JPS5984254A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPS5984254A
JPS5984254A JP19560882A JP19560882A JPS5984254A JP S5984254 A JPS5984254 A JP S5984254A JP 19560882 A JP19560882 A JP 19560882A JP 19560882 A JP19560882 A JP 19560882A JP S5984254 A JPS5984254 A JP S5984254A
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
thickness
8ige
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19560882A
Other languages
Japanese (ja)
Inventor
Masatoshi Matsuzaki
松崎 正年
Toshiki Yamazaki
山崎 敏規
Hiroyuki Nomori
野守 弘之
Tetsuo Shima
徹男 嶋
Isao Myokan
明官 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP19560882A priority Critical patent/JPS5984254A/en
Publication of JPS5984254A publication Critical patent/JPS5984254A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body wide in sensitive wavelength range, high in sensitivity, and superior in charging characteristics, durability, etc. by laminating on a substrate, a laminated photoconductive layer composed of amorphous silicon layers one of both contg. Ge, and 2 amorphous silicon layers contg. C on both sides of said laminated layer. CONSTITUTION:A photosensitive body is prepared by laminating on a substrate 1 a laminated photoconductive layer 6 composed of at least one layer made of amorphous (hereafter abbreviated to a) Si-Ge hydride or fluoride (hereafter a- SiGe:H or a -SiGe:F) or a-SiGeC:H, or a-SiGeC:F, for example, an a-SiGe:H layer 3 and an a-Si:H or a-Si:F laye 5, and on both sides of the layer 6, a- SiC:H or a-SiC:F layers 4, 2. The obtained photoreceptor is enhanced in photosensitivity to light ranging from the visible to IR region by the lamination of the layers 3, 5, raised in adhesion between the substrate 1 and the layer 6 by the action of the layer 2, and enhanced in surface characteristics, accordingly in durability and all-environmental resistance by the presence of the layer 4.

Description

【発明の詳細な説明】 本発明は感光体、例えば電子写真感光体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to photoreceptors, such as electrophotographic photoreceptors.

従来、電子写真感光体として、se、又はSeにAa、
Te、 Sb等をドープした感光体、znO+CdSを
樹脂バインダーに分散させた感光体等が知られている。
Conventionally, as an electrophotographic photoreceptor, se or Se has Aa,
Photoreceptors doped with Te, Sb, etc., photoreceptors in which ZnO+CdS is dispersed in a resin binder, and the like are known.

しかしながらこれらの感光体は、環境汚染性、熱的安定
性、機械的強度の点で問題がある。
However, these photoreceptors have problems in terms of environmental pollution, thermal stability, and mechanical strength.

一方、アモルファスシリコン(a−8t)を母材として
用いた電子写真感光体が近年になって提案されている□
a−8iは、5i−8iの結合手が切れたいわゆるダン
グリングボンドを有しておシ、この欠陥に起因してエネ
ルギーギャップ内に多くの局在準位が存在する。このた
めに、熱励起担体のホッピング伝導が生じて暗抵抗が小
さく、また光励起担体が局在準位にトラップされて光導
電性が悪くなっている。そこで、上記欠陥を水素原子(
H)で補償してSiにHな結合させることによって、ダ
ングリングボンドを埋めることが行なわれる。
On the other hand, electrophotographic photoreceptors using amorphous silicon (a-8t) as a base material have been proposed in recent years.
a-8i has a so-called dangling bond in which the bond of 5i-8i is broken, and many localized levels exist within the energy gap due to this defect. For this reason, hopping conduction of thermally excited carriers occurs, resulting in a small dark resistance, and photoexcited carriers are trapped in localized levels, resulting in poor photoconductivity. Therefore, we replaced the above defects with hydrogen atoms (
The dangling bonds are filled by compensating with H) and bonding H to Si.

このようなアモルファス水素化シリコン(以下、a−8
1:Hと称する。)は、光感度が良好である上に無公害
性、良耐刷性等の面で注目されている。
Such amorphous hydrogenated silicon (hereinafter referred to as a-8
1: Referred to as H. ) is attracting attention for its good photosensitivity, non-pollution, and good printing durability.

しかし、a−8i:Hは750〜800nm (近赤外
)の波長の光に対しては可視域の光に対するより1ケタ
程感度が悪いことが知られている。従って、情報信号を
電気的に処理してハードコピーとして出力するだめの情
報端末処理機において半導体レーザを記録光源として用
いる場合には、実用的な情報記録用の半導体レーザーは
GaAtAsを構成材料としたものであってその発振波
長は760〜820 nmであるから、この種の情報記
録にとってa−8i:Hは感度不十分となシ、不適当で
ある。Se系の感光体の場合には、有機光導電材料から
なる感光体に比べて感度が大きいものの、処理速度の高
速化に対応するためには長波長領域での感度がやはシネ
十分である。
However, it is known that a-8i:H is about one order of magnitude less sensitive to light with a wavelength of 750 to 800 nm (near infrared) than to light in the visible range. Therefore, when using a semiconductor laser as a recording light source in an information terminal processing machine that electrically processes information signals and outputs them as hard copies, practical information recording semiconductor lasers are made of GaAtAs. Since the oscillation wavelength is 760 to 820 nm, a-8i:H has insufficient sensitivity and is inappropriate for this type of information recording. In the case of Se-based photoreceptors, the sensitivity is higher than that of photoreceptors made of organic photoconductive materials, but the sensitivity in the long wavelength region is still sufficient to support higher processing speeds. .

そこで、a−8t:Hの優れた光導電性又は光感度を生
かしつつ長波長領域の感度を向上させるたメニ、アモル
ファス水素化シリコンゲルマニウム  −(以下、a 
5iGe:l[(と称する。)を光導電層に用いること
が考えられる。つまF) 、a−8iGe :Hは60
0〜8501mの波長域で光感度が良好である。
Therefore, amorphous silicon germanium hydride (hereinafter referred to as a
It is conceivable to use 5iGe:l[(referred to as .) in the photoconductive layer. Tsuma F), a-8iGe: H is 60
It has good photosensitivity in the wavelength range of 0 to 8501 m.

しかしながら、逆に言えば、a−8IGe:H単独では
、可視領域での感度がa−8i:Hに比べて悪い。しか
も、a−8iGe:H層のみでは、暗抵抗は10’〜1
0@Ω−mにすぎず、電荷保持能に乏しい。しかも、a
−8iGe:Hは支持体(基板)に対する膜付き又は接
着性が悪く、また機械的、熱的性質がa−8i:Hよル
も劣るために、電子写真感光体として実用化する上で難
がある。
However, conversely speaking, a-8IGe:H alone has lower sensitivity in the visible region than a-8i:H. Moreover, with only the a-8iGe:H layer, the dark resistance is 10' to 1
It is only 0@Ω-m and has poor charge retention ability. Moreover, a
-8iGe:H has poor film adhesion or adhesion to the support (substrate), and has poor mechanical and thermal properties compared to a-8i:H, making it difficult to put it to practical use as an electrophotographic photoreceptor. There is.

近時、半導体レーザー等による記録機能の他に可視光を
光源とする記録機能(例えば通常の電子写真複写機とし
ての機能)も併せ持つ多機能機器が注目されているが、
上記のa−8t:H及びa−8iGe:H共にそうした
要求を満足し得ない。
Recently, multifunctional devices that have a recording function using visible light as a light source (for example, functions as a normal electrophotographic copying machine) in addition to recording functions using semiconductor lasers, etc., have been attracting attention.
Neither a-8t:H nor a-8iGe:H mentioned above can satisfy such requirements.

これを解決するために、支持体上に、電荷保持を行々え
る充分な厚さのa−8t:H層を形成し、更にこの上K
a−8fGe:H層を形成して、2層構造からなる光導
電層(光照射に応じてキャリアを発生する層)とした感
光体が提案されている。
To solve this problem, we formed a sufficiently thick a-8t:H layer on the support to retain charge, and then
A photoreceptor has been proposed in which an a-8fGe:H layer is formed to form a photoconductive layer (a layer that generates carriers in response to light irradiation) having a two-layer structure.

