JPS6026345A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS6026345A JPS6026345A JP13406883A JP13406883A JPS6026345A JP S6026345 A JPS6026345 A JP S6026345A JP 13406883 A JP13406883 A JP 13406883A JP 13406883 A JP13406883 A JP 13406883A JP S6026345 A JPS6026345 A JP S6026345A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoreceptor
- amorphous silicon
- dielectric constant
- electrophotographic photoreceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は350 nm 〜950nm の光に光感受性
を有する電子写真感光体に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor having photosensitivity to light of 350 nm to 950 nm.
本発明は光感度が高い電子写真感光体を提供することを
目的としたものである。An object of the present invention is to provide an electrophotographic photoreceptor with high photosensitivity.
近年、少なくとも水素を含有する非晶質シリコン(以下
、a−8iと略す。)、又は少なくとも水素を含有する
非晶質シリコンゲルマニウム(以下、a−EIiGeと
略丁。)を少なくとも一方、より成る電子写真感光体(
以下、総称して、a−8i。In recent years, amorphous silicon containing at least hydrogen (hereinafter abbreviated as a-8i) or amorphous silicon germanium containing at least hydrogen (hereinafter abbreviated as a-EIiGe) is used. Electrophotographic photoreceptor (
Hereinafter, it will be collectively referred to as a-8i.
a−8iGe電子写真感光体と略す。)の研究が盛んに
行われている。第1図(a)〜(θ)に主なa−8i。It is abbreviated as a-8iGe electrophotographic photoreceptor. ) is being actively researched. The main a-8i is shown in Fig. 1 (a) to (θ).
a−8iGet子写真感光写真感光を示す。11゜21
.31,41.51はボロン(以下Bと略す。)を1〜
100 ppm含有し厚さ1μm以上のa−日1層、2
5,52f’lBを100 ppm 〜500 ppm
含み厚さ0.05〜a5μmのa−8i鳩、63゜46
.55はゲルマニウム(以下Gθと略す)とシリ:7ン
(S :t、 )の比(Ge/Si ) 7>i 10
−11〜9の組成比で厚さα5〜10μm+cDa−8
i:Goノ組35.541fJBを1〜1100pp含
ミ厚すo、1〜5 μm のa−8iノ曽、15,25
,55,45゜55は導電性基板でおる。父はa−Si
層には窒素、酸素、炭素を10%以下含有する時もめる
。a-8iGet child photographic exposure. 11°21
.. 31,41.51 is boron (hereinafter abbreviated as B) from 1 to
A-day 1 layer, 2 layers containing 100 ppm and having a thickness of 1 μm or more
5,52f'lB from 100 ppm to 500 ppm
A-8i pigeon with an included thickness of 0.05 to a5 μm, 63°46
.. 55 is the ratio of germanium (hereinafter abbreviated as Gθ) to silicon (S:t, ) (Ge/Si) 7>i 10
-11 to 9 composition ratio, thickness α5 to 10 μm + cDa -8
i: Go group 35.541fJB with 1~1100pp impregnated thickness so, 1~5 μm a-8i noso, 15,25
, 55, 45° 55 is a conductive substrate. Father is a-Si
The layer contains 10% or less of nitrogen, oxygen, and carbon.
該各層の特徴は比誘率が11以上ある事である。A feature of each layer is that the dielectric constant is 11 or more.
該電子写真感光体はSe系又はOdS糸号の電子写真感
光体に比して、硬度が太きく耐慄性に潰れている、残留
電位が小さい、無公害寺の優れた点を有している。反面
、たとえば、レーザープリンター、LEDプリンター等
の篩速プリンターや尚運屋の複写機に用いる光感度の高
い電子写真感光体に利用する場合該a−8i、a−8i
Gθ電子写真感光体では膜厚を大きくしなければならず
、該a−8i、該a−8iGeO製課速度の遅さく1〜
15μm/hr ) と相俟って、製造時間を要するた
め低価格化を妨げる最大の要因となっている。This electrophotographic photoreceptor has the advantages of higher hardness, shock resistance, lower residual potential, and non-pollution than Se-based or OdS yarn electrophotographic photoreceptors. There is. On the other hand, when used for electrophotographic photoreceptors with high photosensitivity used in sieving speed printers such as laser printers and LED printers, and copying machines for business owners, the a-8i and a-8i
In the Gθ electrophotographic photoreceptor, the film thickness must be increased, and the a-8i, a-8i GeO production speed is slow.
15 .mu.m/hr), and this requires manufacturing time, which is the biggest factor hindering price reduction.
