JPS6386575A - Hetero junction field effect transistor - Google Patents

Hetero junction field effect transistor

Info

Publication number
JPS6386575A
JPS6386575A JP23182686A JP23182686A JPS6386575A JP S6386575 A JPS6386575 A JP S6386575A JP 23182686 A JP23182686 A JP 23182686A JP 23182686 A JP23182686 A JP 23182686A JP S6386575 A JPS6386575 A JP S6386575A
Authority
JP
Japan
Prior art keywords
layer
type
impurity
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23182686A
Other languages
Japanese (ja)
Other versions
JPH0797636B2 (en
Inventor
Jiro Yoshida
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61231826A priority Critical patent/JPH0797636B2/en
Publication of JPS6386575A publication Critical patent/JPS6386575A/en
Publication of JPH0797636B2 publication Critical patent/JPH0797636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Abstract

PURPOSE:To make a hetero junction field effect transistor to hold a favorable current cut-off characteristic and high mutual conductance even when gate length is short by a method wherein a first conductor layer of large electron affinity containing substantially no impurity, and a second conductor layer of small electron affinity are laminated on a semi-insulating substrate, and a thin layer region containing p-type impurities at the specified face density is formed in the neighborhood of the interface between the semiinsulating substrate and the semiconductor layer adjoining thereto. CONSTITUTION:A p-type GaAs layer 12 containing B by concentration of about 1X10<18>cm<-3> is grown at about 100Angstrom thickness on a non-doped semiinsulating GaAs substrate 11. Then a non-doped GaAs layer 13 added with no impurity is grown thereon, and an n-type Al0.3Ga0.7 As layer 14 containing Si as an impurity by 2X10<18>cm<3>, and moreover an n-type GaAs layer 15 containing Si as an impurity by about 2X10<18>cm<-3> are grown at thickness of about 300Angstrom , 500Angstrom respectively thereon. After wafer growth is completed, interelement isolation is performed excluding an element region. After then, source and drain electrodes 16, 17 are formed using metals of AuGe group, and by removing a part of the n-type GaAs layer and the n-type Al0.3Ga0.7As layer under the gate resist pattern formed by using the electron beam exposure method, a recess shape is formed. A gate electrode 18 consisting of Al/Ti is formed in the recess region thereof.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明はヘテロ接合界面に電子親和力の差によシ誘起
される2次元的な電子の蓄積層を導電チャネルとする電
界効果トランジスタに係わり、特にチャネル長が短かく
とも優れた電流飽和特性、電流遮断特性(ピンチオフ特
性)を示す素子構造に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) This invention is directed to an electric field that uses a two-dimensional electron accumulation layer as a conductive channel, which is induced by a difference in electron affinity at a heterojunction interface. The present invention relates to effect transistors, and particularly to device structures that exhibit excellent current saturation characteristics and current cutoff characteristics (pinch-off characteristics) even with a short channel length.

(従来の技術) n型の不純物を含んだ電子親和力の小さい半導体層と、
実質的に不純物を含まない電子親和力の大きい半導体層
の間にヘテロ接合を形成すると両者の電子親和力の差に
起因してヘテロ接合界面に2次元的な電子の蓄積層が形
成される。この電子蓄積層を導電チャネルとして利用す
る電界効果トランジスタは高電子移動度トランジスタ(
HEMT )、或いは選択ドープ電界効果トランジスタ
(MODFET )等の名称で知られており、通常の金
属−半導体電界効果トランジスタ(MESFET )に
比べ高周波特性に優れている。
(Prior art) A semiconductor layer containing n-type impurities and having low electron affinity;
When a heterojunction is formed between substantially impurity-free semiconductor layers with high electron affinity, a two-dimensional electron accumulation layer is formed at the heterojunction interface due to the difference in electron affinity between the two. A field effect transistor that uses this electron storage layer as a conductive channel is a high electron mobility transistor (
It is known as HEMT) or selectively doped field effect transistor (MODFET), and has superior high frequency characteristics compared to ordinary metal-semiconductor field effect transistors (MESFET).

