JPS60263473A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS60263473A
JPS60263473A JP11961984A JP11961984A JPS60263473A JP S60263473 A JPS60263473 A JP S60263473A JP 11961984 A JP11961984 A JP 11961984A JP 11961984 A JP11961984 A JP 11961984A JP S60263473 A JPS60263473 A JP S60263473A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
electrons
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11961984A
Other languages
Japanese (ja)
Inventor
Haruhisa Kinoshita
木下 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11961984A priority Critical patent/JPS60263473A/en
Publication of JPS60263473A publication Critical patent/JPS60263473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize adjustable threshold voltages and to ensoure optimum, easy operation for each chip by a method wherein a p<+> type semiconductor layer of excellent conductivity implanted with a high concentration of acceptor ions is provided, with the intermediary of a thin semi-insulating layer, on a two-dimensional electron accumulation layer along its surface interfacing with a substrate. CONSTITUTION:Electrons in an n<+> Al0.3Ga0.7As layer 5 doped with Si by modulation are diffused into an undoped GaAs layer 7, to be accumulated therein in the form of two-dimensional gas 8 of electrons. When a field is generated parallel to an interface of said layer 5 by application of a voltage across a source electrode 9 and drain electrode 10, the two-dimensional gas 8 of electrons starts travelling as high-mobility electrons. The rate of the flow of the conductive particles is subject to the voltage applied to a gate electrode 11. Application of the substrate bias voltage for a p<+> GaAs substrate 3 doped with B to the positive or negative side increases or decreases the flow rate and shifts the threshold voltage to the negative or positive side. Accordingly, the best threshold voltage for a chip may be easily chosen to ensure optimum operating conditions for the chip.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、基板バイアス電圧によってしきい値電圧の
調整を可能とした。高移動度の二次元電子層をチャンネ
ルとする電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention makes it possible to adjust the threshold voltage using the substrate bias voltage. This field-effect transistor has a high-mobility two-dimensional electron layer as a channel.

(従来の技術) 従来から、変調ドーピングを利用した高電子移動度トラ
ンジスタが提案されている。これらトランジスタのうち
、基板バイアス電圧によってしきい値電圧を調整出来る
ように構成した電界効果トランジスタを第2図に断面図
として示す。
(Prior Art) High electron mobility transistors using modulation doping have been proposed. Among these transistors, a field effect transistor whose threshold voltage can be adjusted by a substrate bias voltage is shown in cross-section in FIG.

この従来構造では、21は基板バイアス用のAuGe電
極、22は厚さが約400kmの半絶縁性GaAs基板
、23は約200OAの厚さの不純物無添加(以下アン
ドープと称する)のAQ+p!Ga、、7AS層、24
はSiがlX10cm−3程度添加され厚さが約15O
AのイーM、、3Ga、、7AsR125は厚さが約1
000AのアンドープGaAs層、26はこのアンドー
プGaAs層25中の、ri’ −mo、3G ao、
7 A s層24との接合界面に蓄積された二次元電子
ガス、27及び28はAuGeの電極層からなるソース
及びドレイン電極、29はこれらソース及びドレイン電
極27及び28の下側にre −AQ□、3 Gao、
7 As層24までにAuGeを拡散して得たが一領域
、そして30はTi電極層からなるゲート電極である。
In this conventional structure, 21 is an AuGe electrode for substrate bias, 22 is a semi-insulating GaAs substrate with a thickness of about 400 km, and 23 is an undoped (hereinafter referred to as undoped) AQ+p! Ga, 7AS layer, 24
Si is added to about lx10cm-3 and the thickness is about 15O
A's E M,,3Ga,,7AsR125 has a thickness of about 1
000A undoped GaAs layer 26, in this undoped GaAs layer 25, ri'-mo, 3G ao,
7 A two-dimensional electron gas accumulated at the bonding interface with the s layer 24, 27 and 28 are source and drain electrodes made of AuGe electrode layers, and 29 is a re-AQ layer below these source and drain electrodes 27 and 28. □、3 Gao、
7 A region is obtained by diffusing AuGe up to the As layer 24, and 30 is a gate electrode made of a Ti electrode layer.

