form a titanium silicide layer 110 on the transistor active region surrounded by the gate electrode and the silicon oxide film 107.
Then, the titanium film 109 is removed using a mixed solution of hydrogen sulfide and hydrogen peroxide, and lamp annealing is performed at 825 ° C. for 60 seconds to activate the titanium silicide layer 110, thereby completing the transistor.

【0013】なお、本実施例ではゲート電極側面、及び
素子分離領域とトランジスタ活性領域を同時に覆う絶縁
膜に酸化シリコン膜を用いたが、窒化シリコン膜を用い
ることによっても同様の効果が得られる。
In this embodiment, the silicon oxide film is used for the side surface of the gate electrode and the insulating film that simultaneously covers the element isolation region and the transistor active region, but the same effect can be obtained by using the silicon nitride film.

【0014】また、本実施例ではゲート電極側面及び素
子分離領域と活性領域の境界を覆う絶縁膜を形成後、イ
オン注入を行いソース、ドレイン拡散層を形成していた
が、ゲート電極形成後1回目のイオン注入を行い、さら
に、ゲート電極側面、及び素子分離領域とトランジスタ
活性領域を同時に覆う絶縁膜を形成後、2回目のイオン
注入を行うことにより、LDD(Lightly Doped Drai
n)構造をなすソース、ドレイン拡散層を形成できる。
LDD構造を採用することにより電界による素子劣化を
緩和でき、さらに信頼性が向上する。
In the present embodiment, the source and drain diffusion layers are formed by ion implantation after forming the insulating film covering the side surface of the gate electrode and the boundary between the element isolation region and the active region. By performing the second ion implantation and further forming an insulating film that simultaneously covers the side surface of the gate electrode and the element isolation region and the transistor active region, the second ion implantation is performed to perform LDD (Lightly Doped Drai).
n) A source / drain diffusion layer having a structure can be formed.
By adopting the LDD structure, the deterioration of the element due to the electric field can be alleviated, and the reliability is further improved.

【0015】[0015]

【発明の効果】以上のように本発明は、ゲート電極側
面、及び素子分離領域と活性領域の境界を覆う絶縁膜を
同時に形成することによって低コスト化を実現できる。
また、ソース、ドレイン拡散層を形成する際、ゲート電
極形成後1回目のイオン注入を行い、さらに、ゲート電
極側面及び素子分離領域と活性領域の境界を覆う絶縁膜
を形成後2回目のイオン注入を行うことによってLDD
構造をなすソース、ドレイン拡散層を形成でき、さらに
信頼性を向上させる効果が得られる。
As described above, according to the present invention, cost reduction can be realized by simultaneously forming the insulating film covering the side surface of the gate electrode and the boundary between the element isolation region and the active region.
When forming the source and drain diffusion layers, the first ion implantation is performed after the gate electrode is formed, and the second ion implantation is performed after the insulating film that covers the gate electrode side surface and the boundary between the element isolation region and the active region is formed. By doing LDD
Source and drain diffusion layers having a structure can be formed, and the effect of further improving reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における半導体装置の製造方法
の工程断面図
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】従来の半導体装置の製造方法の工程断面図FIG. 2 is a process sectional view of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

101 シリコン基板(半導体基板) 102 フィールド酸化膜 103 ゲート酸化膜 104 多結晶シリコン(ゲート電極用) 105 酸化シリコン酸化膜(第1の絶縁膜) 106 フォトレジスト 107 酸化シリコン膜(第2の絶縁膜) 108 ソース、ドレイン拡散 109 チタン膜 110 チタンシリサイド層 201 シリコン基板(半導体基板) 202 酸化膜 203 ゲート電極 204 拡散層 205 窒化シリコン膜 206 フォトレジスト 207 メタル膜 208 シリサイド層 101 Silicon Substrate (Semiconductor Substrate) 102 Field Oxide Film 103 Gate Oxide Film 104 Polycrystalline Silicon (for Gate Electrode) 105 Silicon Oxide Oxide Film (First Insulation Film) 106 Photoresist 107 Silicon Oxide Film (Second Insulation Film) 108 Source / Drain Diffusion 109 Titanium Film 110 Titanium Silicide Layer 201 Silicon Substrate (Semiconductor Substrate) 202 Oxide Film 203 Gate Electrode 204 Diffusion Layer 205 Silicon Nitride Film 206 Photoresist 207 Metal Film 208 Silicide Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 昭平 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shohei Shinohara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板に、素子分離領域及
び活性領域を形成した後に、前記活性領域上にゲート酸
化膜を形成する工程と、 前記半導体基板上に多結晶シリコン膜を堆積した後、前
記多結晶シリコンのパターニングを行い、ゲート電極を
形成する工程と、 前記半導体基板上全面に第1の絶縁膜を堆積する工程
と、 前記素子分離領域と活性領域の境界をフォトレジストで
覆った後、ドライエッチング技術により自己整合的にゲ
ート電極側部を覆うと同時に、選択的に前記素子分離領
域と前記活性領域の境界を覆い、かつ前記活性領域上の
少なくとも一部には形成されない第2の絶縁膜を形成す
る工程と、 前記第2の絶縁膜をマスクとしてソース、ドレイン拡散
層を形成する工程と、 前記半導体基板上全面に金属膜を形成する工程と、 前記第2の絶縁膜で囲まれた前記活性領域及び、前記ゲ
ート電極上をシリサイド化する工程とを備えた半導体装
置の製造方法。
1. A step of forming a device isolation region and an active region on a semiconductor substrate of one conductivity type, and then forming a gate oxide film on the active region, and depositing a polycrystalline silicon film on the semiconductor substrate. Then, the step of patterning the polycrystalline silicon to form a gate electrode, the step of depositing a first insulating film on the entire surface of the semiconductor substrate, and the boundary between the element isolation region and the active region covered with a photoresist. After that, a dry etching technique is used to cover the side of the gate electrode in a self-aligning manner and at the same time selectively cover the boundary between the element isolation region and the active region, and not be formed on at least a part of the active region. A step of forming a second insulating film, a step of forming a source / drain diffusion layer using the second insulating film as a mask, and a step of forming a metal film on the entire surface of the semiconductor substrate. , Wherein the active region surrounded by the second insulating film and method of manufacturing a semiconductor device including the step of siliciding said gate electrode electrode.
【請求項2】前記第2の絶縁膜が酸化シリコン膜である
ことを特徴とする請求項1記載の半導体装置の製造方
法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the second insulating film is a silicon oxide film.
JP24900693A 1993-10-05 1993-10-05 Manufacture of semiconductor device Pending JPH07106559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24900693A JPH07106559A (en) 1993-10-05 1993-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24900693A JPH07106559A (en) 1993-10-05 1993-10-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07106559A true JPH07106559A (en) 1995-04-21

Family

ID=17186612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24900693A Pending JPH07106559A (en) 1993-10-05 1993-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07106559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569742B1 (en) 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
JP2007116186A (en) * 2006-12-04 2007-05-10 Renesas Technology Corp Semiconductor device and method of manufacturing same
US7307320B2 (en) 2005-11-07 2007-12-11 Samsung Electronics Co., Ltd. Differential mechanical stress-producing regions for integrated circuit field effect transistors
US20130005098A1 (en) * 2007-02-22 2013-01-03 Fujitsu Semiconductor Limited Semiconductor device having a contact plug connecting to a silicide film formed on a diffusion region of a flash memory cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569742B1 (en) 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
US6576512B2 (en) 1998-12-25 2003-06-10 Hitachi, Ltd. Method of manufacturing an EEPROM device
US6908837B2 (en) 1998-12-25 2005-06-21 Renesas Technology Corp. Method of manufacturing a semiconductor integrated circuit device including a gate electrode having a salicide layer thereon
US7166893B2 (en) 1998-12-25 2007-01-23 Renesas Technology Corp. Semiconductor integrated circuit device
US7307320B2 (en) 2005-11-07 2007-12-11 Samsung Electronics Co., Ltd. Differential mechanical stress-producing regions for integrated circuit field effect transistors
JP2007116186A (en) * 2006-12-04 2007-05-10 Renesas Technology Corp Semiconductor device and method of manufacturing same
US20130005098A1 (en) * 2007-02-22 2013-01-03 Fujitsu Semiconductor Limited Semiconductor device having a contact plug connecting to a silicide film formed on a diffusion region of a flash memory cell
CN102969279A (en) * 2007-02-22 2013-03-13 富士通半导体股份有限公司 Semiconductor device and method for manufacturing the same
US8865546B2 (en) * 2007-02-22 2014-10-21 Fujitsu Semiconductor Limited Method for manufacturing a non-volatile semiconductor memory device having contact plug formed on silicided source/drain region

Similar Documents

Publication Publication Date Title
KR20000019876A (en) Semiconductor device with gate spacer having conductive layer and manufacturing method thereof
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
JP2874626B2 (en) Method for manufacturing semiconductor device
JP4348757B2 (en) Semiconductor device
KR100495662B1 (en) Method for fabricating a semiconductor device
JP3684849B2 (en) Semiconductor device including MIS type field effect transistor and manufacturing method thereof
JPH08321613A (en) Method of manufacturing semiconductor device
JP2830762B2 (en) Method for manufacturing semiconductor device
JPH07106559A (en) Manufacture of semiconductor device
JPH10335645A (en) Switching device using silicide and manufacture thereof
JPH02153538A (en) Manufacture of semiconductor device
JPH1065171A (en) Manufacture of mos transistor
KR100905177B1 (en) Fabricating method of Semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
KR100451756B1 (en) Method for fabricating semiconductor device the same
JPH05136414A (en) Thin film transistor and its manufacture
JP3886316B2 (en) Manufacturing method of semiconductor device
JPH0846189A (en) Semiconductor device and manufacture thereeof
JPH09213962A (en) Thin film transistor and its manufacture
JPH07273197A (en) Semiconductor device and its fabrication
JPH0864691A (en) Production of mosfet with silicide structure
JPH0714847A (en) Semiconductor device and manufacture thereof
KR20010038087A (en) method for manufacturing of semiconductor device
JPH0917861A (en) Manufacture of semiconductor device
JP2004039681A (en) Semiconductor device and its manufacturing method