通常、高電子移動度トランジスタは第4図に示す様に、
半絶縁性基板41(例えばGaAs )上に電子親和力
の大きいノンドープの半導体層42(例えハGaAg 
)を比M層厚く(〜1μm)エピタキシアル成長し、更
に、その上にn型の不純物を含有した電子親和力の小さ
い半導体層43(例えばAtGaAs )をエピタキシ
アル成長した構造を持っている。この様な構造のトラ/
・ゾスタが良好な高周波特性を示す事は実験的に検証さ
れてきているが、チャネル長の短かい素子を作製した場
合、電流飽和領域での飽和特性が必ずしも良好ではなく
、また、電流遮断特性も十分でない場合が多かった。
Normally, high electron mobility transistors are as shown in Figure 4.
A non-doped semiconductor layer 42 with high electron affinity (e.g. GaA) is disposed on a semi-insulating substrate 41 (e.g. GaAs).
) is epitaxially grown to a specific M layer thickness (~1 .mu.m), and a semiconductor layer 43 containing n-type impurities and having low electron affinity (for example, AtGaAs) is epitaxially grown thereon. A tiger with a structure like this/
・Although it has been experimentally verified that Zostar exhibits good high-frequency characteristics, when devices with short channel lengths are fabricated, the saturation characteristics in the current saturation region are not necessarily good, and the current cut-off characteristics are poor. was often insufficient.

第4図は、第3図の素子でゲート長を変化させた場合の
ドレイン電流−f−)電圧特性を示したものである。第
4図に示した特性は、A4GaAs層の不純物濃度2X
10  crn 、ダート電極下のAtGaAsの厚さ
200Xの素子に対して得られた。ゲート長LGが0.
2511mまで短かくなると、ドレイン電流は明確なピ
ンチオフ特性を示さなくなシ、同時にドレイン電流のあ
まり大きくない範囲では相互コjjエ ンダクタンスgm(=丁りt)が小さくなっている事が
分かる。この様な特性の劣化は高移動度トランジスタを
マイクロ波帯での増幅器として応用しようとする場合重
大な問題となり、ゲート長短縮による特性改善の効果を
著しく損ねてしまう。
FIG. 4 shows drain current-f-) voltage characteristics when the gate length is changed in the device shown in FIG. The characteristics shown in Figure 4 are the impurity concentration 2X of the A4GaAs layer.
10 crn was obtained for a 200× thick device of AtGaAs under a dart electrode. Gate length LG is 0.
It can be seen that when the drain current becomes short to 2511 m, the drain current no longer exhibits a clear pinch-off characteristic, and at the same time, the mutual co-inductance gm (=minus t) becomes small in a range where the drain current is not very large. Such deterioration of characteristics becomes a serious problem when applying a high mobility transistor as an amplifier in the microwave band, and significantly impairs the effect of improving characteristics by shortening the gate length.

(発明が解決しようとする問題点) 上述した様に、従来技術に基づいた高電子移動度トラン
ジスタでは、ゲート長の短縮に伴ない。
(Problems to be Solved by the Invention) As described above, in high electron mobility transistors based on the prior art, the gate length is shortened.

ピンチオフ特性の劣化、低電流動作領域での相互コンダ
クタンスの低下等が顕著に現われ、予期した特性改善の
効果が必ずしも得られないという問題があった。
There was a problem in that the pinch-off characteristics deteriorated, the mutual conductance decreased in the low current operation region, etc., and the expected characteristic improvement effect was not necessarily obtained.

本発明はこの問題を解決し、ゲート長が短かい場合にも
良好な電流遮断特性と高い相互コンダクタンスを維持で
きるヘテロ接合電界効果トランジスタを提供する事を目
的とする。
An object of the present invention is to solve this problem and provide a heterojunction field effect transistor that can maintain good current blocking characteristics and high mutual conductance even when the gate length is short.