この構造によれば、a−8t:H及びa−8iGe:H
の各層によって可視光及び近赤外光の両領域の感度が良
好となる。しかし、この感光体はいくつかの問題点(特
に次の3点)を有している。
According to this structure, a-8t:H and a-8iGe:H
Each layer improves sensitivity in both visible light and near-infrared light regions. However, this photoreceptor has several problems (particularly the following three points).

(1)、a−8iGe:H層が表面側に存在している構
造であるため、a−8iと比べて化学構造的に弱くなシ
、耐刷性が不良となる。
(1) a-8iGe: Since the H layer is present on the surface side, the chemical structure is weaker than that of a-8i, and printing durability is poor.

(2)、a−8iGe:H層が厚い場合、可視光領域で
の感度が不充分となる。これは、a−8iGe:H層の
存在が、可視光領域におけるa−8i:H層での光キャ
リアの発生を阻害するからであると思われる0 (3)、帯電時に、支持体基板側からa−8t:H層へ
の不要が電荷の注入が生じ易く、これによって表面電位
を良好に保持することができず、しかもa−8i:Hと
支持体との接着性も不充分である。
(2) When the a-8iGe:H layer is thick, the sensitivity in the visible light region becomes insufficient. This is thought to be because the presence of the a-8iGe:H layer inhibits the generation of photocarriers in the a-8i:H layer in the visible light region. From the a-8t:H layer, unnecessary charge injection tends to occur, which makes it impossible to maintain the surface potential well, and the adhesion between the a-8i:H and the support is also insufficient. .

本発明者は種々検討を加えた結果、可視及び近赤外の内
領域での感度に優れ、かつ電荷保持特性や耐刷性が良く
、安定した電荷保持特性を示す実用に耐え得る感光体を
見出し、本発明に到達した。
As a result of various studies, the present inventor has developed a photoreceptor that can withstand practical use, has excellent sensitivity in the visible and near-infrared regions, has good charge retention characteristics and printing durability, and exhibits stable charge retention characteristics. Heading, we arrived at the present invention.

即ち、本発明による感光体は、アモルファス水素化及び
/又はフッ素化シリコンゲルマニウム(例えばa−8i
Ge:H)とアモルファス水素化及び/又はフッ素化炭
化シリコンゲルマニウム(例えばa−81Gec :)
t )との少なくとも一方からなる層と、アモルファス
水素化及び/又はフッ素化シリコン(例えばa−8i:
H)からなる層との積層体によって光導電層が形成され
、かつこの光導電層上に第1のアモルファス水素化及び
/又はフッ素化炭化シリコン(例えばa−8iC:H)
層が設けられ、前記光導電層下に第2のアモルファス水
素化及び/又はフッ素化炭化シリコン(例えばa−8i
C:H)層が設けられていることを特徴とするものでお
る。
That is, photoreceptors according to the present invention contain amorphous hydrogenated and/or fluorinated silicon germanium (e.g. a-8i
Ge:H) and amorphous hydrogenated and/or fluorinated silicon germanium carbide (e.g. a-81Gec:)
amorphous hydrogenated and/or fluorinated silicon (e.g. a-8i:
A photoconductive layer is formed by a stack of layers consisting of H) and on which a first amorphous hydrogenated and/or fluorinated silicon carbide (e.g. a-8iC:H) is applied.
a second amorphous hydrogenated and/or fluorinated silicon carbide (e.g. a-8i) layer is provided below the photoconductive layer.
C:H) layer is provided.

本発明によれば、光導電層がアモルファス水素化及び/
又はフッ素化シリコンゲルマニウムと同炭化シリコンゲ
ルマニウムとの少々くとも一方からなる層と、アモルフ
ァス水素化及び/又はフッ素化シリコン層とからなって
いるので、前者による近赤外領域での感度向上と後者に
よる可視域での感度向」二との双方を実現した感光体を
提供できる。しかも、後者を前者の上又は下に形成する
ことができるが、上に形成した場合には表面側にはa−
8iが存在していて可視域での感度が著しく向上すると
同時に、下に形成した場合でも耐刷性は最上層のa−8
iCの存在によυ良好となる。かつa−8iGe自体の
膜厚を薄くして高感度が保持される。例えば、a−8i
Ge:H又はa−8iGeC:Hの有する比較的長波長
域(9IJえば600〜850nm )での高感度特性
を生かしながら、安定した電荷保持性及び耐刷性等の機
械的強度を特に第1のa−8iC:H層でかせぎ、かつ
高い電荷保持性や膜付き等を特に第2のa−8iC:H
層で実現しており、これまで知られているものに比べて
すべての特性を充分に満足した有用な感光体を提供する
ことができる。
According to the present invention, the photoconductive layer is amorphous hydrogenated and/or
Or, since it consists of a layer consisting of at least one of silicon germanium fluoride and silicon germanium carbide, and an amorphous hydrogenated and/or silicon fluoride layer, the former improves sensitivity in the near-infrared region, and the latter improves sensitivity in the near-infrared region. It is possible to provide a photoreceptor that achieves both of the above-mentioned sensitivity in the visible range. Moreover, the latter can be formed above or below the former, but if it is formed above, the surface side will have a-
The presence of A-8i significantly improves the sensitivity in the visible range, and at the same time, the printing durability is lower than that of the top layer even when formed below.
The presence of iC makes υ better. In addition, high sensitivity can be maintained by reducing the film thickness of a-8iGe itself. For example, a-8i
While taking advantage of the high sensitivity characteristics of Ge:H or a-8iGeC:H in a relatively long wavelength range (for example, 600 to 850 nm for 9IJ), we particularly focused on mechanical strength such as stable charge retention and printing durability. In particular, the second a-8iC:H layer provides high charge retention and film attachment.
It is possible to provide a useful photoreceptor that fully satisfies all the characteristics compared to those known so far.

以下、本発明による感光体を詳細に説明する。Hereinafter, the photoreceptor according to the present invention will be explained in detail.

本発明による感光体は、例えば第1図又は第2図に示す
如く、導電性支持基板1上に上記第2のa−8iC:H
層2、上記a−81:H層3及び上記a−8iGe:H
層5からなる積層構造の光導電層6、上記第1のa−8
iC:H層4が順次積層せしめられたものからなってい
る。
The photoreceptor according to the present invention has the second a-8iC:H
Layer 2, the above a-81:H layer 3 and the above a-8iGe:H
a photoconductive layer 6 having a laminated structure consisting of layers 5, the first a-8;
It consists of iC:H layers 4 laminated in sequence.

第2のa−3i C:H層2は電位保持、電荷輸送及び
基板1からの電荷注入防止、基板1に対する接着性向上
の各機能を有し、第1図の例では電荷ブロッキング層と
して50A〜5000A、第2図の例では電荷輸送層と
して50001〜80μm(よシ望ましくは5μm〜2
0μm)の厚みに形成されるのがよい。
The second a-3i C:H layer 2 has the functions of holding potential, transporting charges, preventing charge injection from the substrate 1, and improving adhesion to the substrate 1, and in the example of FIG. ~5000A, and in the example of FIG.
It is preferable that the film be formed to have a thickness of 0 μm).

一方、光導電層6を形成するa−8iGe:H層5は光
照射に応じて電荷担体(キャリア)を発生させるもので
あって、特に600〜850nmの長波長域で高感度を
示し、その厚みは第1図、第2図共に1000 A以上
であればよい。光導電層6は全体の厚みが第1図の例で
は5000X〜80μ翳第2図の例では2000X〜5
μrn(特に1μm〜2μl11)であるのが望ましい
〇一方、a−8t:I(層3は可視光域で高感度を示す
キャリア発生層として機能し、第1図、第2図共に1o
ooX以上の厚みに設けられている。
On the other hand, the a-8iGe:H layer 5 forming the photoconductive layer 6 generates charge carriers in response to light irradiation, and exhibits high sensitivity particularly in the long wavelength range of 600 to 850 nm. The thickness may be 1000 A or more in both FIGS. 1 and 2. The photoconductive layer 6 has a total thickness of 5000X to 80μ in the example of FIG. 1 and 2000X to 5μ in the example of FIG.
μrn (particularly 1 μm to 2 μl11) is desirable.On the other hand, a-8t:I (layer 3 functions as a carrier generation layer that exhibits high sensitivity in the visible light range, and both Figures 1 and 2 are 1o
It is provided with a thickness of ooX or more.