この従来構造の電界効果トランジスタでは、にAQ。、
3GaO,7As層24内の電子をアンドープGaAs
層25内に拡散させてそこに二次元電子ガス2Bとして
蓄積させ、このニ次元電子ガス26を、ソース電極27
及びドレイン電極28間に印加した電圧でアンドープ層
25とri”−MO,3Ga6.7As層24との界面
に平行な電界を掛けて、高移動度を持った電子として伝
導させている。
In this conventionally structured field effect transistor, AQ. ,
The electrons in the 3GaO, 7As layer 24 are undoped with GaAs
The two-dimensional electron gas 26 is diffused into the layer 25 and accumulated there as a two-dimensional electron gas 2B.
A parallel electric field is applied to the interface between the undoped layer 25 and the ri''-MO, 3Ga6.7As layer 24 by applying a voltage between the drain electrode 28 and the electrons are conducted as electrons with high mobility.

この従来の電界効果トランジスタは、伝導電子の流儀を
ゲート電極に印加するゲ〜1・電圧によって調整するが
、基板バイアス用のA II G e電極21に正又は
負のバイアス電圧を印加することにより、この伝導電子
の流量を増加又は減少させることが出来、しきい値電圧
を負又は正の側へとシフトさせることが出来るメリット
を有している。
In this conventional field effect transistor, the flow of conduction electrons is adjusted by the voltage applied to the gate electrode, but by applying a positive or negative bias voltage to the A II G e electrode 21 for substrate bias. This has the advantage that the flow rate of conduction electrons can be increased or decreased, and the threshold voltage can be shifted to the negative or positive side.

(発明が解決しようとする問題点) ところで、半絶縁性GaAs基板22が上述したように
約400 p−m と厚いため、しきい値電圧を0.I
V変化させるのに約200v前後のバイアス電圧が必要
となっていた。しかしながら、このような高電圧はIV
以下の微小電圧の信号を取り扱う集積回路には適してい
ないため、この従来構造の電界効果トランジスタは集積
回路に組込むことが出来ず、実用的でないという欠点が
あった。
(Problems to be Solved by the Invention) By the way, since the semi-insulating GaAs substrate 22 is as thick as about 400 p-m as described above, the threshold voltage is set to 0. I
A bias voltage of about 200V was required to change the voltage. However, such high voltages
Since it is not suitable for integrated circuits that handle signals of the following minute voltages, field effect transistors with this conventional structure cannot be incorporated into integrated circuits and have the disadvantage of being impractical.

この発明の目的は、電源電圧程度の微小な基板バイアス
電圧によって、しきい値電圧を調整出来る構造の高電子
移動度電界効果トランジスタを提供することにある。
An object of the present invention is to provide a high electron mobility field effect transistor having a structure in which a threshold voltage can be adjusted by a substrate bias voltage as small as a power supply voltage.

(問題点を解決するための手段) この発明の要点は、二次元電子蓄積層の基板側に薄い半
絶縁性半導体層を挟んで良導電性の、アクセプターイオ
ンを高濃度に添加したVタイプの半導体層を設けた点に
ある。
(Means for Solving the Problems) The main point of this invention is to provide a V type in which a thin semi-insulating semiconductor layer is sandwiched between the substrate side of a two-dimensional electron storage layer and a highly conductive acceptor ion is added at a high concentration. The point is that a semiconductor layer is provided.