本発明はかかる欠点を除去したもので、従来のa−8i
、a−SiGe電子写真感光体と同一厚さでより高い
光感度を有する電子写真感光体、甘い換えhば、ある光
感度を得るのに従来のa−8i、a−SiGe電子写真
感光体の厚さより薄い膜4で同一光感度の得られる電子
写真感光体を提供するものである。The present invention eliminates such drawbacks, and the conventional A-8i
, an electrophotographic photoreceptor with the same thickness and higher photosensitivity as an a-SiGe electrophotographic photoreceptor; This provides an electrophotographic photoreceptor in which the same photosensitivity can be obtained with a film 4 that is thinner than the film 4.
本発明の説明を行う前に、簡単に感光体の機能・厚理に
ついて説明を行なう。Before explaining the present invention, the function and thickness of the photoreceptor will be briefly explained.
第2図のように、感光層表面をコロナ放電器により正帯
電させた状態で感光I−の禁止帯幅より大きなエネルギ
ー(hv)のホトンをもつ光を照射する。この光によp
感光7ii101の表面近傍、すなわち吸収領域内で電
子・正孔対が生成される。As shown in FIG. 2, while the surface of the photosensitive layer is positively charged by a corona discharger, it is irradiated with light having photons having an energy (hv) larger than the forbidden band width of photosensitive I-. By this light
Electron-hole pairs are generated near the surface of the photosensitive member 7ii 101, that is, within the absorption region.
電子は電卓によって感光層表面に達し、正の帯′峨電荷
を打消す。The electrons reach the surface of the photosensitive layer and cancel the positive band charge.
一方、正孔は感光層101を通って、アルミ支持体10
2に達し、見かけ上窓光層の中を電流が流れ、帯電々荷
が消滅したことになり、光情報、すなわち画像に対応し
た静電替像が感光体上に形成される。また、負に帯電し
た場合も光によって生成された電子と正孔の動きが逆に
なるだけで原理的には上述の説明と同じである。On the other hand, holes pass through the photosensitive layer 101 and the aluminum support 10
2, a current apparently flows through the window optical layer, the electrical charge disappears, and optical information, that is, an electrostatic image corresponding to an image is formed on the photoreceptor. Furthermore, even when negatively charged, the principle is the same as the above explanation except that the movements of electrons and holes generated by light are reversed.
このとき、光照射前の感光体上の単位面積あたりの帯電
電荷量Qは表面電位をVs、単位面積あfcりの感光体
容量をCとすると、
Q−OVs ・・・・・・■
となる。父、感光体容量0は感光体の比誘電率をεr、
感光体厚さをdとすると、
0=ε0・εr/a ・・・・・・■
ただし、C0は真空中の比誘′峨率である。At this time, the amount of charge Q per unit area on the photoreceptor before light irradiation is given by Become. Father, the photoconductor capacitance is 0, the relative dielectric constant of the photoconductor is εr,
If the thickness of the photoreceptor is d, then 0=ε0·εr/a . . .■ However, C0 is the dielectric constant in vacuum.
となる。■、■より
Q=εO・εr−ve/d ・・・・・・■又、感光体
Vζ吸収された光は1ホトンあたり1対の電子・正孔対
を形成するので、わかりやすくするため感光体に十分吸
収される単色光で考えると、単色光のエネルギーをEと
すると、発生する電子正孔対の数Nは、
N=B ・(1−R)/(h ・ν)・・・・・・■た
だし、Rは感光体の反射率で、1−Rは吸収率、xhH
ブランク定数νは光の周波数です。becomes. From ■ and ■, Q=εO・εr−ve/d ・・・・・・■Also, since the light absorbed by the photoreceptor Vζ forms one electron/hole pair per photon, to make it easier to understand Considering monochromatic light that is sufficiently absorbed by the photoreceptor, if the energy of the monochromatic light is E, the number N of electron-hole pairs generated is N=B ・(1-R)/(h ・ν)... ...■ However, R is the reflectance of the photoreceptor, 1-R is the absorption rate, xhH
The blank constant ν is the frequency of light.