[発明の構成] (問題点を解決するための手段) 本発明は上述した技術的課題を解決するために、半絶縁
性基板とその上に形成される半導体層の界面近傍にp型
不純物を含む〜関数的な薄層領域を挿入する事を1つの
特徴としている。後述する様に、このp型の半導体層は
ドレイン電圧印加時にソース・ドレイン間電流がヘテロ
接合界面から基板側に張り出す効果を抑制し、結果的に
ピンチオフ特性、相互コンダクタンスの値の改善をもた
らす。このp型半導体層は基板側の電位を固定する役割
を果たすものであるため、その不純物密度は高い事が必
要である1、シかし、盛装以上の不純物量を導入すると
チャネル内電子数の低下、リーク電流、容量の増加等を
招き好ましくない。後述する様に、p型層の不純物の面
密度(シート不純物濃度)はI X 10” an−2
乃至1×1013cnv2とし、かつその層厚はできる
だけ薄くする事が望ましい。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned technical problems, the present invention provides p-type impurities near the interface between a semi-insulating substrate and a semiconductor layer formed thereon. One of the features is to insert a thin layer region containing ~ functional. As will be described later, this p-type semiconductor layer suppresses the effect of the source-drain current protruding from the heterojunction interface toward the substrate side when a drain voltage is applied, resulting in improvements in pinch-off characteristics and mutual conductance values. . Since this p-type semiconductor layer plays the role of fixing the potential on the substrate side, its impurity density needs to be high. This is undesirable as it may lead to a decrease in current, leakage current, increase in capacity, etc. As described later, the areal density (sheet impurity concentration) of impurities in the p-type layer is I x 10" an-2
It is desirable to set the layer thickness to 1×10 13 cnv 2 and to make the layer thickness as thin as possible.

また、チャネル長の減少と共に、導電チャネルとp型層
間の距離を短かくする事が必要である。この場合、p型
不純物がウェハー形成時に拡散し。
Additionally, as the channel length decreases, it is necessary to shorten the distance between the conductive channel and the p-type layer. In this case, p-type impurities are diffused during wafer formation.

チャネル近傍に達する事を防ぐためにはp型層上部、或
いはp型層を包含するように超格子構造のバッファ層を
設ける事が効果がある。
In order to prevent this from reaching the vicinity of the channel, it is effective to provide a buffer layer with a superlattice structure above the p-type layer or so as to include the p-type layer.

(作用) 以下、本発明による素子構造で、ピンチオフ特性等が改
善される理由について精密な計算機シミュレーションの
結果を参照しながら詳述する。
(Function) Hereinafter, the reason why the element structure according to the present invention improves the pinch-off characteristics and the like will be explained in detail with reference to the results of precise computer simulation.

第6図はゲート長が0,25μmである従来構造の高電
子移動度トランジスタがピンチオフ近傍で動作している
場合の素子内部のf、)電流分布、(b)電位分布を示
したものである。この計算では、ノンド−7’の半絶縁
性GaAg基板上に積層されたノンドープGaAs層(
残留アクセッター:  lXl0”m’)、2X10 
 cm  ドープのn型AtGaA+層で素子が構成さ
れているものとしている。但し、第6図中では半絶縁性
基板の部分は省略しである。第6図(&)より分かる様
に、ダート電極下では電流はヘテロ接合界面ではなく、
GaAs中を基板側に張シ出して流れている。この事は
、ダート電圧によってヘテロ接合界面の本来のチャネル
部は空乏化しピンチオフ状態になりているにもかかわら
ず、基板側への電流の回り込みによりドレイン電流が流
れてしまっている事を示している。ダート長短縮に伴な
うピンチオフ特性の劣化はこの電流の回り込みに起因す
るものでおる。ドレイン電流の基板側への回り込みは素
子内部の2次元的な電位分布によって引き起こされる。
Figure 6 shows f,) current distribution, and (b) potential distribution inside the device when a high electron mobility transistor with a conventional structure with a gate length of 0.25 μm operates near pinch-off. . In this calculation, a non-doped GaAs layer (
Residual accessor: lXl0"m'), 2X10
It is assumed that the device is composed of an n-type AtGaA+ layer doped with cm2. However, the semi-insulating substrate portion is omitted in FIG. 6. As can be seen from Figure 6 (&), under the dart electrode, the current does not flow at the heterojunction interface;
It flows through the GaAs and extends to the substrate side. This shows that even though the original channel at the heterojunction interface is depleted and in a pinch-off state due to the dart voltage, the drain current is flowing due to the current going around to the substrate side. . The deterioration of the pinch-off characteristics as the dart length is shortened is due to this current loop. The leakage of the drain current to the substrate side is caused by the two-dimensional potential distribution inside the element.