更に、第1のa−8iC:H層4はこの感光体の表面電
位特性の改善、長期に亘る電位特性の保持、耐環境性の
維持(湿度や雰囲気、コロナ放電で生成される化学種の
影響防止)、炭素含有による結合エネルギーの向上で表
面硬度が高くなることによる機械的強度及び耐刷性の向
上、感光体使用時の耐熱性の向上、熱転写性(特に粘着
転写性)の向上等の機能を有し、いわば表面改質層とし
て働くものである。そして、この第1のa−8iC:H
層4の厚みtを5OA≦t≦500OAに選択すること
が非常に重要である。
Furthermore, the first a-8iC:H layer 4 improves the surface potential characteristics of this photoreceptor, maintains long-term potential characteristics, and maintains environmental resistance (humidity, atmosphere, and chemical species generated by corona discharge). effect prevention), improved mechanical strength and printing durability due to increased surface hardness due to improved bonding energy due to carbon content, improved heat resistance when using photoreceptors, improved thermal transferability (especially adhesive transferability), etc. It functions as a surface modification layer, so to speak. And this first a-8iC:H
It is very important to choose the thickness t of layer 4 such that 5OA≦t≦500OA.

次に、本発明による感光体の各層を更に詳しく説明する
Next, each layer of the photoreceptor according to the present invention will be explained in more detail.

第1のa−8iC:H層 このa−8iC:H層4は感光体の表面を改質してa−
8i系感光体を実用的に優れたものとするために必須不
可欠なものである。即ち、表面での電荷保持と、光照射
による表面電位の減衰という電子写真感光体としての基
本的な動作を可能とするものである。従って、帯電、光
減衰の繰返し特性が非常に安定となシ、長期間(例えば
1力月以上)放置しておいても良好な電位特性を再現で
きる。
First a-8iC:H layer This a-8iC:H layer 4 is formed by modifying the surface of the photoreceptor.
This is indispensable for making the 8i photoreceptor practically superior. That is, it enables the basic operations of an electrophotographic photoreceptor, such as charge retention on the surface and attenuation of the surface potential due to light irradiation. Therefore, the repetitive characteristics of charging and optical attenuation are very stable, and good potential characteristics can be reproduced even if left for a long period of time (for example, one month or more).

これに反し、a−81:Hを表面とした感光体の場合に
は、湿気、大気、オゾン雰囲気等の影響を受は易く、電
位特性の経時変化が著しくなる。また、a−8iC:H
は表面硬度が高いために、現像、転写、クリーニング等
の工程における耐摩耗性に優れ、数十万回の耐刷性があ
シ、更に耐熱性も良いことから粘着転写等の如く熱を付
与するプロセスを適用することができる。
On the other hand, in the case of a photoreceptor having a-81:H as its surface, it is easily affected by humidity, air, ozone atmosphere, etc., and the potential characteristics change significantly over time. Also, a-8iC:H
Because of its high surface hardness, it has excellent abrasion resistance during processes such as development, transfer, and cleaning, and can withstand hundreds of thousands of printings.It also has good heat resistance, so it can be applied with heat such as in adhesive transfer. process can be applied.

このような優れた効果を総合的に奏するためには、a−
8iC:H層4の膜厚を上記したsoX≦t≦500O
Aの範囲内に選択することが重要である。
In order to achieve such excellent effects comprehensively, a-
8iC:H layer 4 has a film thickness of soX≦t≦500O as described above.
It is important to select within the range of A.

即ち、その膜厚をs o o oXを越えた場合には、
残留電位が高くなりすぎかつ感度の低下も生じ、a−8
i系感光体としての良好な特性を失なうことがある。
That is, if the film thickness exceeds so o o
The residual potential becomes too high and the sensitivity decreases, resulting in a-8
The good characteristics as an i-type photoreceptor may be lost.

また、膜厚を50A未満とした場合には、トンネル効果
によって電荷が表面上に帯電されなくなるため、a−8
iC:H層4とa−8iGe:H層3との間の膜厚バラ
ンスによシ暗減衰の増大や光感度の著しい低下が生じて
しまう。従って、a−8iC:H層4の膜厚は5000
A以下、50八以上とすることが非常に重要となる。
In addition, if the film thickness is less than 50A, the charge will not be charged on the surface due to the tunnel effect, so a-8
The thickness balance between the iC:H layer 4 and the a-8iGe:H layer 3 causes an increase in dark attenuation and a significant decrease in photosensitivity. Therefore, the thickness of the a-8iC:H layer 4 is 5000
It is very important that the score be A or below and 508 or above.

また、この第1のa−8iC:H層4については、上記
した効果を発揮する上でその炭素組成を選択することも
重要であることが分った。組成比をa−8il、−XC
X:Hと表わせば、Xを0.4以上、特に0.4≦X≦
0.9とすること(炭素原子含有量が4゜(11〕 atomic%〜90 atomic%であること)が
望ましい。
Furthermore, it has been found that it is also important to select the carbon composition of the first a-8iC:H layer 4 in order to exhibit the above-described effects. The composition ratio is a-8il, -XC
If expressed as X:H, X is 0.4 or more, especially 0.4≦X≦
It is desirable that the carbon atom content be 0.9 (carbon atom content is 4° (11) atomic% to 90 atomic%).

即ち、0.4≦Xとすれば、光学的エネルギーギャップ
がほぼ2.3eV以上となシ、第3図に示したように可
視及び赤外光に対し実質的に光導電性(但、ρDは暗所
での抵抗率、ρLは光照射1時の抵抗率であって、ρD
/ρLが小さい稈元導電性が低い)を示さず、いわゆる
光学的に透明な窓効果によ勺殆んど照射光は電荷発生層
6に到達することになる。逆に、x〈0.4であると、
一部分の光は表面層4に吸収され、感光体の光感度が低
下し易くなる。また、Xが0.9を越えると、層の殆ん
どが炭素になシ、半導体特性が失なわれ、また参参極秦
半a−8IC:H膜をグロー放電法で形成するときの堆
積速度が低下するから、X≦0.9とするのがよい。
That is, if 0.4≦X, the optical energy gap is approximately 2.3 eV or more, and as shown in FIG. is the resistivity in the dark, ρL is the resistivity at the time of light irradiation, and ρD
/ρL is small (the culm conductivity is low), and most of the irradiated light reaches the charge generation layer 6 due to the so-called optically transparent window effect. Conversely, if x〈0.4,
A portion of the light is absorbed by the surface layer 4, and the photosensitivity of the photoreceptor tends to decrease. Furthermore, if Since the deposition rate decreases, it is preferable to set X≦0.9.

なお、第1のa−8iC:H層は、第2のa−8iC:
H層と同様に水素を含有することが必須でアわ、その水
素含有量は通常1〜40 atomicチ、更には10
〜30atomic fyとするのがよい。
Note that the first a-8iC:H layer is the second a-8iC:
Like the H layer, it is essential to contain hydrogen, and the hydrogen content is usually 1 to 40 atomic units, or even 10 atomic units.
It is preferable to set it to 30 atomic fy.