となり、光によって発生した電子・正孔対に二り帯電電
荷が量子効率4で打ち消されるとすると、打ち消された
単位面積あたりの電荷量。’usQ =ηNθ ・・・
・・・■
ただし、θは単位電荷量、ηく1
となる。又、照射された光による表向電位の変化分ΔV
l+は光照射後の表面電位及び、単位奄槓あたりの帯電
電荷量をそれぞれ、■θ′、Q″ とすると、
ΔV=Vs−■a/
■式より=(Q−Q”)・d/(C0・ε・)=Q′
・d/(εQ、εr)
00式より
=yl−e−d>−C1−G/Ch−ν・εO・εr
) …・・・■
となる。If the doubly charged charge on the electron-hole pair generated by light is canceled out with a quantum efficiency of 4, then the amount of canceled charge per unit area is: 'usQ = ηNθ...
...■ However, θ is the unit charge amount, η×1. Also, the change in surface potential due to the irradiated light ΔV
l+ is the surface potential after light irradiation and the amount of charged charge per unit of light is θ' and Q'', respectively, then ΔV=Vs-■a/ ■From the formula = (Q-Q'')・d/ (C0・ε・)=Q′
・d/(εQ, εr) From formula 00 = yl-e-d>-C1-G/Ch-ν・εO・εr
)......■.
■式の物理的な意味を整理すると、
1、 光エネルギーE5量子効率η、反射率Rを一定と
した時は、表面電位の変化分を大きくするすなわち光感
度を大きくするには膜厚を大きくするか、比誘電率を小
さくするか(すなわち感光体容量を小さくする。)のど
ちらかとなる。■To summarize the physical meaning of the equation: 1. When light energy E5 quantum efficiency η and reflectance R are constant, to increase the change in surface potential, that is, to increase photosensitivity, increase the film thickness. Either the dielectric constant should be reduced (that is, the capacitance of the photoreceptor should be reduced).
2、膜厚a、掃子効率η、反射率Rを一定とした時は、
表面電位の変化分を太きくするには、光エネルギーEを
太きくするか、感光体容量を小さくするかのどちらかで
ある。2. When film thickness a, scavenging efficiency η, and reflectance R are kept constant,
In order to increase the amount of change in surface potential, either increase the light energy E or decrease the photoreceptor capacity.
本来、■式の膜厚以外は材料、たとえばa −8i、a
−81Geが決まれば決まってしまう物性値の丸め、光
感度を大巾に向上させるKは膜厚を大きくする以外には
望めな゛い。量子効率を1に近づける事はできるが、た
とえばa−ElillE子写真感光体の場合η=0.8
〜1.0であり、大巾な光感度の同上はあり得ない。Originally, materials other than the film thickness of formula (■), for example, a -8i, a
Rounding of the physical property values, which are determined once -81Ge is determined, and K, which greatly improves photosensitivity, cannot be achieved except by increasing the film thickness. Although it is possible to bring the quantum efficiency close to 1, for example, in the case of an a-ElillE photoreceptor, η = 0.8.
~1.0, and it is impossible to have a wide range of photosensitivity.
本発明はa−8i、a−8iGeが1〜5μm以下でプ
リンター、複写機等で利用する光を十分吸収する事より
感光体表面より1〜5μm以下から導電性基体までは光
により注入されたキャリアー(光キヤリア−)が感光体
内を電界により輸送されるだけである事に注目し、該光
吸収部以外の該感光部を比誘電率がa−8i、a−8i
()θよりも小さく、光キャリアーが十分な輸送能を持
つ電荷輸送層に厘き換える事により感光体′g1の低減
をはかり光感度を同士させたものである、本発明を数値
例で詳しく説明する。簡単化の7こめ従来の電子写真感
光体として第1図(a)の単層の感光体、本発明の電子
写真感光体として第3図(a)の二層構造の感光体を考
える。115はa−8i層、112はボロンをドープし
輸送能を保持させた水素を含有する非晶質炭化シリコン
層である。The present invention is based on the fact that a-8i and a-8iGe sufficiently absorb light used in printers, copiers, etc. at a thickness of 1 to 5 μm or less, so that light can be injected from 1 to 5 μm from the surface of the photoreceptor to the conductive substrate. Paying attention to the fact that carriers (photocarriers) are only transported within the photoreceptor by the electric field, the relative dielectric constants of the photoreceptor parts other than the light absorption part are a-8i and a-8i.