即ち、第6図(b)に見られる様に、従来構造の素子で
はQ&A!1層の残留不純物が著しく少なく、また、半
絶縁基板中の不純物(深いドナーと浅いアクセプターよ
りなる)濃度も低いために、ドレイン電極に印加された
正の電圧によpGaAs層の深い部分でも電位が持ち上
げられ、同時にドレイン電圧の影響がダート電極のソー
ス側端直下にも及んでいる。このため、電子はソース電
極からGILAII層中に容易に注入され、ピンチオフ
特性が劣化する事になる。
That is, as shown in FIG. 6(b), in the element of the conventional structure, Q&A! Since the residual impurities in the first layer are extremely small and the concentration of impurities (consisting of deep donors and shallow acceptors) in the semi-insulating substrate is also low, the potential can be increased even in the deep part of the pGaAs layer by a positive voltage applied to the drain electrode. is lifted, and at the same time, the influence of the drain voltage extends to just below the source-side end of the dirt electrode. Therefore, electrons are easily injected from the source electrode into the GILA II layer, resulting in deterioration of the pinch-off characteristics.

本発明による素子は半絶縁性基板に隣接してp型の薄層
領域を設ける事によシ、ドレイン電圧の影響がダート電
極のソース側端下部には及びにくい構造となっている。
By providing a p-type thin layer region adjacent to a semi-insulating substrate, the device according to the present invention has a structure in which the influence of drain voltage is difficult to reach the lower part of the source side end of the dirt electrode.

第7図(&) l (b)は、p型半導体層の厚さを1
00X、シート不純物濃度を1×1012cIR−2と
した本発明による素子内部の電流分布、電位分布を従来
例の第6図(a) 、 (b)に対応させて示した。p
型半導体によってGaAs層の基板側の電位が固定され
る結果、ドレイン電圧の影響がGaAs層中深くは及ん
でいない事が見てとれる。この結果、電流の基板側への
回り込みも浅く押えられている。
Figure 7 (&) l (b) shows that the thickness of the p-type semiconductor layer is 1
6(a) and (b) of the conventional example, the current distribution and potential distribution inside the device according to the present invention are shown with 00X and a sheet impurity concentration of 1×10 12 cIR−2. p
It can be seen that as a result of the potential on the substrate side of the GaAs layer being fixed by the type semiconductor, the influence of the drain voltage does not reach deep into the GaAs layer. As a result, the current flowing around to the substrate side is also suppressed to a shallow extent.

第8図はp型半導体層の厚さを100XK固定し、シー
ト不純物濃度LAを変化させていった場合のドレイン電
流−f−)電圧特性を従来構造と比較して示した図であ
る。p型半導体層のシート不純物濃度を上げていくとピ
ンチオフ特性は改善していくが、lXl0  cm  
程度で十分な改善が得られ、lXl0  cm  以上
では変化は全く見られなくなる。
FIG. 8 is a diagram showing drain current-f-) voltage characteristics in comparison with a conventional structure when the thickness of the p-type semiconductor layer is fixed at 100XK and the sheet impurity concentration LA is varied. As the sheet impurity concentration of the p-type semiconductor layer increases, the pinch-off characteristics improve, but as lXl0 cm
Sufficient improvement can be obtained at a value of 1X10 cm or more, and no change is observed at 1X10 cm or more.

トランジスタが十分にオンした状態での電流値はp型不
純物のシート濃度の増加と共に減少していく。従って、
lX10  cm  以上の不純物の導入は素子の電流
通電能力を低下させるだけでらシ、素子特性の改善はも
たらさない。従って、本発明の効果を十分に期待するに
はp型のシート不純物濃度をl X I Q” cm−
2乃至I X 10” cm−2にする事が必要である
The current value when the transistor is fully turned on decreases as the sheet concentration of p-type impurities increases. Therefore,
Introducing impurities of 1×10 cm or more only reduces the current carrying capacity of the device and does not improve the device characteristics. Therefore, in order to fully expect the effects of the present invention, the p-type sheet impurity concentration should be l
2 to I x 10" cm-2.