第2のa−8iC:H層 このa−8iC:H層2は電位保持及び電荷輸送の(1
2) 両機能を担い、暗所抵抗率が10120−副以上あって
、耐高電界性を有し、単位膜厚当シに保持される電位が
犬きく、シかも感光層6から注入される電子又はホール
が大きな移動度と寿命を示すので、電荷担体を効率良く
支持体1側へ輸送する。また、炭素の組成によってエネ
ルギーギャップの大きさを調整できるため、感光層6に
おいて光照射に応じて発生した電荷担体に対し障壁を作
ることガく、効率良く注入させることができる。また、
この第2のa−8iC:H層2は支持体1、例えばAt
電極との接着性や膜付きが良いという性質も有している
。従って、このa−8iC:H層2は実用レベルの高い
表面電位を保持し、感光層6で発生した電荷担体を効率
良く速やかに輸送し、高感度で残留電位のない感光体と
する働きがある。
Second a-8iC:H layer This a-8iC:H layer 2 is (1
2) It has both functions, has a dark resistivity of 10120 or more, has high electric field resistance, has a high potential maintained per unit film thickness, and is injected from the photosensitive layer 6. Since electrons or holes exhibit large mobility and lifetime, charge carriers are efficiently transported to the support 1 side. Further, since the size of the energy gap can be adjusted by changing the composition of carbon, charge carriers generated in the photosensitive layer 6 in response to light irradiation are not created a barrier and can be efficiently injected. Also,
This second a-8iC:H layer 2 is applied to the support 1, e.g.
It also has properties such as good adhesion to electrodes and good film formation. Therefore, this a-8iC:H layer 2 maintains a high surface potential at a practical level, efficiently and quickly transports the charge carriers generated in the photosensitive layer 6, and has the function of making a photoreceptor with high sensitivity and no residual potential. be.

こうした機能を果すために、a−8iC:H層2の膜厚
は、第2図の例では、例えばカールンン方式による乾式
現像法を適用するためには5000.A〜80μ溝であ
ることが望ましい。この膜厚が5000X未満であると
薄すぎるために現像に必要な表面電位が得られず、また
80μmを越えると表面電位が高くなって付着したトナ
ーの剥離性が悪くなり、二成分系現像剤のキャリアも付
着してしまう。但、このa−8iC:H層の膜厚は、S
e感光体と比較して薄くしても(例えば十数μrn)実
用レベルの表面電位が得られる。
In order to achieve these functions, the film thickness of the a-8iC:H layer 2 in the example of FIG. 2 is 5,000. A to 80μ groove is desirable. If this film thickness is less than 5000X, it is too thin and the surface potential necessary for development cannot be obtained, and if it exceeds 80 μm, the surface potential becomes high and the adhering toner becomes difficult to remove. The carrier will also stick to the surface. However, the film thickness of this a-8iC:H layer is S
Even if it is made thinner (for example, about 10 μrn) compared to the e-photoreceptor, a surface potential at a practical level can be obtained.

第1図のa−8iC:H層2はブロッキング及び下びき
層として用いられ、その膜厚は50A〜5000Xとす
ることが望ましい。即ち、5oX未満では市。
The a-8iC:H layer 2 in FIG. 1 is used as a blocking and subbing layer, and its thickness is preferably 50A to 5000X. In other words, if it is less than 5oX, it is a city.

荷のブロッキング効果がなく、また膜付き及び基板との
接着性を良くするにも50A以−ヒにするのがよい。他
方、膜厚が50001を越えると、ブロッキング効果は
良いが、逆に感光体全体としての光感度が悪くなり、ま
たa−8iC:Hの製膜時間が艮くなシ、コスト的にみ
て不利である。
It is preferable to use 50A or higher in order to avoid the blocking effect of the load and to improve adhesion to the film and the substrate. On the other hand, if the film thickness exceeds 50,001 mm, the blocking effect is good, but the photosensitivity of the photoreceptor as a whole deteriorates, and the film forming time of a-8iC:H is not great, which is disadvantageous in terms of cost. It is.

また、このa−8iC:H層2をa−8i I−xCx
 :FIと表わしたとき、0.1≦X≦0.9(炭素原
子含有量が10 atomic %−90atomic
%、よシ好ましくは30〜90 atomic %)と
するのが望ましい。0.1≦Xとすればa−8iC:H
層2の電気的、光学的特性をa−8iGe:H層3とは
全く異なったものにできる。x)0.9のときは層の殆
んどが炭素になって半導体特性が失なわれるようになシ
、また製膜時の堆積速度が低下するので、これらを防ぐ
ためにもX≦0.9とするのがよいからである。
Moreover, this a-8iC:H layer 2 is a-8i I-xCx
: When expressed as FI, 0.1≦X≦0.9 (carbon atom content is 10 atomic % - 90 atomic
%, preferably 30 to 90 atomic %). If 0.1≦X, a-8iC:H
The electrical and optical properties of the layer 2 can be made completely different from those of the a-8iGe:H layer 3. When x) is 0.9, most of the layer becomes carbon and semiconductor properties are lost, and the deposition rate during film formation decreases, so to prevent this, X≦0. This is because it is better to set it to 9.

a−8iGe:H層5は、近赤外波長の光に対して第5
図の如く高い光導電性を示すことが分っておシ、a−8
i:Hに比べると、特に750〜800 n mの光に
対して充分な光感度(半減露光量(e r g/crA
 )の逆数)を有している。他方、a−8t:H層3は
可視光に対して第5図の如く充分匁感度を示すものであ
る。従って、これら両層(a−8iGe:H,a−8t
:H)を積層すると、第5図の如く、近赤外及び可視の
内域に亘って広く高感度を示す感光体が得られ、所期の
目的を達成することができる。これら両層の積層順序は
、上記のようにa−8iGe:Hが上、a−8i:I■
が下であってよいし、或いはその逆であってもよい。a
−8iGe:Hが上にあっても、その膜厚を薄くすれば
可視域の光はa−8t:Hへ効果(15) 的に到達する。
The a-8iGe:H layer 5 has a fifth layer for near-infrared wavelength light.
As shown in the figure, it has been found that it exhibits high photoconductivity, a-8
Compared to i:H, it has sufficient photosensitivity (half-reduced exposure amount (erg/crA
). On the other hand, the a-8t:H layer 3 exhibits sufficient momme sensitivity to visible light as shown in FIG. Therefore, both these layers (a-8iGe:H, a-8t
:H), as shown in FIG. 5, a photoreceptor that exhibits high sensitivity over a wide range of near-infrared and visible regions can be obtained, and the desired purpose can be achieved. The stacking order of these two layers is, as described above, a-8iGe:H on top, a-8i:I■
may be at the bottom or vice versa. a
Even if -8iGe:H is on top, if the film thickness is reduced, visible light can effectively reach a-8t:H (15).

光導電層6の厚みは、特に第1図の例では500OA〜
80μmとするのがよく、第2図の例では2000A〜
5μmとするのがよい。即ち、第1図においては、膜厚
が500OA未満であると、現像に必要外表面電位、表
面電荷が得られ難く、また照射された光は全く吸収され
ず、一部分は下地のa−8iC:II層2に到達するた
め光感度が低下する一方、80μmを越えると、製膜に
時間がかかり、生産性が良くない。第2図の例では、膜
厚が200OA未満であるとやはシ光感度が低下し、ま
たa−8iGe:H及びa −8i:H層自体は電位保
持性を有していなくてよいから感光層として必要以上の
厚さにする必要はなく、上限性5μmあれば充分である
。a−8iGe:H5及びa−8i:H3は夫々、10
0OA以上の厚みにしないと光を充分に吸収できない。
In particular, the thickness of the photoconductive layer 6 is 500 OA to 500 OA in the example shown in FIG.
It is best to set it to 80μm, and in the example of Fig. 2, it is 2000A~
The thickness is preferably 5 μm. That is, in FIG. 1, when the film thickness is less than 500 OA, it is difficult to obtain the external surface potential and surface charge necessary for development, and the irradiated light is not absorbed at all, and a portion of the underlying a-8iC: Since it reaches II layer 2, photosensitivity decreases, while if it exceeds 80 μm, it takes time to form a film and productivity is poor. In the example shown in Figure 2, if the film thickness is less than 200 OA, the photosensitivity will decrease, and the a-8iGe:H and a-8i:H layers themselves do not need to have potential retention properties. It is not necessary to make the photosensitive layer thicker than necessary, and an upper limit of 5 μm is sufficient. a-8iGe:H5 and a-8i:H3 are each 10
Light cannot be absorbed sufficiently unless the thickness is 0OA or more.

また、この光導電層(上記a−8iC:H層2.4も同
様)にはその電荷保持性を高めるために、その製膜時に
例えば周期表第■A族元素(B、At。
Further, in order to improve the charge retention property of this photoconductive layer (same as the above a-8iC:H layer 2.4), for example, elements of Group 1A of the periodic table (B, At) are added during film formation.