The present invention is explained in detail with numerical examples, in which the photoreceptor'g1 is reduced and the photosensitivity is made the same by replacing the charge transport layer with a charge transport layer that is smaller than ()θ and has sufficient photocarrier transport ability. explain. Seven points for simplification Consider the single-layer photoreceptor shown in FIG. 1(a) as a conventional electrophotographic photoreceptor, and the two-layer photoreceptor shown in FIG. 3(a) as the electrophotographic photoreceptor of the present invention. 115 is an a-8i layer, and 112 is an amorphous silicon carbide layer containing hydrogen and doped with boron to maintain transport ability.
a−Si単層の容量をQa、本発明の2ノ曽構造の場合
の容量をQa、帯電4位をそれぞれv8゜’yaとし、
各に必要な帯電々荷をQ−、Qaとすると
Q s =Oa V−・・・・・・(1)′Q、 a=
=o a V a 、 =f21’帯電々位を同じ、す
なわちvII=vdとしたときの両者の電荷の比は、
Qd/Q” ”’ 0610n 、、、、、13)/と
なる。The capacitance of the a-Si single layer is Qa, the capacitance in the case of the two-way structure of the present invention is Qa, and the 4th charged position is v8゜'ya, respectively.
Letting the charges required for each be Q- and Qa, Q s = Oa V-... (1)'Q, a=
= o a V a , = f21' When the charging potential is the same, that is, vII = vd, the ratio of both charges is Qd/Q""' 0610n, 13)/.
第3図(a)の感光体でa−81感光層115の厚さを
a、とじ、SiO[荷輸送層112の厚さをd2とする
と、単位面積当りの容量は
ε 0
・・・・・・(4)′
Cd =
C0・、C1、C2はそれぞれ真空の誘電率、a−8t
悪感光の誘電率、そしてSiO電荷輸送層の誘電率であ
る。In the photoreceptor shown in FIG. 3(a), the thickness of the a-81 photosensitive layer 115 is a, and the thickness of the SiO layer 112 is d2.The capacitance per unit area is ε 0... ...(4)' Cd = C0・, C1, C2 are the permittivity of vacuum, a-8t, respectively
These are the dielectric constant of the photosensitive layer and the dielectric constant of the SiO charge transport layer.
一方、a−81層のみの感光体の厚さをaOとし、2層
構造の感光体と同じ厚さdo =(11+dt(3)’
、(4)’ 、C5)’からε1%12 、ε!ニア
であるから、たとえばdl−5μm 、 l@ =15
/jm とすればQ 117 Q s # 0.65
すなわち、単層に比べ、2)−構造にすると同じ厚さで
、同じ帯電4位を得るのに約65%の′電荷量で良い。On the other hand, let the thickness of the photoconductor with only the a-81 layer be aO, and the same thickness as the photoconductor with the two-layer structure do = (11+dt(3)')
, (4)', C5)' to ε1%12, ε! For example, dl-5μm, l@=15
/jm, then Q 117 Q s # 0.65 That is, compared to a single layer, the 2)-structure requires about 65% of the amount of charge to obtain the same 4-position charge with the same thickness.
したがって、この電荷を消滅させるためのホトン数も6
5%でよく、感度の良いことがわかる。Therefore, the number of photons required to annihilate this charge is also 6.
It can be seen that 5% is sufficient and the sensitivity is good.
本発明による電荷輸送層としては水素又は水素及び弗素
を含有する非晶質炭化シリコン(a−8ix01−x:
α1≦xくα9)、非晶質屋化シリコン(a−stXN
+−X : 0.1≦x<0.9)、非晶質酸化シリコ
ン(a−8iz01−2:0.1≦z<0.5)、非晶
質炭化窒化シリコン(a−8ixOyN1−’z−y:
0.1<x<0.9 、0.1≦yく[17)、非晶
質酸化炭化シリコン(a−8ixOyO1−z−y:α
1≦x <0.90.1≦y≦0,7、非晶質酸化窒化
シリコン(a−日1xNyO1−X−y:α1≦X≦0
.9,0.1≦y≦L1.7)、非晶質酸化炭化窒化シ
リコン(a−81xoyNz01−X−y−Z:α1≦
x<0.8,0.1≦y≦0.5.L]、1≦2≦0.
5)から成り、電荷輸送能を持たせるため、帯!極性が
正極のときは1〜1000 ppmのボロン、アルミニ
ウム、ガリウム、インジウム等の周期律表第jib族、
負極のときは1〜500ppmの窒素、リン、ヒ累、ア
ンチモン等の周期律表第■b族を混入させる。又、その
製造方法はプラズマOV :O法+スパッタ法、イオン
ビームスパッタ法。The charge transport layer according to the present invention is an amorphous silicon carbide containing hydrogen or hydrogen and fluorine (a-8ix01-x:
α1≦xα9), amorphous silicon (a-stXN
+-X: 0.1≦x<0.9), amorphous silicon oxide (a-8iz01-2: 0.1≦z<0.5), amorphous silicon carbonitride (a-8ixOyN1-' z-y:
0.1<x<0.9, 0.1≦y [17], amorphous silicon oxycarbide (a-8ixOyO1-z-y: α
1≦x<0.90.1≦y≦0,7, amorphous silicon oxynitride (a-day 1xNyO1-X-y: α1≦X≦0
.. 9,0.1≦y≦L1.7), amorphous silicon oxycarbonitride (a-81xoyNz01-X-y-Z: α1≦
x<0.8, 0.1≦y≦0.5. L], 1≦2≦0.