(実施例) 第1図は本発明の第1の実施例であるヘテロ接合電界効
果トランジスタの構造断面図である。
(Embodiment) FIG. 1 is a structural sectional view of a heterojunction field effect transistor according to a first embodiment of the present invention.

この素子は以下の様にして作製される。まず、ノンドー
プ半絶縁性GaAa基板りl上に、分子線エピタキシー
法を用いて、不純物としてBeをI X 1018d3
の濃度で含むp型GaAs層12を厚さ100芙成長す
る。このp型GaAs層のシート不純物濃度は1×10
 cIn となる。次いで、意識的には不純物を添加し
ないノンドープのGaAs層13を約1μm、その上に
不純物としてSiを2×10 の 含むn型のAtq、
3Ga(1,7AIl I@ 14 、更に不純物とし
てstを2X1018d3含むn型のGaAs層15を
それぞれ300x、500Xの厚さで分子線エピタキシ
アル成長させる。ウェハー成長後素子領域を除いて約0
.3μmのメサエッチングを行ない素子間を分離する。
This element is manufactured as follows. First, Be was added as an impurity onto a non-doped semi-insulating GaAa substrate using molecular beam epitaxy.
A p-type GaAs layer 12 containing a concentration of 100 mm thick is grown. The sheet impurity concentration of this p-type GaAs layer is 1×10
It becomes cIn. Next, a non-doped GaAs layer 13 to which no impurity is consciously added is formed to a thickness of about 1 μm, and on top of that is an n-type Atq layer containing 2×10 2 of Si as an impurity.
An n-type GaAs layer 15 containing 3Ga (1,7AIl I@14 and 2X1018d3 as an impurity) is grown by molecular beam epitaxial growth to a thickness of 300x and 500x, respectively.
.. Mesa etching of 3 μm is performed to isolate the elements.

この後、ソース、ドレイン電極16,17をAuGe系
の金属を用い通常のリフトオフ工程で形成する。
Thereafter, source and drain electrodes 16 and 17 are formed using an AuGe-based metal by a normal lift-off process.

ソース、ドレイン電極間距離は3μmである。次いで、
電子線露光法を用いて幅0.25μmのゲートレジスト
ツヤターンを形成し、このパターン下のnGaAs層及
びnAt(1,50i o、y Al1層の一部をエツ
チング工程で除去する事でリセス形状を作成する。この
リセス領域内に、At/TIよシなるダート電極18を
リフトオフ法で形成する事で素子の作製は完成する。
The distance between the source and drain electrodes is 3 μm. Then,
A gate resist glossy turn with a width of 0.25 μm is formed using an electron beam exposure method, and a recess shape is created by removing part of the nGaAs layer and nAt(1,50io,yAl1 layer) under this pattern by an etching process. A dart electrode 18 made of At/TI is formed in this recess region by a lift-off method to complete the device fabrication.

この様にして作成されたダート幅200μmの素子はダ
ート電圧−〇、 2 Vで良好なピンチオフ特性を示す
と共に、高い相互コンダクタンス値を示した。第2図は
その相互コンダクタンス値とドレイ/電流の関係を測定
した結果である。とりわけ、マイクロ波低雑音増幅器と
しての実用動作電流であるtD、=10mA近傍で50
〜60m5という高い相互コンダクタンスが得られた事
は本発明の有効性を示すものである。また、電流飽和領
域におけるドレインコンダクタンスは広い電流範囲にわ
たって3〜4 mSと低い値に抑えられていた。この事
よリ、本発明の素子は電流飽和特性にも顕著な改善をも
たらす事が確認された。
The device thus prepared with a dart width of 200 .mu.m exhibited good pinch-off characteristics at a dart voltage of -0.2 V and also exhibited a high mutual conductance value. FIG. 2 shows the results of measuring the relationship between the mutual conductance value and drain/current. In particular, the practical operating current for a microwave low noise amplifier, tD, is around 50 mA.
The fact that a high mutual conductance of ~60 m5 was obtained indicates the effectiveness of the present invention. Furthermore, the drain conductance in the current saturation region was suppressed to a low value of 3 to 4 mS over a wide current range. From this, it was confirmed that the device of the present invention also brought about a significant improvement in current saturation characteristics.