従って、この発明の電界効果トランジスタによれば、基
板の上側に電子親和力が大きくアクセプター型不純物が
添加された第一半導体層と、この第一半導体層上に設け
られ、電子親和力が小さく不純物無添加の第二半導体層
と、この第二半導体層上に設けられドナー型不純物が添
加された第三半導体層と、この第三導体層の上側に設け
られ不純物無添加の第四半導体層と、この第四半導体層
上に設けられたソース電極、ドレイン電極及びゲート電
極とを具え、前述の第一半導体層を基板バイアス印加用
電極とし、前述の第二半導体層の厚さを微小基板バイア
ス電圧で前述の第四半導体層に二次元電子ガスを蓄積す
る程度の薄さとし、この蓄積した二次元電子をnチャン
ネルのキャリアとすることを特徴とするものである。
Therefore, according to the field effect transistor of the present invention, a first semiconductor layer having a large electron affinity and doped with acceptor-type impurities is provided on the upper side of the substrate, and a first semiconductor layer having a small electron affinity and containing no impurities is provided on the first semiconductor layer. a second semiconductor layer, a third semiconductor layer provided on the second semiconductor layer and doped with donor-type impurities, a fourth semiconductor layer provided above the third conductor layer and doped with no impurities; A source electrode, a drain electrode, and a gate electrode are provided on a fourth semiconductor layer, the first semiconductor layer is used as an electrode for applying a substrate bias, and the thickness of the second semiconductor layer is controlled by a minute substrate bias voltage. The fourth semiconductor layer is thin enough to accumulate two-dimensional electron gas, and the accumulated two-dimensional electrons are used as n-channel carriers.

(作用) このような構造の電界効果トランジスタによれば、第一
半導体層をアクセプターイオンを高濃度に添加した、良
導電性の半導体層としてこの半導体層を基板バイアス印
加用電極としており、第二半導体層を薄い半絶縁性半導
体層とし、しかも、第一、第二及び第三半導体層でpi
n構造を形成するので、第一半導体層から二次元電子ガ
スの蓄積する第四半導体層までの厚さが薄くなり、例え
ば0.5vという微小の電源電圧程度の基板バイアス電
圧によってO,t V程度のしきい値電圧を調整するこ
とが出来る。
(Function) According to the field effect transistor having such a structure, the first semiconductor layer is a highly conductive semiconductor layer doped with acceptor ions at a high concentration, and this semiconductor layer is used as an electrode for applying a substrate bias. The two semiconductor layers are thin semi-insulating semiconductor layers, and the first, second and third semiconductor layers are
Since the n-structure is formed, the thickness from the first semiconductor layer to the fourth semiconductor layer where the two-dimensional electron gas accumulates is thin, and the substrate bias voltage, which is as small as a power supply voltage of, for example, 0.5 V, can be applied to O, t V. The threshold voltage can be adjusted to a certain extent.

さらに、この構造によれば、第一半導体層によって面内
均一に基板バイアス電圧な印加出来るので、各チップに
対してしきい値電圧を調整することが出来ると共に、こ
の調整により各チっプ毎に最適動作を容易に行わせるこ
とが出来る。
Furthermore, according to this structure, since the substrate bias voltage can be applied uniformly within the plane by the first semiconductor layer, it is possible to adjust the threshold voltage for each chip, and by this adjustment, the threshold voltage can be adjusted for each chip. can easily perform optimal operation.

(実施例) 以下、図面を参照して、この発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(A)はこの発明の電界効果トランジスタの一実
施例を示す路線的断面図で、第1図(B)はそのエネル
ギーバンド構造を示す線図である。
FIG. 1(A) is a cross-sectional view showing one embodiment of a field effect transistor of the present invention, and FIG. 1(B) is a diagram showing its energy band structure.