5), and in order to have charge transport ability, the band! When the polarity is positive, 1 to 1000 ppm of boron, aluminum, gallium, indium, etc. from Group JIB of the periodic table,
In the case of a negative electrode, 1 to 500 ppm of nitrogen, phosphorus, arsenic, antimony, etc. from group 1b of the periodic table is mixed. The manufacturing method is plasma OV:O method + sputtering method, ion beam sputtering method.
OVD法等により形成される。第3図(a)〜(f)
K本発明による電子写真感光体の構造を示す。111゜
121.131,141,151,161はアルミニウ
ム等の導電性基体112,122,132゜142.1
52,162は本発明による電荷輸送層、123,14
3,163は100〜500ppm ボロンを含む厚さ
0.1〜1μmのa−8i層、134,144,154
,164はGe/st比が10−3〜9の組成比のa−
+31Gθ層、115 125 135 145 15
5165は1〜100 pp)nボロンを含むa−8i
層である。It is formed by an OVD method or the like. Figure 3 (a) to (f)
K shows the structure of an electrophotographic photoreceptor according to the present invention. 111゜121.131, 141, 151, 161 are conductive substrates 112, 122, 132゜142.1 made of aluminum etc.
52,162 is a charge transport layer according to the present invention, 123,14
3,163 is a 0.1-1 μm thick a-8i layer containing 100-500 ppm boron, 134,144,154
, 164 is a- with a Ge/st ratio of 10-3 to 9.
+31Gθ layer, 115 125 135 145 15
5165 is 1-100 pp) a-8i containing n boron
It is a layer.
実施例として電荷輸送層に非晶質炭化シリコン(a−8
1xO1−x)を用い、構造として第5図(a)〜(0
)の構造の電子写真感光体について述べる。As an example, amorphous silicon carbide (A-8
1xO1-x), and the structures shown in Figure 5(a) to (0
) The electrophotographic photoreceptor having the structure will be described below.
最初に、前記の前提となる比誘電率の低減、並びに輸送
能の変化について示す。First, the reduction in dielectric constant and the change in transport capacity, which are the premise described above, will be explained.
第4図にa−8ixO1−z の比誘率の炭素量に対す
る変化を示す。炭素量の増加にともなって比誘電率の低
下が見られる。FIG. 4 shows the change in dielectric constant of a-8ixO1-z with respect to the carbon content. A decrease in relative dielectric constant is observed as the amount of carbon increases.
第5図にボロン量に対する同一膜厚のa−8ixC1−
xの相対的な表面゛は位の変化を示す。ボロン量を加え
る事により、電荷の輸送能が変化し表面電位の減少が確
認できる。Figure 5 shows a-8ixC1- of the same film thickness with respect to the amount of boron.
The relative surface of x indicates a change in position. By adding the amount of boron, the charge transport ability changes and a decrease in surface potential can be confirmed.
実施例1、本発明の第6図(a)の構造の電子写真感光
体において全膜厚を20μm としa−8ixO1−X
112の膜厚を5〜17.5μmに変化させた時の表面
電位の変化分を膜厚20μmのa−Eli単j−の感光
体の表面変化分で除した相対表面変化分とa −S i
x O1−x の膜厚の関係を第6図に示す(光は6
50 nmの単色光で、エネルギーは一定である。)。Example 1 In an electrophotographic photoreceptor of the present invention having the structure shown in FIG. 6(a), the total film thickness was set to 20 μm, and a-8ixO1-X was used.