第3図は本発明の第2の実施例であるヘテロ接合電界効
果トランジスタの構造断面図である。この素子では、ノ
ンドープ半絶縁基板21上に、シート濃度1×1012
!−2、厚さ100Xのp型頭域22が形成され、更に
その上にAt□、5Ga O,7A8とGaAsからな
る層の超格子層23が形成されている。超格子内の各層
は100Xの厚さからなっている。
FIG. 3 is a structural sectional view of a heterojunction field effect transistor according to a second embodiment of the present invention. In this device, a sheet with a concentration of 1×10 12
! -2, a p-type head region 22 with a thickness of 100X is formed, and a superlattice layer 23 made of At□, 5GaO, 7A8, and GaAs is further formed thereon. Each layer in the superlattice is 100X thick.

この超格子層23上にノンドーグのGaAs層24を約
0.2μm 、 2 X 101”cm−’のsiを含
むn型Ato、5Ga O,7A1層25を300X、
2 X 10” cm−’のSiを含むn型のGaAs
層26を500X形成したウェノ・−を用い素子は作製
される。ソース、ドレイン電極27゜28およびダート
電極29の作製工程は第1の実施例と同様である。ダー
ト長は0.1μmとした。ウェハー内に形成された超格
子層23は基板からの不純物の上方拡散並びにp型層か
らの不純物の上方拡散を防ぐために用いられている。
On this superlattice layer 23, a non-doped GaAs layer 24 with a thickness of about 0.2 μm, an n-type Ato, 5GaO, 7A1 layer 25 containing 2×101” cm of Si and a 300X layer,
n-type GaAs containing 2 x 10” cm-’ of Si
The device is fabricated using wafer having a layer 26 of 500×. The manufacturing process of the source and drain electrodes 27 and 28 and the dirt electrode 29 is the same as in the first embodiment. The dart length was 0.1 μm. A superlattice layer 23 formed within the wafer is used to prevent upward diffusion of impurities from the substrate as well as upward diffusion of impurities from the p-type layer.

この素子は、ダート長が0.1μmと著しく短かいにも
かかわらず、極めて良好なピンチオフ特性が得られてお
p1本発明の有効性が確認された。
Although this element had an extremely short dart length of 0.1 μm, extremely good pinch-off characteristics were obtained, confirming the effectiveness of the present invention.

以上の実施例においては半導体の組合せとしてGaAg
とAtGaAsを用いてきたが、本発明による構造は他
の物質の組合せ、例えばInPとInGaAs、GaA
++とAtGaSb等で構成される素子に対しても同様
に有効である事は言うまでもない。
In the above embodiments, GaAg is used as the semiconductor combination.
and AtGaAs, but the structure according to the invention can also be applied to other material combinations, such as InP and InGaAs, GaA
It goes without saying that this method is equally effective for elements made of ++, AtGaSb, and the like.