第1図(A)に示すように、■は基板で、例えば、半絶
縁性GaAs基板とする。2は基板11に積層させたア
ンドープ層で、例えば、厚さが2000A程度のアンド
ープGaAs層である。3はこのアンドープ層2上に積
層させた、電子親和力が大きくアクセプター型の不純物
が添加された良導電性の第一半導体層で、例えば、Be
が3 X 10 c+a−3程度添加された厚さが約5
00OAのp”−GaAs層である。この第一半導体層
3を、後述するように、基板バイアス印加用電極として
使用する。4はこの第一半導体層3上に積層され、電子
親和力の小さい第二半導体層で、例えば、厚さが約1p
m以下の、好i ましくtよ約5°OOA程度″″ドー
プM・・”6°・・7”層である。5はこの第二半導体
層4上に積層され、電子親和力が小さくドナー型の不純
物が添加された第三半導体層(変調ドーピング層)で、
この場合にはこの層5をSiがI X 10 cm−3
程度添加された厚さ約200A程度のに−AQ、、Ga
6,7A 5層とする。さらに、この層5−にに積層さ
れた層はスペーサ層6であって、厚さが約8OAのM□
、5 Ga、、7 As層からなっている。さらに、7
はこのスペーサ層6上に積層された、電子親和力の大き
い第四半導体層であって、この場合にはこの層7を厚さ
が約1000AのアンドープGaAs層とする。さらに
、8は第四半導体層7であるアンドープGaAs内の、
第三半導体層5の側、すなわち、スペーサ層6を構成す
るアンドープAQ o、3Ga、、7As層との接合界
面に蓄積された二次元電子ガスである。また、9及びl
Oは第四半導体層7を構成するアンドープGaAs層」
二に設けられAuGe電極層から成るソース及びドレイ
ン電極であり、11はこのアンドープGaAs層7上に
設けられ、Ti電極層から成るゲート電極である。そし
て、12はソース電極9及びドレイン電極lOの下側に
第三半導体層5に達するように設けた高不純物濃度領域
、例えば、AuGeを拡散させて設けたn+−領域であ
る。
As shown in FIG. 1(A), 2 is a substrate, for example, a semi-insulating GaAs substrate. 2 is an undoped layer laminated on the substrate 11, and is, for example, an undoped GaAs layer with a thickness of about 2000 Å. 3 is a first semiconductor layer laminated on this undoped layer 2, which has high electron affinity and is doped with acceptor type impurities, and has good conductivity.
The thickness with about 3 x 10 c+a-3 added is about 5
This is a p''-GaAs layer of 00OA. This first semiconductor layer 3 is used as an electrode for applying a substrate bias as described later. 4 is laminated on this first semiconductor layer 3 and is a p"-GaAs layer with a small electron affinity. Two semiconductor layers, e.g. about 1p thick
It is a doped layer of 6°, . 5 is a third semiconductor layer (modulation doping layer) laminated on the second semiconductor layer 4 and doped with donor-type impurities having low electron affinity;
In this case, this layer 5 is made of Si with I x 10 cm-3
-AQ, Ga with a thickness of about 200A
6,7A 5 layers. Further, a layer laminated on this layer 5- is a spacer layer 6, which has a thickness of about 8 OA.
, 5 Ga, , 7 As layers. Furthermore, 7
is a fourth semiconductor layer laminated on this spacer layer 6 and having a high electron affinity; in this case, this layer 7 is an undoped GaAs layer having a thickness of about 1000 Å. Furthermore, 8 is in the undoped GaAs which is the fourth semiconductor layer 7.
This is two-dimensional electron gas accumulated on the third semiconductor layer 5 side, that is, at the junction interface with the undoped AQ o, 3Ga, 7As layer constituting the spacer layer 6. Also, 9 and l
O is an undoped GaAs layer constituting the fourth semiconductor layer 7.
2 are source and drain electrodes made of an AuGe electrode layer, and 11 is a gate electrode provided on the undoped GaAs layer 7 and made of a Ti electrode layer. Further, 12 is a high impurity concentration region provided under the source electrode 9 and the drain electrode 1O so as to reach the third semiconductor layer 5, for example, an n+- region provided by diffusing AuGe.

このような構造のエネルギーバンド構造を第1図(B)
に示す。尚、この図において、第1図(A)に示した各
層に対応する層には同一番号を付して示す。この図から
も理解出来るよに、変調ドーピング層のre −Mo3
 Ga、、7 As層層内内電子がアンドープGaAs
層7内に拡散されて、二次元電子ガス8として蓄積され
ている。従って、この場合にも、従来と同様に、ソース
及びドレイン電極9及び10間に電圧を印加してこの層
5の界面に平行な電界を掛けると、この二次元電子ガス
8は高移動度の電子として伝導し、この伝導電子の流量
を、グーI・電極11に印加するゲート電圧によって制
御すると共に、P”−GaAs層3に対する基板バイア
ス電圧を正又は負の側へ印加することにより増加又は減
少させることが11来、しきい値電圧を負又は正の側に
シフトさせることことが出来る。
The energy band structure of such a structure is shown in Figure 1 (B).
Shown below. In this figure, layers corresponding to the layers shown in FIG. 1(A) are given the same numbers. As can be understood from this figure, the modulation doping layer re -Mo3
Ga,, 7 As layer electrons are undoped GaAs
The electrons are diffused into the layer 7 and accumulated as a two-dimensional electron gas 8. Therefore, in this case as well, when a voltage is applied between the source and drain electrodes 9 and 10 to apply an electric field parallel to the interface of this layer 5, this two-dimensional electron gas 8 has a high mobility. The flow rate of the conduction electrons is controlled by the gate voltage applied to the goo I electrode 11, and can be increased or Since the threshold voltage can be decreased to 11, the threshold voltage can be shifted to the negative or positive side.

この調整は第二半導体層であるアンドープ第二半導体層
4の厚さを微小基板バイアス電圧でも第四半導体層7に
二次元電子ガス8が蓄積する程度の薄さとしたこと及び
この層4の−L下に設けられたn” −AQo、3Ga
、、7As層5びp” −GaAs層3がpin構造を
形成しているので、基板電圧程度の0.5層程度という
微小のバイアス電圧で、0.1層程度のしきい値電圧を
調整することが出来る。
This adjustment was achieved by making the thickness of the undoped second semiconductor layer 4, which is the second semiconductor layer, so thin that two-dimensional electron gas 8 is accumulated in the fourth semiconductor layer 7 even with a small substrate bias voltage, and by making the thickness of this layer 4 - n”-AQo, 3Ga provided under L
Since the 7As layer 5 and the p''-GaAs layer 3 form a pin structure, the threshold voltage of about 0.1 layer can be adjusted with a very small bias voltage of about 0.5 layer, which is about the same as the substrate voltage. You can.

又、この構造では、多層構造内の一層を構成するP’−
GaAs層3を基板バイアス印加用電極としているので
、半導体層の面内均一に基板バイアス電圧を印加出来る
ので、」−述した調整は、各チップ毎に個別に行うこと
が出来る。従って、各チップ毎に最適な動作条件、すな
わち、しきい値電圧を簡単かつ容易に調整出来ることと
なる。
In addition, in this structure, P'- which constitutes one layer in the multilayer structure
Since the GaAs layer 3 is used as the electrode for applying substrate bias, the substrate bias voltage can be applied uniformly within the surface of the semiconductor layer, so that the above-mentioned adjustment can be performed individually for each chip. Therefore, the optimum operating conditions, that is, the threshold voltage, can be easily and easily adjusted for each chip.

尚、この発明は上述した実施例にのみ限定されるもので
はない。例えば、アンドープAQ、)、3Ga、、7A
s層から成るスペーサ層6はアンドープ層7内を伝導す
る二次元電子ガス8がn” −Mo30a6.7As層
5内に形成されたSiドナーイオンによってクーロン散
乱を受けてその移動度が低下するのを回避するための層
であるので、必ずしも必要な層ではないので省略しても
良い。
Note that this invention is not limited only to the embodiments described above. For example, undoped AQ, ), 3Ga, 7A
The spacer layer 6 made of the s-layer is constructed so that the two-dimensional electron gas 8 conducted in the undoped layer 7 undergoes Coulomb scattering by the Si donor ions formed in the n''-Mo30a6.7As layer 5, and its mobility decreases. Since this is a layer to avoid this, it is not necessarily a necessary layer and may be omitted.

さらに、上述したGaAs及びAQ、、、Ga0,7A
s材料の組み合わせを、In033Gtn7As / 
InP 、 Ga0471n6,53As/ADo、4
.yI nO,(1AS材料で置換しても良い。その場
合、GaAsをI n6.53Gos7A s又はGa
6.4.71n6)3Asに、AQ、、、 Gao、7
AsをInP又はAQ In Asにそれぞれ置換すれ
ば良い。
Furthermore, the above-mentioned GaAs and AQ, , Ga0,7A
s material combination, In033Gtn7As/
InP, Ga0471n6,53As/ADo,4
.. yI nO, (1AS material may be substituted. In that case, GaAs is replaced with I n6.53Gos7A s or Ga
6.4.71n6) 3As, AQ, Gao, 7
As may be replaced with InP or AQ In As.

(発明の効果) 上述した説明からも明らかなように、この発明の電界効
果トランジスタによれば、第一半導体層をアクセプタイ
オンを高濃度に添加した、良導電性の半導体層としてこ
の半導体層を基板バイアス印加用電極としており、第二
半導体層を薄くしてあり、しかも第一、第二及び第三半
導体層でpin構造を形成するので、例えば0.5vと
いう電源電圧程度の基板バイアス電圧によって0.1v
程度のしきい値電圧を調整することが出来る。
(Effects of the Invention) As is clear from the above description, according to the field effect transistor of the present invention, the first semiconductor layer is a highly conductive semiconductor layer doped with acceptor ions at a high concentration. It is used as an electrode for applying a substrate bias, and since the second semiconductor layer is thin and the first, second, and third semiconductor layers form a pin structure, a substrate bias voltage of about 0.5 V, for example, the power supply voltage can be applied. 0.1v
The threshold voltage can be adjusted to a certain degree.

さらに、この構造によれば、第一半導体層に、 よ・て
面内均一に基板バイアス電圧を印加出来る゛ ので、各
チ・プに対してしきい値電圧を調整することが出来ると
共に、この調整により各チップ毎に最適動作を容易に行
わせることが出来る。
Furthermore, according to this structure, it is possible to apply a substrate bias voltage uniformly within the plane of the first semiconductor layer, so that the threshold voltage can be adjusted for each chip, and this Optimal operation can be easily performed for each chip through adjustment.