Ga11n等)をドープして抵抗を高めておくのが(1
6) 有効である。&−8iGe:H層5の膜特性は、後述す
る製造方法における基板温度、高周波放電パワー等の製
膜条件によって大きく異なる。組成的にみれば、Ge含
有量は0.1〜50 atomic%に設定するのがよ
い。即ち、0.1 stomic%未満では長波長感度
がそれ程向上せず、50 atomic %を越えると
感度低下が生じ、膜の機械的特性、熱的特性が劣化する
It is best to increase the resistance by doping (Ga11n, etc.).
6) It is valid. The film characteristics of the &-8iGe:H layer 5 vary greatly depending on film forming conditions such as substrate temperature and high frequency discharge power in the manufacturing method described below. In terms of composition, the Ge content is preferably set to 0.1 to 50 atomic%. That is, if it is less than 0.1 atomic %, the long wavelength sensitivity will not improve much, and if it exceeds 50 atomic %, the sensitivity will decrease and the mechanical properties and thermal properties of the film will deteriorate.

また、a−8iGe:H及びa−8t:HのStとHの
結合については、8l−)W3SiりHに比べて多いこ
とが望ましい。具体的には、波数約2090. ’の赤
外線吸収強度■ν81)1.と、波数約2ooo、7’
の赤外線吸収強度Ivstnが0≦Ivsru、/ I
t/81H≦0.3 テあるのがよい。Siと結合する
Hの量は81に対して3.5〜20atomic%であ
るのがよい。これらの条件が満たされたとき、ρD/ρ
Lの大きい感光体となるので望ましい。
Further, it is desirable that the number of bonds between St and H in a-8iGe:H and a-8t:H is greater than that in 8l-)W3Si. Specifically, the wave number is approximately 2090. 'Infrared absorption intensity■ν81)1. And the wave number is about 2ooo, 7'
The infrared absorption intensity Ivstn of 0≦Ivsru, /I
t/81H≦0.3 Te is good. The amount of H bonded to Si is preferably 3.5 to 20 atomic% based on 81. When these conditions are met, ρD/ρ
This is desirable because it results in a photoreceptor with a large L.

a−8iGe:H層の膜特性を改善するために、炭素を
含有させてa−8iGeC:H層とすること、或いはa
−8iGe:Hとa−8iGeC:Hを混在させること
が効果的である。この場合、炭素を0.001 ppm
〜30atomic % (特に0.01 ppm 〜
1010000pp含有させることが望ましく、その範
囲よシ少ないと強度低下が生じ、逆に多いと光感度低下
、特に長波長域での感度低下が生じる。これは、炭素に
よって光学的エネルギーギャップが拡大されるからであ
る(第3図のa−8iC:Hの例参照)。
In order to improve the film properties of the a-8iGe:H layer, it is possible to incorporate carbon to form an a-8iGeC:H layer, or to improve the film properties of the a-8iGeC:H layer.
It is effective to mix -8iGe:H and a-8iGeC:H. In this case, carbon at 0.001 ppm
~30 atomic % (especially 0.01 ppm ~
It is desirable to contain 1,010,000 pp; if the content is less than this range, the strength will decrease, and if it is more, the photosensitivity will decrease, especially in the long wavelength range. This is because carbon widens the optical energy gap (see example a-8iC:H in Figure 3).

なお、上記において、ダングリングボンドを補償するた
めには、a−8tに対しては上記したI(の代シに、或
いはHと併用してフッ素を導入し、a−8iGe:FX
a−8iGe:H:FSa−8iCGe:F。
In the above, in order to compensate for dangling bonds, fluorine is introduced into a-8t in place of the above-mentioned I (or in combination with H), and a-8iGe:FX
a-8iGe:H:FSa-8iCGe:F.

a−8iCGe:H:F、a−8iC:FXa−8IC
:H:F等とすることもできる。この場合のフッ素量は
0.01〜20 atomic %がよく、0.5〜1
0 atomicが更によい。
a-8iCGe:H:F, a-8iC:FXa-8IC
:H:F etc. can also be used. In this case, the amount of fluorine is preferably 0.01 to 20 atomic%, and 0.5 to 1 atomic%.
0 atomic is even better.

次に、本発明による感光体を製造するのに使用可能々装
置、例えばグロー放電分解装置をKc4図について説明
する。
Next, an apparatus, such as a glow discharge decomposition apparatus, which can be used to manufacture a photoreceptor according to the present invention will be described with reference to diagram Kc4.

この装置11の真空槽12内では、上記した基板1が基
板保持部14上に固定され、ヒーター15で基板1を所
定温度に加熱し得るようになっている。
In the vacuum chamber 12 of this apparatus 11, the above-described substrate 1 is fixed on a substrate holding part 14, and the substrate 1 can be heated to a predetermined temperature with a heater 15.

基板1に対向して高周波電極17が配され、基板1との
間にグロー放電が生ぜしめられる。なお、図中の19.
20.2工、22.23.27.28.29.34.3
6.38ハ各ハルフ、3oはG e H,又はガス状ゲ
ルマニウム化合物の供給源、31はSiH,又はガス状
シリコン化合物の供給源、32はCH,又はガス状炭素
化合物の供給源、33はAr又はH2等のキャリアガス
供給源である。このグロー放電装置において、まず支持
体でおる例えばAt基板1の表面を清浄化した後に真空
槽12内に配置し、真空槽12内のガス圧が10  T
orrと、なるようにパルプ36を調節して排気しかつ
基板1を所定温度、例えば200 ℃に加熱保持する。
A high frequency electrode 17 is disposed facing the substrate 1, and a glow discharge is generated between the high frequency electrode 17 and the substrate 1. In addition, 19. in the figure.
20.2 engineering, 22.23.27.28.29.34.3
6.38 each half, 3o is G e H or a source of gaseous germanium compound, 31 is SiH or a source of gaseous silicon compound, 32 is CH or a source of gaseous carbon compound, 33 is a source of gaseous carbon compound A carrier gas source such as Ar or H2. In this glow discharge device, first, the surface of, for example, an At substrate 1 that is covered with a support is cleaned, and then placed in a vacuum chamber 12, and the gas pressure in the vacuum chamber 12 is set to 10 T.
The pulp 36 is adjusted and evacuated so that the temperature is 0.0 or more, and the substrate 1 is heated and maintained at a predetermined temperature, for example, 200°C.

次いで、高純度の不活性ガスをキャリアガスとして、5
IH4又はガス状シリコン化合物、GeH4又はガス状
ゲルマニウム化合物、及びCH4又はガス状炭素化合物
な適当量希釈した混合ガスを夫々の膜組成に応じて適宜
真空槽12内に導入し、パルプ34で調節された0、0
1〜10Torrの反応圧下で高周波電源16によシ高
周波電圧を印加する。これによって、上記各反応ガスを
グロー放電分解し、水素を含むa−8iC二Hを上記の
層2(更には4)とじて(19) 基板1上に堆積させる。この際、シリコン化合物と炭素
化合物の流量比及び基板温度を適宜調整することによっ
て、所望の組成比及び光学的エネルギーギャップを有す
るa−8it−xcx÷H(例えばXが0.9程度のも
のまで)を析出させることができ、また析出するa−8
fC:Hの電気的特性にさほどの影蕃を与えることなく
 、100OX /min以上の速度でa−8iC:H
を堆積させることが可能である。
Next, using a high purity inert gas as a carrier gas,
A mixed gas diluted with an appropriate amount of IH4 or a gaseous silicon compound, GeH4 or a gaseous germanium compound, and CH4 or a gaseous carbon compound is introduced into the vacuum chamber 12 as appropriate depending on the respective film composition, and is regulated by the pulp 34. Ta0,0
A high frequency voltage is applied by the high frequency power supply 16 under a reaction pressure of 1 to 10 Torr. As a result, each of the above reaction gases is decomposed by glow discharge, and a-8iC2H containing hydrogen is deposited on the substrate 1 through the above layer 2 (and further 4) (19). At this time, by appropriately adjusting the flow rate ratio of the silicon compound and the carbon compound and the substrate temperature, a-8it-xcx÷H (for example, when ) can be precipitated, and also precipitated a-8
a-8iC:H at a speed of 100OX/min or more without significantly affecting the electrical characteristics of fC:H.
It is possible to deposit