[発明の効果] 以上に述べてきた様に、本発明の素子構造を用いれば、
ダート長が短かくとも良好な電流遮断特性(ピンチオフ
特性)と電流飽和特性を持ち、同時に低電流動作時にも
高い相互コンダクタンスを維持できるヘテロ接合電界効
果トラン・ゾスタを実現できる。
[Effects of the Invention] As described above, if the element structure of the present invention is used,
It is possible to realize a heterojunction field-effect transformer that has good current cutoff characteristics (pinch-off characteristics) and current saturation characteristics even with a short dart length, and at the same time can maintain high mutual conductance even during low current operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例であるヘテロ接合電界
効果トランジスタの構造断面図、第2図ハその相互コン
ダクタンスのドレイン電流依存性を示す図、第3図はこ
の発明の第2の実施例であるヘテロ接合電界効果トラン
ジスタの構造断面図、第4図は従来技術の高電子移動度
トランジスタの構造を模式的に示した図、第5図は従来
技術の高電子移動度トランジスタのドレイン電圧−r一
ト電圧特性、第\図(、) (b)は従来技術の高電子
移動度トラン・ゾスタ内部の電流分布と電位分布を示す
図、第7図(、) (b)はこの発明による素子内部の
電゛ 流分布と電位分布を示す図、第8図はこの発明に
おいてPmの半導体薄層のシート濃度を変化させた場合
にピンチオフ特性が改善される様子を示す図である。 1ノ・・・半絶縁性GaAs基板、12・・”p型Ga
As薄層、13・・・ノンドープGaAg層、14−n
型Ato、3GILO,7A8層、15 = n型Ga
Ag層、16 ・・・ソース電極、17・・・ドレイン
電極、18・・・f−)電極、21・・・半絶縁性Ga
A+s基板、22− p型GaAs薄層、23 ・・・
超格子J−124−・・ノンドープGaAg層、25−
 n型AZ、)、5GaO,7μm層、26 ・・・n
型GaAg層、27−  ソース電極、28・・・ドレ
イン電極、29・・・ダート電極。 出願人代理人  弁理士 鈴 江 武 彦;Is 1図 第4図
FIG. 1 is a cross-sectional view of the structure of a heterojunction field effect transistor according to the first embodiment of the present invention, FIG. 2 is a diagram showing the dependence of the mutual conductance on drain current, and FIG. A cross-sectional view of the structure of a heterojunction field effect transistor as an example, FIG. 4 is a diagram schematically showing the structure of a conventional high electron mobility transistor, and FIG. 5 is a diagram showing the drain of a conventional high electron mobility transistor. Voltage-r voltage characteristics, Figure \(,) (b) is a diagram showing the current distribution and potential distribution inside the high electron mobility transistor of the conventional technology, Figure 7 (,) (b) is this diagram. FIG. 8 is a diagram showing the current distribution and potential distribution inside the device according to the invention, and is a diagram showing how the pinch-off characteristics are improved when the sheet concentration of the Pm semiconductor thin layer is changed in the invention. 1... Semi-insulating GaAs substrate, 12..."p-type Ga
As thin layer, 13...non-doped GaAg layer, 14-n
Type Ato, 3GILO, 7A8 layers, 15 = n-type Ga
Ag layer, 16... Source electrode, 17... Drain electrode, 18... f-) electrode, 21... Semi-insulating Ga
A+s substrate, 22- p-type GaAs thin layer, 23...
Superlattice J-124-...Non-doped GaAg layer, 25-
n-type AZ, ), 5GaO, 7μm layer, 26...n
type GaAg layer, 27- source electrode, 28... drain electrode, 29... dirt electrode. Applicant's representative Patent attorney Takehiko Suzue; Is Figure 1 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性基板上に積層された実質的に不純物を含
有しない電子親和力の大きい第1の半導体層と、電子親
和力の小さい第2の半導体層を有し、第1の半導体層と
第2の半導体層のヘテロ接合界面に沿って誘起される2
次元的な電子の蓄積層を導電チャネルとする電界効果ト
ランジスタにおいて、半絶縁性基板とそれに隣接する半
導体層の界面近傍に、1×10^1^2cm^−^2乃
至1×10^1^3cm^−^2の面密度のp型不純物
を含む薄層領域が形成されている事を特徴とするヘテロ
接合電界効果トランジスタ。
(1) A first semiconductor layer having a high electron affinity and substantially containing no impurities and a second semiconductor layer having a low electron affinity stacked on a semi-insulating substrate, the first semiconductor layer and the first semiconductor layer having a low electron affinity. 2 induced along the heterojunction interface of the semiconductor layer of 2
In a field effect transistor that uses a dimensional electron accumulation layer as a conductive channel, a layer of 1 x 10^1^2 cm^-^2 to 1 x 10^1^ is placed near the interface between a semi-insulating substrate and an adjacent semiconductor layer. A heterojunction field effect transistor characterized in that a thin layer region containing p-type impurities with an areal density of 3 cm^-^2 is formed.
(2)前記p型の薄層領域と第1の半導体層の間にバン
ドギャップの異なる複数の層のくり返しからなる超格子
層が形成されている事を特徴とする特許請求の範囲第(
1)項記載のヘテロ接合電界効果トランジスタ。
(2) A superlattice layer consisting of a plurality of repeating layers having different band gaps is formed between the p-type thin layer region and the first semiconductor layer.
1) The heterojunction field effect transistor according to item 1).
(3)前記p型の薄層領域が、バンドギャップの異なる
複数の層のくり返しからなる超格子層内に包含されて形
成されている事を特徴とする特許請求の範囲第(1)項
記載のヘテロ接合電界効果トランジスタ。
(3) The p-type thin layer region is formed by being included in a superlattice layer consisting of a plurality of repeating layers having different band gaps. heterojunction field effect transistor.
JP61231826A 1986-09-30 1986-09-30 Heterojunction field effect transistor Expired - Fee Related JPH0797636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231826A JPH0797636B2 (en) 1986-09-30 1986-09-30 Heterojunction field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231826A JPH0797636B2 (en) 1986-09-30 1986-09-30 Heterojunction field effect transistor