従って、この発明の電界効果トランジスタはしきい値電
圧の調整の難しいGaAsヘテロ接合電界効果トランジ
スタ等の集積回路に利用して好適である。
Therefore, the field effect transistor of the present invention is suitable for use in integrated circuits such as GaAs heterojunction field effect transistors whose threshold voltages are difficult to adjust.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)はこの発明の電界効果トランジ
スタの実施例を示す路線的断面図及びそのエネルギーバ
ンド構造を示す線図。 第2図は従来の基板バイアス電圧によってしきい値電圧
を調整出来る電界効果トランジスタを示す断面図である
。 l・・・基板、 2・・・不純物無添加層3・・・第一
半導体層、4・・・第二半導体層5・・・第三半導体層
、6・・・スペーサ層7・・・第四半導体層、8・・・
二次元電子ガス9・・・ソース電極、 lO・・・ドレ
イン電極11・・・ゲート電極、 12・・・高不純物
濃度領域。 く ;口 手続補正書(自発) 昭和58年12月29日 特許庁長官 志賀 学 殿 1事件の表示 昭和58年特許願119819号2発明
の名称 電界効果トランジスタ 3補正をする者 事件との関係 特許出願人 住所(〒−105) 東京都港区虎ノ門1丁目7番12号 名称(029)沖電気工業株式会社 代表者 橋本 南海男 4代理人 〒170 賞(98B)5583住所 東京
都豊島区東池袋1丁目20番地5池袋ホワイトハウスビ
ル805号 明細書の特許請求の範囲の欄、発明の詳細な説明の欄 6補正の内容 別紙の通り (1)、明細書の特許請求の範囲を次の通りに訂正する
。 「特許請求の範囲 1、基板の上側に電子親和力が大きくアクセプター型不
純物が添加された第一半導体層と、該第−半導体層上に
設けられ、電子親和力が小さく不純物無添加の第二半導
体層と、 該第二半導体層上に設けられ1玉■胆方JオjAドナー
型不純物が添加された第三半導体層と、 該第三導体層の上側に設けられ1五夏机方1迭工区不純
物無添加の第四半導体層と、 該第四半導体層上に設けられたソース電極、ドレイン電
極及びゲート電極と を具え、前記第一半導体層を基板バイアス印加用電極と
し、前記第二半導体層の厚さを微小基板バイアス電圧で
前記第四半導体層に二次元電子ガスを蓄積する程度の薄
さとし、該蓄積した二次元電子ガスをnチャンネルのキ
ャリアとすることを特徴とする電界効果トランジスタ。 2、前記第−及び第四半導体層をGaAsで形成し、前
記第二及び第三半導体層を?で形成したことを特徴とす
る特許請求の範囲第1項記載の電界効果トランジスタ。 3、前記第二半導体層の厚さをIILm以下とすること
を特徴とする特許請求の範囲第1項又は第2項記載の電
界効果トランジスタ。」 (2)、同、第5頁第12行の「設けられ」を「設けら
れ電子親和力が小さくJと訂正し、同頁第13行の「設
けられ」を1設けられ電子親和力が大きくjと訂正する
。 (3)、同、第11頁第5行のrAQ In As丁を
F MI、QzIn、L52Asj と訂正する。
FIGS. 1(A) and 1(B) are a linear cross-sectional view showing an embodiment of a field-effect transistor of the present invention and a diagram showing its energy band structure. FIG. 2 is a sectional view showing a conventional field effect transistor whose threshold voltage can be adjusted by a substrate bias voltage. l... Substrate, 2... Impurity-free layer 3... First semiconductor layer, 4... Second semiconductor layer 5... Third semiconductor layer, 6... Spacer layer 7... Fourth semiconductor layer, 8...
Two-dimensional electron gas 9...source electrode, lO...drain electrode 11...gate electrode, 12...high impurity concentration region. Oral procedure amendment (voluntary) December 29, 1980 Manabu Shiga, Commissioner of the Patent Office 1 Display of the case 1983 Patent Application No. 119819 2 Name of the invention Field effect transistor 3 Relationship with the case of the person making the amendment Patent Applicant address (〒-105) 1-7-12 Toranomon, Minato-ku, Tokyo Name (029) Oki Electric Industry Co., Ltd. Representative Nankai Hashimoto 4 Agent 〒170 Award (98B) 5583 Address 1 Higashiikebukuro, Toshima-ku, Tokyo 20-5 Ikebukuro White House Building No. 805 Specification, Claims column, Detailed description of the invention column 6 Contents of amendments As shown in Attachment (1), the claims of the specification are as follows: correct. “Claim 1: a first semiconductor layer having a large electron affinity and doped with acceptor-type impurities on the upper side of the substrate; and a second semiconductor layer having a small electron affinity and containing no impurities, which is provided on the second semiconductor layer. , a third semiconductor layer provided on the second semiconductor layer and doped with a donor type impurity; and a third semiconductor layer provided on the upper side of the third conductor layer; a fourth semiconductor layer to which no impurities are added; and a source electrode, a drain electrode, and a gate electrode provided on the fourth semiconductor layer, the first semiconductor layer being an electrode for applying a substrate bias, and the second semiconductor layer A field effect transistor characterized in that the thickness of the fourth semiconductor layer is made thin enough to accumulate two-dimensional electron gas in the fourth semiconductor layer using a minute substrate bias voltage, and the accumulated two-dimensional electron gas is used as an n-channel carrier. 2. The field effect transistor according to claim 1, wherein the second and fourth semiconductor layers are made of GaAs, and the second and third semiconductor layers are made of GaAs. The field effect transistor according to claim 1 or 2, characterized in that the thickness of the second semiconductor layer is IILm or less.'' (2), page 5, line 12 of the same, ``Providing Correct "provided" to "J, which has a small electron affinity," and corrected "provided," in line 13 of the same page, to "J, which has a large electron affinity." (3), rAQ In As on page 11, line 5 is corrected to FMI, QzIn, L52Asj.

Claims (1)

【特許請求の範囲】 1、基板の上側に電子親和力が大きくアクセプター型不
純物が添加された第一半導体層と、該第−半導体層上に
設けられ、電子親和力が小さく不純物無添加の第二半導
体層と、 該第二半導体層上に設けられドナー型不純物が添加され
た第三半導体層と、 該第三導体層の上側に設けられ不純物無添加の第四半導
体層と、 該第四半導体層上に設けられたソース電極、ドレイン電
極及びゲート電極と を具え、前記第一半導体層を基板バイアス印加用電極と
し、前記第二半導体層の厚さを微小基板バイアス電圧で
前記第四半導体層に二次元電子ガスを蓄積する程度の薄
さとし、該蓄積した二次元電子ガスをnチャンネルのキ
ャリアとすることを特徴とする電界効果トランジスタ。 2、前記第−及び第四半導体層をGaAsで形成し、前
記第二及び第三半導体層をAQ Ga Asで形成した
ことを特徴とする特許請求の範囲第1項記載の電界効果
トランジスタ。 3、前記第二半導体層の厚さを1gm以下とすることを
特徴とする特許請求の範囲第1項又は第2項記載の電界
効果トランジスタ。
[Claims] 1. A first semiconductor layer having a large electron affinity and doped with acceptor-type impurities on the upper side of the substrate, and a second semiconductor layer provided on the second semiconductor layer and having a small electron affinity and containing no impurities. a third semiconductor layer provided on the second semiconductor layer and doped with donor-type impurities; a fourth semiconductor layer provided above the third conductor layer and not added with impurities; and the fourth semiconductor layer. a source electrode, a drain electrode, and a gate electrode provided above, the first semiconductor layer is used as an electrode for applying a substrate bias, and the thickness of the second semiconductor layer is controlled by a minute substrate bias voltage to the fourth semiconductor layer. A field effect transistor characterized by being thin enough to accumulate two-dimensional electron gas and using the accumulated two-dimensional electron gas as an n-channel carrier. 2. The field effect transistor according to claim 1, wherein the first and fourth semiconductor layers are made of GaAs, and the second and third semiconductor layers are made of AQ GaAs. 3. The field effect transistor according to claim 1 or 2, wherein the second semiconductor layer has a thickness of 1 gm or less.
JP11961984A 1984-06-11 1984-06-11 Field effect transistor Pending JPS60263473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11961984A JPS60263473A (en) 1984-06-11 1984-06-11 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11961984A JPS60263473A (en) 1984-06-11 1984-06-11 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS60263473A true JPS60263473A (en) 1985-12-26

Family

ID=14765911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11961984A Pending JPS60263473A (en) 1984-06-11 1984-06-11 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS60263473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386575A (en) * 1986-09-30 1988-04-16 Toshiba Corp Hetero junction field effect transistor
JPH01173760A (en) * 1987-12-28 1989-07-10 Matsushita Electric Ind Co Ltd Heterojunction field-effect transistor
JPH01235325A (en) * 1988-03-16 1989-09-20 Fujitsu Ltd Semiconductor device
US5172197A (en) * 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386575A (en) * 1986-09-30 1988-04-16 Toshiba Corp Hetero junction field effect transistor
JPH01173760A (en) * 1987-12-28 1989-07-10 Matsushita Electric Ind Co Ltd Heterojunction field-effect transistor
JPH01235325A (en) * 1988-03-16 1989-09-20 Fujitsu Ltd Semiconductor device
US5172197A (en) * 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer

Similar Documents

Publication Publication Date Title
JPS59193066A (en) Mos semiconductor device
JPS60263473A (en) Field effect transistor
JPH0770717B2 (en) Semiconductor device
JPS6012775A (en) Field effect transistor
JPH0312769B2 (en)
JP3447438B2 (en) Field effect transistor
JP3036404B2 (en) Semiconductor device and manufacturing method thereof
JPS61147577A (en) Complementary semiconductor device
JPS6123364A (en) Field effect transistor
JPS60263472A (en) Semiconductor device
JPS60263471A (en) Semiconductur device
JPH03224243A (en) Velocity modulation transistor
JP3414262B2 (en) Compound semiconductor epitaxial wafer and compound semiconductor device
JPH06188272A (en) Hetero junction field effect transistor
JP2500459B2 (en) Heterojunction field effect transistor
JPS61248569A (en) Hetrojunction field effect transistor
JPS5891681A (en) Field-effect type transistor
JP3054216B2 (en) Semiconductor device
JPS6196769A (en) Field effect transistor
JPH0346270A (en) Heterojunction field effect transistor
JPS60231367A (en) Semiconductor device
JP3245657B2 (en) Heterojunction field effect transistor
JPH0230149A (en) Hetero junction field effect transistor
JPS62101077A (en) Vertical insulated gate type field effect semiconductor device
JPS61296769A (en) Production of high withstand voltage mosfet