JPS6026809B2 - Method for manufacturing high-strength steel pipes with excellent low-temperature toughness - Google Patents

Method for manufacturing high-strength steel pipes with excellent low-temperature toughness

Info

Publication number
JPS6026809B2
JPS6026809B2 JP10988380A JP10988380A JPS6026809B2 JP S6026809 B2 JPS6026809 B2 JP S6026809B2 JP 10988380 A JP10988380 A JP 10988380A JP 10988380 A JP10988380 A JP 10988380A JP S6026809 B2 JPS6026809 B2 JP S6026809B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel
steel pipes
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10988380A
Other languages
Japanese (ja)
Other versions
JPS5735625A (en
Inventor
庸 高田
英司 杉江
正敏 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10988380A priority Critical patent/JPS6026809B2/en
Publication of JPS5735625A publication Critical patent/JPS5735625A/en
Publication of JPS6026809B2 publication Critical patent/JPS6026809B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Description

【発明の詳細な説明】 この発明は、低温靭性にすぐれた高張力鋼管の製造方法
に関し、鋼管の素材としてひずみ時効による靭性の劣化
が極めて小さい特定組成の鋼を用い、その圧延条件なら
びにその後の熱処理を適切に制御することにより、低温
における級性の劣化を伴うことないこ強度の向上を図ろ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength steel pipes with excellent low-temperature toughness, using steel of a specific composition that exhibits extremely little deterioration of toughness due to strain aging as the material for the steel pipes, and the rolling conditions and subsequent By appropriately controlling the heat treatment, the aim is to improve the strength without deteriorating the grade at low temperatures.

近年石油、天然ガスなどのエネルギー資源の開発が寒冷
地においても広範囲に行われるようになり、それにとも
なってこれら資源の輸送を行なうパイプライン敷設が数
多く計画され、一部ではすでに実行されつつある。
In recent years, the development of energy resources such as oil and natural gas has been carried out over a wide range of areas, even in cold regions, and as a result, many plans have been made to construct pipelines to transport these resources, and some are already being implemented.

これらのパイプラインに用いられる鋼管は次第に大径化
する煩向にあり、それにともなって鋼管の高張力化が要
求されてきている。また、これら寒冷地のパイプライン
用の鋼管は、低温下に設置されるためにその靭性に対す
る要求もはなはだ厳しいものがある。この種パイプライ
ン用高張力大蚤鋼管の素材としては、主として制御圧延
によって製造された圧延のままの鋼板を用いることが多
く、現在この制御圧延材を用いてX7筋舷の鋼管が製造
されている。
The steel pipes used in these pipelines are gradually becoming larger in diameter, and along with this, there has been a demand for higher tensile strength of the steel pipes. Furthermore, since steel pipes for pipelines in cold regions are installed at low temperatures, there are extremely strict requirements regarding their toughness. The raw material for this kind of high-tensile steel pipe for pipelines is often as-rolled steel plate manufactured by controlled rolling, and currently X7 reinforcement steel pipes are manufactured using this controlled rolling material. There is.

しかし、将釆はX8雌吸の高強度を有しかつ低温鞠性も
良好な鋼管の使用が計画されているが、上記の圧延材を
用いた場合はX70級をこえる強度は期待できず、X7
政扱鋼管でも造管能力の点からその製造可能寸法に制限
を受けているのが現状である。さらに近年M○,Ni,
Vなど特殊合金元素の価格が著しく高くなり、制御圧延
材から製造されるX7雌舷鋼管の製造コストも従来にく
らべかなり高くなってきている。合金元素の節約および
製造可能寸法の拡大などを考慮すると高強度鋼管の製造
法としては、鋼管成形後に強度を上昇させる手段をとる
ことが望ましく、たとえば誘導加熱による鋼管の焼入れ
、競もどし処理はこの手段のうちの有力なものであるが
、この処理には大がかりな設備を必要とし、鋼管製造コ
ストがかなり上昇する。
However, although the plan is to use steel pipes that have the high strength of X8 female suction and good low-temperature balling properties, if the above-mentioned rolled material is used, it cannot be expected that the strength will exceed X70 class. X7
Currently, the dimensions that can be manufactured for government-treated steel pipes are limited due to pipe manufacturing capacity. Furthermore, in recent years M○, Ni,
The price of special alloying elements such as V has increased significantly, and the manufacturing cost of X7 female side steel pipes manufactured from controlled rolling materials has also become considerably higher than in the past. Considering the saving of alloying elements and the expansion of manufacturable dimensions, it is desirable to take measures to increase the strength after forming the steel pipe as a manufacturing method for high-strength steel pipes. Although this is a promising method, this treatment requires large-scale equipment and considerably increases the cost of manufacturing steel pipes.