更に、a−8i:H及びa−8iGe:H(上記の感光
層6)を堆積させるには、炭素化合物を供給しないでシ
リコン化合物及び次いで同時にゲルマニウム化合物を夫
々グルー放電分解すればよい。a−8iCGe:Hを形
成するには、炭素化合物も同時に供給すればよい。特に
、a−8iGe:H感光層に周期表第1IA族元素のガ
ス状化合物、例えばB、H,をシリコン化合物又はゲル
マニウム化合物に適当量添加したものをグロー放電分解
すれば、a−8iGe:Hの光導電性の向上と共にその
高抵抗化も図れる。
Furthermore, in order to deposit a-8i:H and a-8iGe:H (photosensitive layer 6 above), the silicon compound and then simultaneously the germanium compound may be decomposed by glue discharge, respectively, without supplying the carbon compound. In order to form a-8iCGe:H, a carbon compound may also be supplied at the same time. In particular, if the a-8iGe:H photosensitive layer is decomposed by glow discharge with a gaseous compound of Group IA elements of the periodic table, such as B, H, added to a silicon compound or germanium compound in an appropriate amount, the a-8iGe:H It is possible to improve the photoconductivity and also increase the resistance.

なお、上記の製造方法はグロー放電分解法によるもので
あるが、これ以外にも、スパッタリング(20) 法、イオンブレーティング法や、水素放電管で活性化又
はイオン化された水素導入下でa−8iC又はa−8i
Geを蒸着させる方法(特に、本出願人による特開昭5
6−78413号(特願昭54−152455号)の方
法)等によっても上記感光体の製造が可能でおる。使用
する反応ガスは、SiH4、GeH4以外にもSi、 
H,、Ge、 H6、SiF、 、5iHF、又はその
誘導体ガス、CH4以外の”t ”6 、C5Hs等の
低級炭化水素ガスが使用可能である。
Note that the above manufacturing method is based on the glow discharge decomposition method, but other methods include sputtering (20) method, ion blating method, and a- 8iC or a-8i
A method of vapor depositing Ge (in particular, the method of evaporating Ge
The above-mentioned photoreceptor can also be manufactured by the method disclosed in Japanese Patent Application No. 6-78413 (Japanese Patent Application No. 152455/1982). In addition to SiH4 and GeH4, the reaction gases used include Si,
It is possible to use H, Ge, H6, SiF, 5iHF, or a derivative gas thereof, or a lower hydrocarbon gas other than CH4, such as "t"6, C5Hs, or the like.

次に、本発明を電子写真感光体に適用した実施例を具体
的に説明する。
Next, an example in which the present invention is applied to an electrophotographic photoreceptor will be specifically described.

実施例1 トリクロルエチレンで洗浄し、0.1 fp NaOH
水溶液、0.1%HNO,水溶液でエツチングしたAt
基板を第4図のグロー放電装置内にセットし、下記の条
件下でAt基板上に厚さ10μ欝の第2のa−8iC:
H層、厚さ1μmのa−8IGe:H層、厚さ1μsの
Si:H層、厚さxooofの第10a−8iC:H層
を順次連続して形成した。
Example 1 Trichlorethylene wash, 0.1 fp NaOH
Aqueous solution, 0.1% HNO, At etched with aqueous solution
The substrate was set in the glow discharge device shown in FIG. 4, and a second a-8iC with a thickness of 10 μm was deposited on the At substrate under the following conditions:
An H layer, an a-8IGe:H layer with a thickness of 1 μm, a Si:H layer with a thickness of 1 μs, and a 10a-8iC:H layer with a thickness of xooof were successively formed.

第2のa−8iC:H層の形成: CH4流量     8cc/m1n SiH,流量    12cc/m1nArガス流量 
  100cc/min放電中の真空槽内圧  0.2
Torr基板温度    200℃ 放電パワー    20W 製膜時間    約10時間 a−8iGa:H層の形成: GeH4流量     4 cc/m1nSiH4流量
    16 cc/m1nArガス流量    10
0cc/min放電中の真空槽内圧、放電ノくワー及び
基板ff1A度 上記と同じ 製膜時間    約1時間 a−8i:H層の形成: 5IH4流量     20 ce/m1nArガス流
量    100 ec/min放電中の真空槽内圧、
放電ノくワー及び基板温度 上記と同じ 製膜時間     約1時間 第10a−8iC:H層の形成: 製膜時間     約6分 その他の条件  第2のa−810:H層形成の場合と
同じ こうして作成された感光体について、オージェ分光によ
って各層の組成を調べたところ、第1及び第20a−8
iC:H層ともに11ぼa−8i0. C,、、:I(
からなっておシ、またa−8iGe:H層はほぼa −
81゜gGe、、、、:Hからガ)かつその光学的バン
ドギャップは1.5 eV、 a−81:Hの光学的バ
ンドギャップは1.7eVでありた。また、感光体とし
ての分光感度は第5図に示す通)であった。
Formation of second a-8iC:H layer: CH4 flow rate: 8cc/m1n SiH, flow rate: 12cc/m1nAr gas flow rate
Vacuum chamber internal pressure during 100cc/min discharge 0.2
Torr substrate temperature 200°C Discharge power 20W Film forming time Approximately 10 hours Formation of a-8iGa:H layer: GeH4 flow rate 4 cc/m1nSiH4 flow rate 16 cc/m1nAr gas flow rate 10
Vacuum chamber internal pressure during discharge at 0 cc/min, discharge nozzle and substrate ff1A degree Same film forming time as above for about 1 hour Formation of a-8i:H layer: 5IH4 flow rate 20 ce/m1nAr gas flow rate 100 ec/min during discharge vacuum chamber internal pressure,
Discharge blower and substrate temperature Same as above Film forming time: Approximately 1 hour Formation of 10th a-8iC:H layer: Film forming time: Approximately 6 minutes Other conditions Same as in the case of forming the second A-810:H layer. When the composition of each layer of the produced photoreceptor was investigated by Auger spectroscopy, it was found that
iC:H layer both 11boa-8i0. C, , :I(
The a-8iGe:H layer is almost a −
81°gGe, , , :H to Ga) and its optical bandgap was 1.5 eV, and the optical bandgap of a-81:H was 1.7eV. Further, the spectral sensitivity as a photoreceptor was as shown in FIG.

そして、この感光体に対し、−6KVで10秒間コロナ
帯電させ、51秒間暗減衰させた後、1μW/crlの
強度で波長780nmの光を20秒間照射して、その電
荷減衰特性等を測定した。結果は後記の表−1の(a)
として示しだ。また、同様に暗減衰させ、1tuxのハ
ロゲンランプを照射してその電荷減衰(23) 特性を測定し、結果を後記光−1の(b)として示した
Then, this photoreceptor was corona charged at -6 KV for 10 seconds, dark decayed for 51 seconds, and then irradiated with light with a wavelength of 780 nm at an intensity of 1 μW/crl for 20 seconds, and its charge decay characteristics etc. were measured. . The results are shown in Table 1 (a) below.
It is shown as Further, the charge decay (23) characteristic was measured by dark decaying in the same manner and irradiating with a 1 tux halogen lamp, and the results are shown as (b) in Light-1 below.

比較例1 上記と同様にして、At基板上に、厚さ10μmのa−
8iC:H,厚さ2pmのa−8iGe:H,厚さ15
00Aのa−8iC:Hを順次積層し、感光体を作成し
た0この感光体に対し、上記(a)、(b)と同様の処
理をした。
Comparative Example 1 In the same manner as above, a 10 μm thick a-
8iC:H, 2pm thick a-8iGe:H, thickness 15
A photoreceptor was prepared by sequentially laminating 00A a-8iC:H. This photoreceptor was subjected to the same treatments as in (a) and (b) above.