The relative surface change obtained by dividing the change in surface potential when the film thickness of 112 is changed from 5 to 17.5 μm by the surface change of the a-Eli single j- photoreceptor with a film thickness of 20 μm and a -S i
The relationship between the film thickness of x O1-x is shown in Figure 6 (light is 6
It is a monochromatic light of 50 nm and the energy is constant. ).
aはa−8i単層の相対表面電位変化分でおる。図より
明らかな様に比誘電率の小さいa−8ix(,1−1層
が増加するにつれ、同一光エネルギーで表面電位の変化
は大きくなる。第7図に色温度3000にのタングステ
ンランプ光1 m w /−照射した時のa−8i層が
5μm 。a is the relative surface potential change of the a-8i monolayer. As is clear from the figure, as the number of a-8ix (,1-1) layers with a small dielectric constant increases, the change in surface potential increases with the same light energy. m w /- A-8i layer when irradiated is 5 μm.
a S i x O+ −X 15μmの感光体のa−
8ixO1−。a Si x O+ -X 15 μm photoreceptor a-
8ixO1-.
中のボロン量及び残留電位の変化を示した。ボロンを混
入した事によ’) a−、B i x O1Xの電荷輸
送能が同上した事がわかる。Changes in the boron content and residual potential are shown. It can be seen that the charge transport ability of B i x O1X was increased by mixing boron.
実殉例2、本発明の第3図(C)の構造の、全膜厚10
μm、a−8i 層(135)1μm、a−EliGe
’(154) 1.5μm 、a−8ixO1x(13
2)7μmの電子写真感光体と従来の第1図(d)の構
造の、全膜厚10μm、a−日1層(44)1μm1a
−8iGe層(43) 1.5μm、a−8i層(41
)7μmの電子写真感光体を光波長を850μm〜65
0μmの間に変化させたときの表面電位変化を第8図に
示す。第8図は該従来の電子写真感光体の波長と表面電
位変化(a)を1と規格化し示した。Actual example 2, the total film thickness of the structure shown in FIG. 3(C) of the present invention is 10
μm, a-8i layer (135) 1 μm, a-EliGe
'(154) 1.5μm, a-8ixO1x(13
2) 7 μm electrophotographic photoreceptor and conventional structure shown in FIG. 1(d), total film thickness 10 μm, a-day 1 layer (44) 1 μm 1a
-8iGe layer (43) 1.5 μm, a-8i layer (41
) 7 μm electrophotographic photoreceptor with a light wavelength of 850 μm to 65 μm
FIG. 8 shows the change in surface potential when changing between 0 μm. FIG. 8 shows the wavelength and surface potential change (a) of the conventional electrophotographic photoreceptor, normalized to 1.
明らかに、不発明の電子写真感光体(b)は光感就の・
向上が見られる。Obviously, the uninvented electrophotographic photoreceptor (b) is photosensitive.
Improvement is visible.
以上、実施例によれば比誘電率の小さい電荷輸送能の十
分保持した電荷輸送層を設ける事により光感度を向上す
る事ができ有用である。As described above, according to the embodiments, the photosensitivity can be improved by providing a charge transport layer having a small dielectric constant and sufficient charge transport ability, which is useful.
又、第3図の構造すべてに同様の結果が得られ7’CL
/、Bの代pに、アルミニウム、ガリウム、インジウム
、又、負極帯電のときはリン、ヒ素、アンチモン、にお
いても同様の結果が得られる。又、電荷輸送層として水
素又は水素及び弗素を含む非晶質窒化シリコン、非晶質
酸化シリコン、非晶質炭化窒化シリコン、非晶質酸化炭
化シリコン、非晶買酸化鴛化7リコン、非晶質酸化炭化
シリンリコンに用い正極のときは周期律表第mb族、負
極のときは周期律堀第Vb族を混入させた時も同様の結
果が得られた。Also, similar results were obtained for all structures in Figure 3, and 7'CL
Similar results can be obtained with aluminum, gallium, indium, or phosphorus, arsenic, and antimony in the case of negative electrode charging. In addition, amorphous silicon nitride, amorphous silicon oxide, amorphous silicon carbonitride, amorphous silicon oxide carbide, amorphous silicon oxide, amorphous silicon containing hydrogen or hydrogen and fluorine as a charge transport layer Similar results were obtained when oxidized silicon carbide was mixed with Group MB of the periodic table for the positive electrode and Group Vb of the periodic table for the negative electrode.
本発明によればレーザープリンター、LffiD・プリ
ンター咎の高中速プリンターや複写機の電子写真感光体
として利用でき有用である。According to the present invention, it can be usefully used as an electrophotographic photoreceptor for laser printers, high-medium speed printers such as LffiD printers, and copying machines.
第1図(a)〜(e)は従来の電子写真感光体の慣造図
である。
第2図は電子写真感光体のモデル図である。
第6図(a)〜(f)σ本発明の電子写真感光体の構造
図である。
第4図はa−8i x O+ −X 中の炭素量とルー
電率の関係図である。
第5図にa S l go + −X 中のボロン量と
衣面′醒位の関係図である。
M6図はa−BixOl−X の厚さと表面電位変化分
の関係図である。
第7図はa−8ixO1y、中のボロン量と残留電位の
関係である。
第8図は光源長と表面電位変化分の関係図である。
101・・・感光体1−
102・・・導電性基体
112.122,132・・・電荷輸送層以上
出願人体式会社 諏訪精工台
(i) (1))
(Q) (d)
Ce)
第1図
第4図
第5図
第6図
第7図FIGS. 1(a) to 1(e) are conventional views of a conventional electrophotographic photoreceptor. FIG. 2 is a model diagram of an electrophotographic photoreceptor. FIGS. 6(a) to 6(f) σ are structural diagrams of the electrophotographic photoreceptor of the present invention. FIG. 4 is a diagram showing the relationship between the amount of carbon in a-8i x O+ -X and the lucent rate. FIG. 5 is a diagram showing the relationship between the amount of boron in a S l go + -X and the surface concentration. Diagram M6 is a diagram showing the relationship between the thickness of a-BixOl-X and the change in surface potential. FIG. 7 shows the relationship between the amount of boron in a-8ixO1y and the residual potential. FIG. 8 is a diagram showing the relationship between the light source length and the surface potential change. 101... Photoreceptor 1- 102... Conductive substrate 112, 122, 132... Charge transport layer and above Applied Human Body System Company Suwa Seikodai (i) (1)) (Q) (d) Ce) Chapter Figure 1 Figure 4 Figure 5 Figure 6 Figure 7
Claims (3)
シリコンゲルマニウムを感光体層として用いた電子写真
感光体において、該感光体層下には電荷輸送層が形成さ
れてなシ、該電荷輸送層の比誘電率は、該感光体層の比
誘電率よりも小なることを特徴とする電子写真感光体。(1) In an electrophotographic photoreceptor using hydrogen-containing amorphous silicon or amorphous silicon germanium as a photoreceptor layer, a charge transport layer is not formed under the photoreceptor layer. An electrophotographic photoreceptor characterized in that the relative dielectric constant of the charge transport layer is smaller than the relative dielectric constant of the photoreceptor layer.
少なくともいずれか一つが含まれて形成され、かつ水素
又は水素及び弗素が含有されたシリコン化合物であるこ
とを特徴とする特許請求の範囲第1項記載の電子写真感
光体。(2) The charge transport layer is formed by containing at least one of oxygen, nitrogen, and carbon, and is a silicon compound containing hydrogen or hydrogen and fluorine. The electrophotographic photoreceptor according to scope 1.
少なくともいずれか一つが含まれて形成され、かつ水素
又は水素及び弗素が含有されたシリコン化合物でおり、
前記感光体層が正に帯電する際には、該シリコン化合物
に周期律表第mb族、前記感光体層が負に帯電する際に
は、該シリコン化合物に周期律表第vb族が混入されて
なることを特徴とする特許請求の範囲第1項記載の電子
写真感光体。(3) the 'charge transport layer μ is formed by containing at least one of oxygen, a phoneme, and carbon, and is a silicon compound containing hydrogen or hydrogen and fluorine;
When the photoreceptor layer is positively charged, the silicon compound is mixed with Group MB of the periodic table, and when the photoreceptor layer is negatively charged, the silicon compound is mixed with Group VB of the periodic table. An electrophotographic photoreceptor according to claim 1, characterized in that:
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13406883A JPS6026345A (en) | 1983-07-21 | 1983-07-21 | Electrophotographic sensitive body |
JP5227471A JP2580874B2 (en) | 1983-07-21 | 1993-09-13 | Electrophotographic photoreceptor and electrophotographic apparatus |
JP5227475A JPH06208235A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227473A JPH06208233A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227476A JPH06208236A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227474A JPH06208234A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13406883A JPS6026345A (en) | 1983-07-21 | 1983-07-21 | Electrophotographic sensitive body |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5227476A Division JPH06208236A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227474A Division JPH06208234A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227473A Division JPH06208233A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
JP5227471A Division JP2580874B2 (en) | 1983-07-21 | 1993-09-13 | Electrophotographic photoreceptor and electrophotographic apparatus |
JP5227475A Division JPH06208235A (en) | 1983-07-21 | 1993-09-13 | Electrophotographic receptor and electrophotographic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6026345A true JPS6026345A (en) | 1985-02-09 |
JPH0462379B2 JPH0462379B2 (en) | 1992-10-06 |
Family
ID=15119621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13406883A Granted JPS6026345A (en) | 1983-07-21 | 1983-07-21 | Electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026345A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6198358A (en) * | 1984-10-18 | 1986-05-16 | ゼロツクス コーポレーシヨン | Non-homogenous electrophotographic image forming member comprising amorphous silicon and silica |
JPS62295063A (en) * | 1986-06-16 | 1987-12-22 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
JPS62295064A (en) * | 1986-06-16 | 1987-12-22 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
EP0422238A1 (en) * | 1989-03-17 | 1991-04-17 | Dai Nippon Printing Co., Ltd. | Photosensitive member and electrostatic data recording method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5581348A (en) * | 1978-12-14 | 1980-06-19 | Ricoh Co Ltd | Electrostatic recording body |
JPS561943A (en) * | 1979-06-21 | 1981-01-10 | Canon Inc | Electrophotographic image forming material |
JPS57119357A (en) * | 1981-01-16 | 1982-07-24 | Canon Inc | Photoconductive member |
JPS58219565A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Photoreceptor |
JPS58219560A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS58219564A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Photoreceptor |
JPS58219559A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS59212843A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS59212842A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
-
1983
- 1983-07-21 JP JP13406883A patent/JPS6026345A/en active Granted
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5581348A (en) * | 1978-12-14 | 1980-06-19 | Ricoh Co Ltd | Electrostatic recording body |
JPS561943A (en) * | 1979-06-21 | 1981-01-10 | Canon Inc | Electrophotographic image forming material |
JPS57119357A (en) * | 1981-01-16 | 1982-07-24 | Canon Inc | Photoconductive member |
JPS58219565A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Photoreceptor |
JPS58219560A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS58219564A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Photoreceptor |
JPS58219559A (en) * | 1982-06-15 | 1983-12-21 | Konishiroku Photo Ind Co Ltd | Recording body |
JPS59212843A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
JPS59212842A (en) * | 1983-05-18 | 1984-12-01 | Konishiroku Photo Ind Co Ltd | Photosensitive body |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6198358A (en) * | 1984-10-18 | 1986-05-16 | ゼロツクス コーポレーシヨン | Non-homogenous electrophotographic image forming member comprising amorphous silicon and silica |
JPS62295063A (en) * | 1986-06-16 | 1987-12-22 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
JPS62295064A (en) * | 1986-06-16 | 1987-12-22 | Fuji Xerox Co Ltd | Electrophotographic sensitive body |
EP0422238A1 (en) * | 1989-03-17 | 1991-04-17 | Dai Nippon Printing Co., Ltd. | Photosensitive member and electrostatic data recording method |
Also Published As
Publication number | Publication date |
---|---|
JPH0462379B2 (en) | 1992-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6161383B2 (en) | ||
JPS6026345A (en) | Electrophotographic sensitive body | |
US4686164A (en) | Electrophotosensitive member with multiple layers of amorphous silicon | |
JP2580874B2 (en) | Electrophotographic photoreceptor and electrophotographic apparatus | |
JPS58137841A (en) | Electrophotographic receptor | |
JPH0549107B2 (en) | ||
JPH06208233A (en) | Electrophotographic receptor and electrophotographic device | |
JPH06208236A (en) | Electrophotographic receptor and electrophotographic device | |
JPH06208234A (en) | Electrophotographic receptor and electrophotographic device | |
JPS5984254A (en) | Photosensitive body | |
JPH06208235A (en) | Electrophotographic receptor and electrophotographic device | |
JP2566762B2 (en) | Electrophotographic photoreceptor | |
US5057391A (en) | Photosensitive member for electrophotography and process for making using electron cyclotron resonance | |
JPS61110152A (en) | Photosensitive body | |
JP3152716B2 (en) | Image forming device | |
JPS60115941A (en) | Electrophotographic sensitive material | |
JPS63123052A (en) | Amorphous photosensitive body | |
JPS63284558A (en) | Electrophotographic sensitive body | |
JPS6076750A (en) | Electrophotographic sensitive body | |
JPS62113156A (en) | Electrophotographic sensitive body | |
JPH0743543B2 (en) | Photoconductive member | |
JPH06222601A (en) | Electrophotographic sensitive body | |
JPH01283569A (en) | Structure of photosensitive body | |
JPH06186765A (en) | Electrophotographic sensitive body and its production | |
JPS6033564A (en) | Electrophotographic sensitive body |