一方、鋼管成形後に時効処理を施すいわゆるひずみ時効
処理も、鋼管の強度上昇のためには有効な手段ではある
が、一般にひずみ時効処理は材料の低温鰯性を劣化させ
るので、従来は好ましくないとされていた。しかしなが
らこの点に関し、発明者らは化学組成および圧延方法の
異なる多くの素材から製造された鋼管を対象として、こ
れらの低温靭‘性におよぼす冷間加工およびみずみ時効
の影響について数多〈の実験、検討を重ねた結果、特定
範囲の化学組成をもち、かつ適切な制御圧延によって製
造された良好な低温鞠性を有する材料においては、冷間
加工およびその後のひずみ時効による低温鋤性の劣化は
これまで考えられていたよりもはるかに小さいこと、従
って冷間加工量と時効条件の適切な組合わせにより低温
鋤性が良好なまま強度を上昇させ得ることを見出した。
On the other hand, so-called strain aging treatment, which is an aging treatment performed after steel pipe forming, is an effective means for increasing the strength of steel pipes, but it has traditionally been considered undesirable because strain aging generally deteriorates the low-temperature sardonic properties of the material. It had been. However, in this regard, the inventors have conducted numerous studies on the effects of cold working and water aging on the low-temperature toughness of steel pipes manufactured from many materials with different chemical compositions and rolling methods. As a result of repeated experiments and studies, we have found that materials with a specific range of chemical composition and good low-temperature rolling properties produced through appropriately controlled rolling do not suffer from deterioration in low-temperature plowing properties due to cold working and subsequent strain aging. It was found that this is much smaller than previously thought, and that by appropriately combining the amount of cold work and aging conditions, it is possible to increase the strength while maintaining good low-temperature plowability.

この発明は上記の知見に基づくものである。This invention is based on the above findings.

すなわちこの発明は、重量で0.18%以下のC,0.
50%以下のSi,0.50〜20%のMh,0.03
0%以下のP,0.006%以下のS,0−15%以下
のNbおよび0.060%以下のAIを含有し、さらに
必要に応じて0.15%以下のVまたはTi,0.50
%以下のMo,0.50%以下のCu,3.0%以下の
Ni,0.60%以下のCて,0.040%以下のRE
Mおよび0.010%以下のCaのうちから選んだ1種
または2種以上を含み、残部が実質的にFeの組成にな
る鋼スラブを、加熱温度118000以下、950qo
以下での圧下率65〜95%、最終圧延仕上温度750
〜550午0の条件で圧延加工し、2側Vノツチ謙片を
用いたシャルピー衝撃試験における破断面1の当りのセ
パレーション総長さの試験温度を通して最大値が18側
以上である素材鋼板で鋼管を成形し、この鋼管に100
〜400ooの温度範囲で時効処理を施すことから成る
低温靭性にすぐれた高張力鋼管の製造方法である。以下
この発明を由来するに至った実験結果の一部を掲げ、そ
れらを基にこの発明を具体的に説明する。
That is, the present invention provides C, 0.18% or less by weight.
50% or less Si, 0.50-20% Mh, 0.03
Contains 0% or less P, 0.006% or less S, 0-15% or less Nb, and 0.060% or less AI, and optionally 0.15% or less V or Ti, 0. 50
% or less Mo, 0.50% or less Cu, 3.0% or less Ni, 0.60% or less C, 0.040% or less RE
A steel slab containing one or more selected from M and 0.010% or less of Ca, with the remainder substantially having a composition of Fe, is heated at a heating temperature of 118,000 or less and 950qo
Rolling reduction rate: 65-95%, final rolling finish temperature: 750
The steel pipe is made of a steel plate that is rolled under the conditions of ~550:0, and the maximum value of the total separation length per fracture surface 1 in the Charpy impact test using a 2-side V-notch piece is 18 sides or more through the test temperature. Formed into this steel pipe with 100
This is a method for manufacturing high-strength steel pipes with excellent low-temperature toughness, which comprises aging treatment in a temperature range of ~400 oo. Hereinafter, some of the experimental results that led to this invention will be listed, and the invention will be specifically explained based on them.

従来より制御圧延材は、衝撃試験において著しく低い延
性−脆性遷移温度を有すること、またその原因は制御圧
延による結晶粒の微細化とQ+y城での圧延による(1
00)〔011〕方位の発達にともなうセパレーション
の生成であり、とくにセパレーション発生量の遷移温度
におよぼす影響が大きいことが知られている。
Conventionally, control-rolled materials have a significantly low ductile-brittle transition temperature in impact tests, and this is due to grain refinement by controlled rolling and rolling at Q+y castle (1
00) [011] Separation is generated as the orientation develops, and it is known that the amount of separation generated has a particularly large effect on the transition temperature.

一方、材料にひずみ時効を与えた場合、ひずみ時効によ
る降状応力ならびに低ひずみ城における塑性流動応力の
増加により、低温靭‘性が劣化することもよく知られて
いる。
On the other hand, it is well known that when a material is subjected to strain aging, its low-temperature toughness deteriorates due to an increase in descending stress due to strain aging and plastic flow stress at low strain levels.

従ってこれまではこの発明で目的とするような良好な低
温鋤性および強度を得るためにひずみ時効処理を施すの
如きは考えられたことはなかった。しかしこの点に関す
る発明者らの実験によれば、強い制御圧延を受け、2脚
Vノッチシヤルピ−試片を用いた衝撃試験において「該
試片の破断面1の当たりのセパレーション総長ごの試験
温度を通して最大値が18側以上である材料では、延性
−脆性遷移温度はセパレーション発生量の温度依存性に
支配され、このセパレーション発生量の温度依存性はひ
ずみ時効の影響をあまり受けないこと、従って1の当た
りのセパレーション総長さの最大値が18側未満の材料
にくらべ、第1表に示したようにシャルピー衝撃試験に
おけるひずみ時効による延性−脆性遷移温度(vTrs
)の上昇量は非常に小さいことがわかった。
Therefore, until now, it has not been considered to apply strain aging treatment to obtain good low-temperature plowability and strength as the object of this invention. However, according to experiments conducted by the inventors on this point, in an impact test using a two-legged V-notch Sharpie specimen subjected to strong controlled rolling, it was found that "throughout the test temperature for each separation length per fracture surface 1 of the specimen" For materials with a maximum value of 18 or higher, the ductile-brittle transition temperature is dominated by the temperature dependence of the amount of separation generated, and this temperature dependence of the amount of separation generated is not significantly affected by strain aging, so Compared to materials with a maximum separation length of less than 18 sides, as shown in Table 1, the ductile-brittle transition temperature (vTrs) due to strain aging in the Charpy impact test is
) was found to be very small.

第1図に示した結果は、鋼管素材としてX60〜X7庇
吸の圧延材を用い、それもUOE法により造管しついで
拡管率1.0%で拡管したのち、25000,15分間
の時効処理を施したものについてである。
The results shown in Figure 1 are obtained by using a rolled material with an eave of X60 to X7 as the steel pipe material, which was also made by the UOE method, expanded at a pipe expansion rate of 1.0%, and then aged for 25,000 mm and 15 minutes. This is about something that has been subjected to.

同図より明らかなように、セパレーション総長さの最大
値が18側以上では、時効後と時効前におけるvT俗の
差△vT岱は極〈僅かである。一方このような強い制御
圧延材のシャルピー衝撃試験を行った場合の破面と衝撃
値の関係をみると、100%延性破面を呈する温度領域
において、低温になるほどセパレーションの発生量が多
くなり、それにともなって吸収エネルギーが低下し、1
00%延性破壊での最低温度における吸収エネルギーい
わゆるCv,■低い値を示す。このため低温では、不安
定延性破壊と呼ばれる破面は100%延性でありながら
高速で伝播する破壊が発生するおそれがある。従ってこ
れまで設計温度が低いすなわちかなり低温城まで良好な
靭性が要求される大径ガスパィプラィン用の鋼管として
、不安定健性破壊を生ずるおそれのある制御圧延材から
成形した鋼管を使用することに難色が示されていた。し
かしこの点については最近、例えCv側が小さくても、
その値を示す温度が十分低くかつ設計温度およびそれに
よりかなり低温城において十分高い吸収エネルギーを有
している制御圧延材ならばガスパィプラィン用として使
用しても問題ないことが判明している。そこで発明者ら
は、セパレーションの発生が多くても低温城において高
い吸収エネルギーを有するような鋼管素材の開発につき
鋭意研究を進めたところ、その成分組成のうちとくにS
量を0.006%以下としかつ必要に応じて希士類元素
(REM),Ca,MgまたはZrなどを添加して硫化
物の形態制御を行って藩製したスラブを用い、その圧延
段階とくに制御圧延の条件をこの発明に従って特定する
ことにより、制御圧延材のシャルピー試験における破断
面1の当りのセパレーション総長羊の最大値が18肌以
上である素材が得られ、この素材についてはその吸収エ
ネルギーのひずみ時効による劣化は第2図に示したよう
に、被断面1の当りのセパレーション総長さの最大値が
18側未満である素材のそれに〈らべ非常に小さいこと
が明らかになった。
As is clear from the figure, when the maximum value of the total separation length is 18 or more, the difference ΔvT in the vT values after and before the statute of limitations is extremely small. On the other hand, looking at the relationship between the fracture surface and the impact value when such a strong controlled rolled material is subjected to a Charpy impact test, it is found that in the temperature range where a 100% ductile fracture surface occurs, the lower the temperature, the more separations occur. Along with this, the absorbed energy decreases, and 1
Absorbed energy at the lowest temperature at 00% ductile fracture, so-called Cv, shows a low value. Therefore, at low temperatures, there is a risk that a fracture called unstable ductile fracture may occur, which propagates at high speed even though the fracture surface is 100% ductile. Therefore, it has been difficult to use steel pipes formed from controlled-rolled materials, which may cause unstable integrity fractures, as steel pipes for large-diameter gas pipelines that require good toughness even at low design temperatures, i.e., even at fairly low temperatures. was shown. However, regarding this point, even if the Cv side is small,
It has been found that there is no problem in using controlled rolled materials for gas pipelines as long as the temperature at which this value is shown is sufficiently low and the material has a sufficiently high absorbed energy at the design temperature and therefore at a fairly low temperature. Therefore, the inventors carried out intensive research into the development of a steel pipe material that would have high absorption energy in low-temperature castles even if a large number of separations occurred.
Using a slab manufactured by controlling the sulfide morphology by controlling the amount of sulfide to 0.006% or less and adding rare elements (REM), Ca, Mg, or Zr as necessary, the rolling stage is particularly By specifying the conditions for controlled rolling according to the present invention, a material can be obtained in which the maximum value of the total separation length per fracture surface 1 in the Charpy test of controlled rolled material is 18 skins or more, and for this material, its absorbed energy As shown in Fig. 2, the deterioration due to strain aging of the material was found to be much smaller than that of materials whose maximum total separation length per cross section was less than 18 sides.

第2図に示した結果は、時効前の規格X60〜X7雌扱
の鋼管素材を用い、前掲第1図で説明したのと同等の条
件で造管ならびに時効処理を施した鋼管の吸収エネルギ
ーを、時効処理前のそれと比較して示したもので、同図
からセパレーション総長さの最大値が18柳以上では、
時効後と時効前におけるvE‐2。
The results shown in Figure 2 show the absorbed energy of steel pipes that were made and aged under the same conditions as explained in Figure 1 above, using steel pipe materials of standard X60 to X7 before aging. , is shown in comparison with that before aging treatment, and from the same figure, when the maximum value of the total separation length is 18 or more,
vE-2 after and before the statute of limitations.

の差△vE‐2oはほとんどないことがわかる。次にこ
の発明に従い、下記に示した化学組成に溶製したスラブ
を用い、同じく下記に示した圧延加工および造管加工条
件で外径1219帆,肉厚15.2肋の鋼管を製造し、
この鋼管につき時効温度を種々に変化させたときの引張
強さ(T.S)および降伏強さ(Y.S),vE則並び
にvTrsについて調べた結果をそれぞれ第3図a,b
およびcに示す。
It can be seen that there is almost no difference ΔvE-2o. Next, according to the present invention, a steel pipe with an outer diameter of 1219 sails and a wall thickness of 15.2 ribs was manufactured using a slab melted to the chemical composition shown below and under the rolling and pipe forming conditions shown below.
Figures 3a and b show the results of examining the tensile strength (T.S), yield strength (Y.S), vE law, and vTrs when the aging temperature was variously changed for this steel pipe.
and c.

o化学組成(重量%)C:0.06,Si:0.25,
Mh:1.66,P:0.017,S:0.002,N
b:0.041,AI:0.034,V:0.030,
Cu:0.22,Ni:0.22o圧延加工条件 加熱温度:1150qo,95000以下での圧下率:
75%,最終仕上げ温度:700ooo造管加工条件 造管法:UOE法,拡管率:02%,口4%,△6%な
お2肋Vノッチシャルピー試験における破断面1の当り
のセパレーション総長さの最大値は33側であった。
o Chemical composition (wt%) C: 0.06, Si: 0.25,
Mh: 1.66, P: 0.017, S: 0.002, N
b: 0.041, AI: 0.034, V: 0.030,
Cu: 0.22, Ni: 0.22o Rolling conditions Heating temperature: 1150qo, Reduction rate at 95000 or less:
75%, Final finishing temperature: 700 ooo Pipe forming processing conditions Pipe forming method: UOE method, Pipe expansion ratio: 02%, Mouth 4%, △6% In addition, the total separation length per fracture surface 1 in the 2 rib V notch Charpy test The maximum value was on the 33 side.

この発明に従い製造された素材鋼板から成形されたUO
E鋼管においては、時効条件を適切にすることにより低
温靭性をそれぞれ劣化させることなくすぐれた強度が得
られるのがわかる。とくに拡管率との適切な組合わせに
より×8政汲の高い強度が得られる。つぎにこの発明に
おいて鋼管素材の成分組成範囲を前記のように限定した
理由は次のとおりである。
UO formed from a raw steel plate manufactured according to this invention
It can be seen that in E steel pipes, excellent strength can be obtained without deteriorating low-temperature toughness by setting appropriate aging conditions. In particular, by appropriately combining it with the tube expansion rate, a high strength of x8 strength can be obtained. Next, the reason why the composition range of the steel pipe material is limited as described above in this invention is as follows.

Cは鋼の強度を上げるために必要であるが0.18%を
超えると低温鋤性および溶接性が著しく悪化する。
C is necessary to increase the strength of steel, but if it exceeds 0.18%, low-temperature plowability and weldability are significantly deteriorated.

Siは鋼の脱酸および強度上昇のために有効であるが0
.50%を超えると低温靭性が著しく悪化する。
Si is effective for deoxidizing steel and increasing its strength, but 0
.. If it exceeds 50%, low temperature toughness will be significantly deteriorated.

Mnは鋼の強度上昇および低温靭性改善のために有効で
あるが0.50%未満ではその効果はほとんどなく2.
0%を超えると溶接割れが多発する。
Mn is effective for increasing the strength of steel and improving low-temperature toughness, but if it is less than 0.50%, it has little effect.2.
If it exceeds 0%, weld cracks will occur frequently.

Pは不純物として鋼中に不可避に存在する元素であり、
0.030%を超えると低温鞠性を著しく悪化させるの
で0.030%以下とした。SもPと同じく不可避的不
純物元素でありできる限り低く抑えることが望ましく、
0.006%を超えると硫化物の形態制御を行っても衝
撃吸収エネルギーを著しく低下させるので0.006%
以下におさえた。
P is an element that inevitably exists in steel as an impurity,
If it exceeds 0.030%, low-temperature ballability will be significantly deteriorated, so the content is set to 0.030% or less. Like P, S is an unavoidable impurity element, and it is desirable to keep it as low as possible.
If it exceeds 0.006%, the impact absorption energy will be significantly reduced even if the sulfide morphology is controlled, so 0.006%
I've included it below.

Nbは鋼の強度上昇および制御圧延の効果を著しく大き
くするために不可欠の元素として添加されるが0.15
%を超ると溶接金属の低温級性を著しく悪化させるため
上限を0.15%とした。
Nb is added as an essential element to increase the strength of steel and significantly increase the effect of controlled rolling, but at 0.15
%, the low-temperature properties of the weld metal will be significantly deteriorated, so the upper limit was set at 0.15%.

AIは鋼の脱酸および結晶粒微細化のために有効である
が0.060%を超えると鋼管の表面欠陥および内部欠
陥が多発する。Vは鋼の強度上昇のために添加されるこ
とがあるが0.15%を超えると低温靭性を悪化させる
Although AI is effective for deoxidizing steel and refining grains, when it exceeds 0.060%, surface defects and internal defects occur frequently in steel pipes. V is sometimes added to increase the strength of steel, but if it exceeds 0.15%, it deteriorates low temperature toughness.

Tiは鋼の強度上昇、結晶粒微細化のために添加される
ことがあるが0.15%を超えると低温籾性を著しく悪
化させる。Cuは鋼の強度上昇のために添加されること
があるが0.50%を超えると鋼管の表面欠陥が多発す
る。
Ti is sometimes added to increase the strength of steel and refine grains, but if it exceeds 0.15%, it significantly deteriorates low-temperature graininess. Cu is sometimes added to increase the strength of steel, but if it exceeds 0.50%, surface defects will occur frequently in the steel pipe.

Niは強度上昇および低温轍性の改善のために添加され
ることがあるが高価であり、ガスパィプラィン用鋼管の
低温靭性の改善に対して3.0%添加されれば十分であ
るので、3.0%を上限とした。
Ni is sometimes added to increase strength and improve low-temperature rutting properties, but it is expensive, and 3.0% Ni is sufficient for improving low-temperature toughness of steel pipes for gas pipelines. The upper limit was 0%.

Crは鋼の強度上昇のために添加されることがあるが0
.60%を超えると低温靭性を悪化させる。
Cr is sometimes added to increase the strength of steel, but 0
.. If it exceeds 60%, low temperature toughness will deteriorate.

上述のVからCてまでの成分は、とくに強度の向上に寄
与する同効成分である。REMおよびCaはいずれも硫
化物の形態制御にとって有効な成分であるが、多量に添
加すると鋼管の内部欠陥が多発するため、それぞれRE
M:0.040%,Ca:0.010%を上限とした。
The above-mentioned components from V to C are equivalent components that particularly contribute to improving the strength. Both REM and Ca are effective components for controlling the morphology of sulfides, but if they are added in large amounts, internal defects in steel pipes will occur frequently, so each RE
The upper limits were M: 0.040% and Ca: 0.010%.

次にスラブ加熱温度を1180qo以下にしたのは、こ
れを超える温度に加熱されると、良好な低温級性が得ら
れないからである。950qo以下での圧下率を65〜
95%としたのは、この圧下率が65%未満では、2側
V/ッチ試片を用いたシヤルピー衝撃試験における破断
面1地当たりのセパレーション総長この最大値を18脚
以上にすることができないだけでなく十分に低い延性−
脆性遷移温度を得ることができず、一方95%を超える
と板の長さ方向および中方向のひずみが大きくなり、製
品となり得ないからである。
Next, the reason why the slab heating temperature was set to 1180 qo or less is because if the slab is heated to a temperature exceeding this, good low-temperature properties cannot be obtained. The rolling reduction rate at 950qo or less is 65~
The reason why it is set at 95% is because if the rolling reduction is less than 65%, the maximum value of the total separation per fracture surface in the Shall Pey impact test using a two-sided V/cchi specimen cannot be increased to 18 legs or more. Not only impossible, but also sufficiently low ductility
This is because a brittle transition temperature cannot be obtained, and on the other hand, if it exceeds 95%, the strain in the longitudinal direction and middle direction of the plate becomes large, and it cannot be used as a product.

最終仕上編度を750〜550℃にしたのは、仕上温度
が750qoを超えるときには破断面1の当たりセパレ
ーション総長ごの最大値を18側以上にすることができ
ないだけでなく十分に低い延性−脆性遷移温度が得られ
ず、一方550q0に満たないと鋼板の変形抵抗が薯し
く高くなり、正常な圧延が不可能となるからである。
The reason for setting the final finishing knitting degree to 750 to 550°C is that when the finishing temperature exceeds 750 qo, the maximum value for each separation length per fracture surface 1 cannot be made more than 18 sides, and the ductility-brittleness is sufficiently low. This is because if the transition temperature cannot be obtained, and on the other hand, the temperature is less than 550q0, the deformation resistance of the steel sheet becomes significantly high, making normal rolling impossible.

時効処理時の加熱温度を100〜400℃としたのは、
100℃未満では十分な時効硬化が起らず、一方400
午Cを超えると過時効による軟化が著しく、いずれにし
ても強度を上昇させる効果が乏しくなるからである。
The heating temperature during aging treatment was set at 100 to 400°C because
At temperatures below 100°C, sufficient age hardening does not occur;
This is because if the temperature exceeds C, the softening due to over-aging will be significant, and in any case, the effect of increasing the strength will be poor.

また時効処理に要する時間は0.5〜12び分程度が有
効である。
Further, it is effective that the time required for the aging treatment is about 0.5 to 12 minutes.

というのは0.5分未満のときには時効硬化が十分でな
く、時効処理時間120分で時効による硬化は十分に飽
和し又これを超えると過時効により逆に強度が低下する
場合も生じ得るからである。なお時効時の加熱は電気路
、ガス炉、誘導加熱装置のいずれを用いてもよくまた鋼
管を回転させながらガスバーナーで加熱する方法でもよ
い。
This is because if the aging treatment time is less than 0.5 minutes, the age hardening will not be sufficient, and if the aging treatment time is 120 minutes, the hardening due to aging will be sufficiently saturated, and if it exceeds this, the strength may decrease due to overaging. It is. For heating during aging, any of an electric path, a gas furnace, and an induction heating device may be used, or a method of heating with a gas burner while rotating the steel pipe may be used.

以下この発明の実施例について説明する。この発明に従
い表1に示した条件で鋼管を製造し、それらの引張特性
ならびに衝撃特性について調べた。
Examples of the present invention will be described below. Steel pipes were manufactured according to the present invention under the conditions shown in Table 1, and their tensile properties and impact properties were investigated.

その結果を表1に併せ示す。また比較のため製造条件が
この発明の範囲からはずれている鋼管についても同様の
試験を行い、その結果も表1に併せ示した。船 蝿 : 船 ゴ〔 紙 X ト ト ト づ \ ) 旨 * 山 鰹 べ こ 机 墓 A < * 量 蝿 蟹 量 紐 ミ 馨 粒 泰 表1においてNo.1〜18までが発明鋼管で、No.
19〜26までが比較鋼管である。
The results are also shown in Table 1. For comparison, similar tests were also conducted on steel pipes whose manufacturing conditions were outside the scope of the present invention, and the results are also shown in Table 1. Funai: Funago [Paper 1 to 18 are invented steel pipes, and No.
Nos. 19 to 26 are comparison steel pipes.

No.19,20は時効処理温度が高すぎる場合および
低すぎる場合で発明鋼管No.9〜11と比較するとい
ずれも低温鰯性は良好ではあるものの強度は低い。No
.21,22は圧延条件がこの発明の範囲からはずれて
いるもので、セパレーション総長この最大値が3側と短
く、いずれも低温靭性が低い。No.23,24は必須
成分であるNbが含まれてなく、また圧延条件を適正範
囲からはずれているので制御圧延効果に乏しく、セパレ
ーションの発生は全く見られない。従って衝撃特性が低
い。No.25,26も圧延条件が適正範囲からずれて
いるため衝激特性に劣る。これに対してこの発明に従い
製造された鋼管(舷.1〜18)は、いずれもすぐれた
引張特性と衝撃特性を示し、低温轍性に富むだけでなく
X80級の高い強度を有している。
No. Nos. 19 and 20 are the invention steel pipe Nos. 1 and 2 when the aging treatment temperature is too high or too low. Compared to No. 9 to No. 11, all have good low-temperature sardine properties but low strength. No
.. In Nos. 21 and 22, the rolling conditions are outside the scope of the present invention, the maximum value of the total separation length is short on the 3 side, and both have low low temperature toughness. No. Nos. 23 and 24 do not contain Nb, which is an essential component, and the rolling conditions are outside the appropriate range, so the controlled rolling effect is poor, and no separation is observed at all. Therefore, the impact properties are low. No. Nos. 25 and 26 also have inferior impact properties because the rolling conditions are outside the appropriate range. On the other hand, the steel pipes (flanks 1 to 18) manufactured according to the present invention all exhibit excellent tensile and impact properties, and not only have excellent low-temperature rutting resistance but also have high strength of X80 class. .

以上造管法としてUOE法を用いる場合につき主に説明
したがこの発明の方法はUOH鋼管のみならず蚤総鋼管
、スパイラル鋼管にも適用できるのは勿論であり、しか
もこの方法によれば従来法と〈らべて安価がかつ容易に
高鰍性、高強度鋼管を製造できるのでその工業的価値は
大きい。
Although the above description has mainly been about the case where the UOE method is used as a pipe manufacturing method, the method of this invention can of course be applied not only to UOH steel pipes but also to full-circle steel pipes and spiral steel pipes. In comparison, it is inexpensive and can easily produce high-strength, high-strength steel pipes, so its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシャルピー試験における試験温度を通しての最
大セパレーション発生量とその材料のvT岱のひずみ時
効による変化量との関係を示したグラフ、第2図はシャ
ルピー試験における試験温度を通しての最大セパレーシ
ョン発生量とその材料のシヤルピー吸収エネルギーのひ
ずみ時効による変化量との関係を示したグラフ,第3図
a,bおよびcはいずれもUOE工程における拡管量と
時効温度を変化させたときの引張特性と衝撃特性の変化
を示したグラフである。 第1図 第2図 第3図
Figure 1 is a graph showing the relationship between the maximum amount of separation generated throughout the test temperature in the Charpy test and the amount of change in vT of the material due to strain aging. Figure 2 is the maximum amount of separation generated throughout the test temperature in the Charpy test. Figure 3 a, b and c are graphs showing the relationship between the amount of change in shear py absorbed energy of the material due to strain aging, and the tensile properties and impact when the amount of tube expansion and aging temperature in the UOE process are changed. It is a graph showing changes in characteristics. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 重量で0.18%以下のC,0.50%以下のSi
,0.50〜2.0%のMn,0.030%以下のP,
0.006%以下のS,0.15%以下のNbおよび0
.060%以下のAlを含有し、残部は実質的にFeの
組成になる鋼スラブを、加熱温度1180℃以下,95
0℃以下での圧下率65〜95%,最終仕上温度750
〜550℃の条件で圧延加工し、2mmVノツチ試片に
よるシヤルピー衝撃試験における破断面1cm^2当た
りのセパレーシヨン総長さの試験温度を通しての最大値
が18mm以上である素材鋼板で鋼管を成形し、ついで
この鋼管に100〜400℃の温度範囲で時効処理を施
すことを特徴とする低温靭性にすぐれた高張力鋼管の製
造方法。 2 重量で0.18%以下のC,0.50%以下のSi
,0.50〜2.0%のMn,0.030%以下のP,
0.006%以下のS,0.15%以下のNbおよび0
.060%以下のAlを含有し、さらに0.15%以下
のVまたはTi,0.50%以下のMO,0.50%以
下のCu,3.0%以下のNi,0.60%以下のCr
,0.040%以下のREMおよび0.010%以下の
Caのうちから選んだ1種または2種以上を含み、残部
は実質的にFeの組成になる鋼スラブを、加熱温度11
80℃以下,950℃以下での圧力率65〜95%,最
終仕上温度750〜550℃の条件で圧延加工し、2m
mVノツチ試片によるシヤルピー衝撃試験における破断
面1cm^2当たりのセパレーシヨン総長さの試験温度
を通しての最大値が18mm以上である素材鋼板で鋼管
を成形し、ついでこの鋼管に100〜400℃の温度範
囲で時効処理を施すことを特徴とする低温靭性にすぐれ
た高張力鋼管の製造方法。
[Claims] 1. 0.18% or less C, 0.50% or less Si by weight
, 0.50-2.0% Mn, 0.030% or less P,
0.006% or less S, 0.15% or less Nb and 0
.. A steel slab containing 0.60% or less Al and the remainder being substantially Fe is heated at a heating temperature of 1180°C or less at 95%
Reduction rate 65-95% below 0℃, final finishing temperature 750℃
A steel pipe is formed from a material steel plate which is rolled under conditions of ~550°C and has a maximum separation length per cm^2 of fracture surface in a sharpie impact test using a 2mm V-notch specimen over the test temperature of 18mm or more, A method for producing a high-strength steel pipe with excellent low-temperature toughness, which comprises then subjecting the steel pipe to an aging treatment at a temperature range of 100 to 400°C. 2 0.18% or less C, 0.50% or less Si by weight
, 0.50-2.0% Mn, 0.030% or less P,
0.006% or less S, 0.15% or less Nb and 0
.. 0.60% or less Al, further 0.15% or less V or Ti, 0.50% or less MO, 0.50% or less Cu, 3.0% or less Ni, 0.60% or less Cr
, 0.040% or less of REM, and 0.010% or less of Ca, with the remainder being substantially Fe at a heating temperature of 11%.
Rolled under the conditions of 80℃ or lower, 950℃ or lower pressure rate 65-95%, final finishing temperature 750-550℃, 2m
A steel pipe is formed from a material steel plate in which the maximum separation length per 1 cm^2 of the fracture surface in a shear pie impact test using a mV notch specimen is 18 mm or more throughout the test temperature, and then this steel pipe is heated to a temperature of 100 to 400 °C. A method for manufacturing high-strength steel pipes with excellent low-temperature toughness, which is characterized by subjecting them to aging treatment over a range of conditions.
JP10988380A 1980-08-12 1980-08-12 Method for manufacturing high-strength steel pipes with excellent low-temperature toughness Expired JPS6026809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10988380A JPS6026809B2 (en) 1980-08-12 1980-08-12 Method for manufacturing high-strength steel pipes with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10988380A JPS6026809B2 (en) 1980-08-12 1980-08-12 Method for manufacturing high-strength steel pipes with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPS5735625A JPS5735625A (en) 1982-02-26
JPS6026809B2 true JPS6026809B2 (en) 1985-06-26

Family

ID=14521571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10988380A Expired JPS6026809B2 (en) 1980-08-12 1980-08-12 Method for manufacturing high-strength steel pipes with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS6026809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189109A (en) * 1986-02-17 1987-08-18 清水建設株式会社 Manufacture of high-strength concrete
JPS62227704A (en) * 1986-03-31 1987-10-06 清水建設株式会社 Manufacture of high-strength concrete

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156418A (en) * 1987-12-14 1989-06-20 Yamakawa Kogyo Kk Manufacture of high strength driving transmitting parts for automobile
WO2000068443A2 (en) * 1999-05-10 2000-11-16 Mannesmannröhren-Werke Ag Method for producing welded steel pipes with a high degree of strength, ductility and deformability
CN102912230A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 690MPa-grade electric resistance welding petroleum sleeve and manufacture method thereof
CN107177792A (en) * 2016-03-10 2017-09-19 中国科学院金属研究所 A kind of pipe line steel with resistance to sulfate reducing bacteria corrosion performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189109A (en) * 1986-02-17 1987-08-18 清水建設株式会社 Manufacture of high-strength concrete
JPS62227704A (en) * 1986-03-31 1987-10-06 清水建設株式会社 Manufacture of high-strength concrete

Also Published As

Publication number Publication date
JPS5735625A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
JP5729456B2 (en) Steel material excellent in ductile crack initiation characteristics of weld heat-affected zone and base metal zone and its manufacturing method
JPWO2011052095A1 (en) Steel sheet for line pipe with good strength and ductility and method for producing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP5742750B2 (en) Thick steel plate and manufacturing method thereof
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JPS6026809B2 (en) Method for manufacturing high-strength steel pipes with excellent low-temperature toughness
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JPS5827327B2 (en) Manufacturing method of controlled rolled high strength steel without separation
JPS5935619A (en) Production of high tensile steel material having excellent toughness of weld zone
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging
JPS6144123B2 (en)
JPS6144122B2 (en)
JP4705287B2 (en) Non-water-cooled manufacturing method for thin high-strength steel sheet with high absorbed energy
JP3245224B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JPH04180537A (en) High tensile strength steel plate for door guard bar excellent in collapse strength
JPS5821008B2 (en) Greta
JP2011195856A (en) Steel for line pipe and method for producing the same
JPS6143412B2 (en)
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JP3846119B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JPH02301517A (en) Production of high tensile steel plate with low yield ratio
JPH0941035A (en) Production of low yield ratio hot rolled steel sheet excellent in toughness
JP2006183127A (en) Method for producing high strength welded steel tube