比較例2 上記と同様にして、At基板上に、厚さ10μmのa−
8iC:H層厚さ2μ鴬の*−8t:H層厚さ1500
 Xのa−8iC:Hを順次積層し、感光体を作成した
Comparative Example 2 In the same manner as above, a 10 μm thick a-
8iC: H layer thickness 2μ Tsumugi*-8t: H layer thickness 1500
A-8iC:H of X was sequentially laminated to prepare a photoreceptor.

この感光体に対し、上記(a)、(b)と同様の処理を
した。
This photoreceptor was subjected to the same treatments as in (a) and (b) above.

表−1 (24) 次に、上記の感光体に対し、2Lux・5eeO像露光
を行ない、静電潜像を形成した後、正極性のトナーで現
像し、転写紙に転写、定着したところ、実施例1による
感光体を用いた場合、画像濃度が高く、カプリのない鮮
明な画像を得ることができた。この操作を10万回繰返
したが、画質の低下はなかった。一方、比較何重の感光
体を用いると、共にカプリを生じた。
Table 1 (24) Next, the above photoconductor was subjected to 2Lux 5eeO image exposure to form an electrostatic latent image, which was then developed with positive polarity toner, transferred to transfer paper, and fixed. When the photoreceptor according to Example 1 was used, it was possible to obtain a clear image with high image density and no capri. This operation was repeated 100,000 times, but there was no deterioration in image quality. On the other hand, when a comparative number of photoreceptors were used, capri was produced in both cases.

他方、発光出力3 mW、発振波長780nmのGaA
tAa半導体レーザーを記録光源とし、八面体ミラーで
ビームをA4版の面積に一秒で走査し、′上記実施例1
の感光体に照射した。次に、負極性のトナーで反転現像
し、転写紙に転写、定着したところ、画像濃度が高く、
カブリのない鮮明4画像が得られた。しかし、比較例2
の感光体では画像濃度が低く、不鮮明な画像しか得られ
なかった0 実施例2 実施例1と同様のグロー放電法によって、At基板上に
、厚さ1500Xの第20a−8iC二H層、厚さ5μ
説のボロンドープドa−8iGe:H層、厚さ5μmの
ボロンドープドa−8t:H層、厚さ1500 Aの第
1のa−8iC:H層を順次積層した。
On the other hand, GaA with a light emission output of 3 mW and an oscillation wavelength of 780 nm
A tAa semiconductor laser was used as a recording light source, and an octahedral mirror scanned the beam over the area of an A4 sheet in one second.
The photoreceptor was irradiated. Next, when reverse development was performed using negative polarity toner, and the image was transferred and fixed onto transfer paper, the image density was high.
Four clear images with no fog were obtained. However, comparative example 2
Example 2 Using the same glow discharge method as in Example 1, a 20a-8iC2H layer with a thickness of 1500X was deposited on an At substrate. 5μ
A boron-doped a-8iGe:H layer as described above, a boron-doped a-8t:H layer with a thickness of 5 μm, and a first a-8iC:H layer with a thickness of 1500 A were sequentially laminated.

但、a−8iGe:H層の製膜時には、B、H,/5t
H4=o、oi(%)の流量比で1%Ar希釈11.H
,を混合し、グロー放電させた。a−8i:H層へのボ
ロン゛−1 ドーピングはB、H,/5iH4=2刈Oチ(流量比)
、0.1チAr希釈B、H,で行なった。
However, when forming the a-8iGe:H layer, B, H, /5t
1% Ar dilution with a flow rate ratio of H4=o, oi (%) 11. H
, were mixed and glow discharged. a-8i: Boron-1 doping into the H layer is B, H, /5iH4 = 2 (flow rate ratio)
, 0.1-th Ar dilution B, H.

得られた感光体につき、実施例1で述べたと同様に暗減
衰特性等を測定し、結果を下記表−2に示した。
The dark decay characteristics, etc. of the obtained photoreceptor were measured in the same manner as described in Example 1, and the results are shown in Table 2 below.

(27) 表−2 次に、上記の感光体に対し、2tuX−8ecの像露光
を行ない、静電m像を形成した後、正極性のトナーで現
像し、転写紙に転写、定着したところ、実施例2による
感光体を用いた場合、画像濃度が高く、カブリのない鮮
明な画像を得ることができた。まだ、1oμW /i、
波長750 nmの像露光を行ない、上記と同様に画像
評価を行なったところ、画像濃度が高く、カブリのない
鮮明な画像を得た。
(27) Table-2 Next, the above photoreceptor was subjected to image exposure of 2tuX-8ec to form an electrostatic m image, which was then developed with positive polarity toner, transferred to transfer paper, and fixed. When the photoreceptor according to Example 2 was used, a clear image with high image density and no fog could be obtained. Still 1oμW/i,
When image exposure was performed at a wavelength of 750 nm and image evaluation was performed in the same manner as above, a clear image with high image density and no fog was obtained.

実施例3 実施例1と同様のグロー放電法によって、At基板上に
、厚さ10pmのa−8iC:H,厚さ1μmのSi:
H厚さo、sμsのa−8iGeC:H(CO,5at
om%)、厚さ100OAのa−8iC:Hを順次積層
した。
Example 3 By the same glow discharge method as in Example 1, 10 pm thick a-8iC:H and 1 μm thick Si:
a-8iGeC:H(CO,5at
om%) and a-8iC:H with a thickness of 100 OA were sequentially laminated.

この感光体は、GaAtAg半導体レーザーに対し08
) 半減露光量2.5 e r g /ctl−、可視光に
対し半減露光量1.2 Lux・seeを示し、かつ両
波長領域で良好な感度特性を示した。
This photoreceptor is 08
) It exhibited a half-reduced exposure amount of 2.5 er g /ctl-, a half-reduced exposure amount of 1.2 Lux·see for visible light, and exhibited good sensitivity characteristics in both wavelength regions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を例示するものであって、第1図及び第2
図は電子写真感光体の二側の一部分の各断面図、 第3図はa−8t:H及び各組成のa−8iC:Hの光
導電性を示すグラフ、 第4図は上記感光体の製造装置の概略断面図、第5図は
光の波長による各感光体の光感度を示すグラフ、 である。 なお、図面に示されている符号において、1−−−−−
−−一支特体(基板) 2−−−−−−−一第2のa−8iC:H層3−−一−
−−1a−8iGe :H層4−−−−−−一第1のa
−8iC:I(層5−−−−−−−、、a−8i :H
層6−−−−−−−光導電層(感光層) 11−−−−−−−−グロー放電装置 17−−−−−−−高周波電極 30−−−−−−−−ガス状ゲルマニウム化合物供給源
31−−−−−−−ガス状シリコン化合物供給源32−
−−−、ガス状炭素化合物供給源33−−−−−−キャ
リアガス供給源 ρD/ρL−−−一暗所抵抗率/光照射時の抵抗率であ
る。 代理人 弁理士 逢 坂  宏(イ隻1名)特開昭59
−84254 (10)
The drawings illustrate the invention and include FIGS. 1 and 2.
The figures are cross-sectional views of a part of the second side of the electrophotographic photoreceptor, Figure 3 is a graph showing the photoconductivity of a-8t:H and a-8iC:H of each composition, and Figure 4 is a graph showing the photoconductivity of a-8iC:H of each composition. FIG. 5 is a schematic cross-sectional view of the manufacturing apparatus, and is a graph showing the photosensitivity of each photoreceptor depending on the wavelength of light. In addition, in the symbols shown in the drawings, 1-------
--One-support special body (substrate) 2---------12nd a-8iC:H layer 3--1-
--1a-8iGe: H layer 4-----1st a
-8iC:I (layer 5-------,, a-8i:H
Layer 6 --- Photoconductive layer (photosensitive layer) 11 --- Glow discharge device 17 --- High frequency electrode 30 --- Gaseous germanium Compound supply source 31 ------- Gaseous silicon compound supply source 32 -
---, gaseous carbon compound supply source 33 --- Carrier gas supply source ρD/ρL --- Dark resistivity/resistivity at the time of light irradiation. Agent: Patent attorney Hiroshi Aisaka (1 person) Japanese Patent Application Publication No. 1983
-84254 (10)

Claims (1)

【特許請求の範囲】 1、 アモルファス水素化及び/又はフッ素化シリコン
ゲルマニウムとアモルファス水素化及ヒ/又はフッ素化
炭化シリコンゲルマニウムとの少なくとも一方からなる
層と、アモルファス水素化及び/又は7ツ素化シリコン
からなる層との積層体によりて光導電層が形成され、か
つこの光導電層上に第1のアモルファス水素化及び/又
はフッ素化炭化シリコン層が設けられ、前記光導電層下
に第2のアモルファス水素化及び/又はフッ素化炭化シ
リコン層が設けられていることを特徴とする感光体。 2、光導電層の厚みが5000A〜80μmであシ、こ
の光導電層を形成する積層体の各層の厚みが夫々1oo
oX以上であシ、第2のアモルファス水素化/又はフッ
素化炭化シリコン層の厚みが50X〜5000Aである
、特許請求の範囲の第1項に記載した感光体。 以上であシ、第2のアモルファス水素化及び/又はフッ
素化炭化シリコン層の厚みが5ooo X〜80!μ・
mである、特許請求の範囲の第1項に記載した感光体。 4、第1のアモルファス水素化及び/又はフッ素化炭化
シリコン層の厚みが50x〜5000Xである、特許請
求の範囲の第1項〜第3項のいずれか1項に記載した感
光体。 5、第1のアモルファス水素化及び/ヌはフッ素化炭化
シリコン層中の炭素原子含有量が40atomicチ〜
90atomic%である、特許請求の範囲の第1項〜
第4項のいずれか1項に記載した感光体。 6、第2のアモルファス水素化及び/又はフッ素化炭化
シリコン層中の炭素原子含有量が10atomicチ〜
90atomicチである、特許請求の範囲の第1項〜
第5項のいずれか1項に記載した感光体。 7、光導電層を形成する積層体の一方の層中のゲルマニ
ウム含有量が(11atomi e % 〜50 at
omi c %である、特許請求の範囲の第1項〜第6
項のいずれか1項に記載した感光体。 8、光導電層を形成する積層体の一方の層中の炭素原子
含有量が0.001p pm〜30atomicチであ
る、特許請求の範囲の第1項〜第7項のいずれか1項に
記載した感光体。 9、光導電層、第1及び第2のアモルファス水素化及び
/又はフッ素化炭化シリコン層に周期表第rlTA族の
元素がドープされている、特許請求の範囲の第1項〜第
8項のいずれか1項に記載した感光体。 10、  周期表第■A族の元素がB、At、Ga又は
Inである、特許請求の範囲の第9項に記載した感光体
[Scope of Claims] 1. A layer consisting of at least one of amorphous hydrogenated and/or fluorinated silicon germanium and amorphous hydrogenated and/or fluorinated silicon germanium, and amorphous hydrogenated and/or fluorinated silicon germanium. A photoconductive layer is formed by a laminate with a layer of silicon, and a first amorphous hydrogenated and/or fluorinated silicon carbide layer is provided on the photoconductive layer, and a second layer is provided below the photoconductive layer. A photoreceptor characterized in that it is provided with an amorphous hydrogenated and/or fluorinated silicon carbide layer. 2. The thickness of the photoconductive layer is 5000 A to 80 μm, and the thickness of each layer of the laminate forming this photoconductive layer is 100 μm.
The photoreceptor according to claim 1, wherein the second amorphous hydrogenated/or fluorinated silicon carbide layer has a thickness of 50X to 5000A. That's it, the thickness of the second amorphous hydrogenated and/or fluorinated silicon carbide layer is 500X~80! μ・
The photoreceptor according to claim 1, which is m. 4. The photoreceptor according to any one of claims 1 to 3, wherein the first amorphous hydrogenated and/or fluorinated silicon carbide layer has a thickness of 50x to 5000x. 5. The first amorphous hydrogenation and/or process is performed when the carbon atom content in the fluorinated silicon carbide layer is 40 atomic
Claims 1 to 90 atomic%
The photoreceptor described in any one of item 4. 6. The carbon atom content in the second amorphous hydrogenated and/or fluorinated silicon carbide layer is 10 atomic
Claims 1 to 90 atomic
The photoreceptor described in any one of item 5. 7. The germanium content in one layer of the laminate forming the photoconductive layer is (11 atoms ~ 50 at
Claims 1 to 6, which are omic%.
The photoreceptor described in any one of the following items. 8. According to any one of claims 1 to 7, wherein the carbon atom content in one layer of the laminate forming the photoconductive layer is 0.001 ppm to 30 atomic. photoreceptor. 9. The photoconductive layer, the first and second amorphous hydrogenated and/or fluorinated silicon carbide layers are doped with an element of group rlTA of the periodic table, according to claims 1 to 8. The photoreceptor described in any one of the items above. 10. The photoreceptor according to claim 9, wherein the element of Group ⅠA of the periodic table is B, At, Ga, or In.
JP19560882A 1982-11-08 1982-11-08 Photosensitive body Pending JPS5984254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19560882A JPS5984254A (en) 1982-11-08 1982-11-08 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19560882A JPS5984254A (en) 1982-11-08 1982-11-08 Photosensitive body

Publications (1)

Publication Number Publication Date
JPS5984254A true JPS5984254A (en) 1984-05-15

Family

ID=16343983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19560882A Pending JPS5984254A (en) 1982-11-08 1982-11-08 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS5984254A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193304A2 (en) * 1985-02-27 1986-09-03 Kabushiki Kaisha Toshiba Image sensor manufacturing method
JPS62182746A (en) * 1986-02-06 1987-08-11 Fuji Xerox Co Ltd Electrophotographic sensitive body and its preparation
US4701395A (en) * 1985-05-20 1987-10-20 Exxon Research And Engineering Company Amorphous photoreceptor with high sensitivity to long wavelengths
JPS6355557A (en) * 1986-04-18 1988-03-10 Hitachi Ltd Electrophotographic sensitive body
JPS63125943A (en) * 1986-11-14 1988-05-30 Kyocera Corp Electrophotographic sensitive body
JPS63135954A (en) * 1986-11-27 1988-06-08 Kyocera Corp Electrophotographic sensitive body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193304A2 (en) * 1985-02-27 1986-09-03 Kabushiki Kaisha Toshiba Image sensor manufacturing method
US4701395A (en) * 1985-05-20 1987-10-20 Exxon Research And Engineering Company Amorphous photoreceptor with high sensitivity to long wavelengths
JPS62182746A (en) * 1986-02-06 1987-08-11 Fuji Xerox Co Ltd Electrophotographic sensitive body and its preparation
JPS6355557A (en) * 1986-04-18 1988-03-10 Hitachi Ltd Electrophotographic sensitive body
JPS63125943A (en) * 1986-11-14 1988-05-30 Kyocera Corp Electrophotographic sensitive body
JPS63135954A (en) * 1986-11-27 1988-06-08 Kyocera Corp Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
US4495262A (en) Photosensitive member for electrophotography comprises inorganic layers
JPS58217938A (en) Recording material
JPS5984254A (en) Photosensitive body
JPH0256664B2 (en)
JPS61243460A (en) Photosensitive body
JPS58194732A (en) Forming method of amorphous silicon carbide layer
JPS58215658A (en) Recording material
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS5984256A (en) Photosensitive body
JPS62211660A (en) Photosensitive body
JPS628161A (en) Photosensitive body
JPS61281248A (en) Photosensitive body
JPS6228763A (en) Photosensitive body
JPS62211662A (en) Photosensitive body
JPS61183660A (en) Photosensitive body
JPS62184466A (en) Photosensitive body
JPS58215656A (en) Recording material
JPS6228762A (en) Photosensitive body
JPS61243461A (en) Photosensitive body
JPS59212840A (en) Photosensitive body
JPS627059A (en) Photosensitive body
JPS62184465A (en) Photosensitive body
JPS61165762A (en) Electrophotographic sensitive body
JPS61281249A (en) Photosensitive body
JPS61282849A (en) Photoconductor