Publications (2)

Publication Number Publication Date
JPS6386575A true JPS6386575A (en) 1988-04-16
JPH0797636B2 JPH0797636B2 (en) 1995-10-18

Family

ID=16929623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231826A Expired - Fee Related JPH0797636B2 (en) 1986-09-30 1986-09-30 Heterojunction field effect transistor

Country Status (1)

Country Link
JP (1) JPH0797636B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028968A (en) * 1990-01-02 1991-07-02 The Aerospace Corporation Radiation hard GaAs high electron mobility transistor
US5161235A (en) * 1990-02-20 1992-11-03 University Of Virginia Alumni Patents Foundation Field-effect compound semiconductive transistor with GaAs gate to increase barrier height and reduce turn-on threshold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207667A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Semiconductor device
JPS60263473A (en) * 1984-06-11 1985-12-26 Oki Electric Ind Co Ltd Field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207667A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Semiconductor device
JPS60263473A (en) * 1984-06-11 1985-12-26 Oki Electric Ind Co Ltd Field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028968A (en) * 1990-01-02 1991-07-02 The Aerospace Corporation Radiation hard GaAs high electron mobility transistor
US5161235A (en) * 1990-02-20 1992-11-03 University Of Virginia Alumni Patents Foundation Field-effect compound semiconductive transistor with GaAs gate to increase barrier height and reduce turn-on threshold

Also Published As

Publication number Publication date
JPH0797636B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
JP3393602B2 (en) Semiconductor device
JP3449116B2 (en) Semiconductor device
US6919589B2 (en) HEMT with a graded InGaAlP layer separating ohmic and Schottky contacts
JPS59207667A (en) Semiconductor device
US5351128A (en) Semiconductor device having reduced contact resistance between a channel or base layer and a contact layer
JP3141935B2 (en) Heterojunction field effect transistor
KR100548047B1 (en) Field Effect Transistor
JPS6386575A (en) Hetero junction field effect transistor
JP2964637B2 (en) Field effect transistor
JPH06188271A (en) Field effect transistor
Akazaki et al. Improving the characteristics of an InAlAsInGaAs inverted HEMT by inserting an InAs layer into the InGaAs channel
JP3094500B2 (en) Field effect transistor
JPH11214676A (en) Semiconductor device
US6015981A (en) Heterostructure field-effect transistors (HFETs&#39;) with high modulation effectivity
JP3758261B2 (en) Field effect transistor
JPH0684959A (en) High electron mobility field effect semiconductor device
JP3505884B2 (en) Field effect transistor and method of manufacturing the same
JP2773782B2 (en) Compound semiconductor heterojunction structure
JP3156252B2 (en) Field effect transistor
JP2553760B2 (en) High electron mobility transistor
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JP3711949B2 (en) Epitaxial wafer for field effect transistor and field effect transistor
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH0864616A (en) Compound semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees