JPS60258920A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60258920A
JPS60258920A JP11456384A JP11456384A JPS60258920A JP S60258920 A JPS60258920 A JP S60258920A JP 11456384 A JP11456384 A JP 11456384A JP 11456384 A JP11456384 A JP 11456384A JP S60258920 A JPS60258920 A JP S60258920A
Authority
JP
Japan
Prior art keywords
conductive
layer
oxide film
polysilicon
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11456384A
Other languages
Japanese (ja)
Inventor
Keijiro Uehara
敬二郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11456384A priority Critical patent/JPS60258920A/en
Priority to US06/741,525 priority patent/US4640721A/en
Publication of JPS60258920A publication Critical patent/JPS60258920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the failure caused by contact of polysilicon layers by removing the insulating film on the second conductive-type region and forming a polysilicon layer after covering the polysilicon for electrode which is connected to the first conductive-type layer with the oxide film which is continuous from over the second conductive-type region. CONSTITUTION:An n type Si substrate 1 is oxidized to form an oxide film 2 which is then coated by an Si nitride film 3. A two-layer film 2 in a contact region of the first conductive-type layer is removed and a polysilicon layer 4 is formed. The substrate is doped with boron and is oxidized to form an oxide film 5. Then the Si nitride film 3 on the second conductive-type layer is removed. A second conductive-type layer 6 is formed by diffusion of boron at a time when the polysilicon 4 is oxidized. The oxide film 2 is removed and an oxide film 10 is formed by oxidation. The oxide film 10 on the second conductive-type layer is removed and a first conductive-type layer 7 is formed. The layer 7 is coated with polysilicon 11 in which arsenic is diffused so as to form a second conductive-type layer 9. Then it becomes possible to completely prevent contact of the polysilicon layers 4 and 11 which are connected with the first and second conductive-type layers respectively.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多結晶シリコンを使用した半導体装置の製造方
法に係り、特に窒化珪素膜上に形成した多結晶シリコン
を酸化し、絶縁膜を形成する方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor device using polycrystalline silicon, and in particular, a method of oxidizing polycrystalline silicon formed on a silicon nitride film to form an insulating film. Regarding the method.

〔発明の背景〕[Background of the invention]

従来窒化珪素膜等の耐酸化性被膜上に形成した多結晶シ
リコンを酸化し絶縁膜を形成した場合、第1図に示すよ
うに多結晶シリコン4の表面の酸(1) 化膜5は窒化珪素膜3と接触する部分で薄くなることが
知られている。このために第2図(a)に示すように多
結晶シリコン4を引出し電極として用い、右側の窒化珪
素膜3と酸化珪素膜2を除去し、同図(b)に示す多結
晶シリコン8を形成し、第1導電形層7と第2導電形層
9を形成してトランジスタを作る場合、前記被膜のエツ
チング工程において、窒化珪素膜に近接した薄い酸化膜
部分が無くなり、多結晶シリコン4と多結晶シリコン8
が接触し、特性が劣化する場合がある。
Conventionally, when polycrystalline silicon formed on an oxidation-resistant film such as a silicon nitride film is oxidized to form an insulating film, as shown in FIG. It is known that the portion that contacts the silicon film 3 becomes thinner. For this purpose, as shown in FIG. 2(a), polycrystalline silicon 4 is used as an extraction electrode, the silicon nitride film 3 and silicon oxide film 2 on the right side are removed, and the polycrystalline silicon 8 shown in FIG. 2(b) is removed. When forming a first conductivity type layer 7 and a second conductivity type layer 9 to form a transistor, the thin oxide film portion adjacent to the silicon nitride film is eliminated in the film etching process, and the polycrystalline silicon 4 and polycrystalline silicon 8
may come into contact with each other, resulting in deterioration of characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は前記両多結晶シリコン層の接触による不良の発
生を防止することを目的に開発したものである。
The present invention was developed for the purpose of preventing the occurrence of defects due to contact between the two polycrystalline silicon layers.

〔発明の概要〕[Summary of the invention]

耐酸化性被膜上の多結晶シリコンを酸化して形成した絶
縁膜がその界面において薄くなるために発生する不良は
集積規模が小さい場合にはあまり問題にならないが、大
きくなるにしたがって歩留の低下を生じ、特に低電流領
域の電流増幅率が重(2) 要なメモリ素子で重大な問題となる。
Defects that occur because the insulating film formed by oxidizing the polycrystalline silicon on the oxidation-resistant film becomes thinner at the interface are not much of a problem when the scale of integration is small, but the yield decreases as the scale of integration increases. This is a serious problem especially in memory devices where the current amplification factor in the low current region is important.

この不良を防ぐ方法として薄くなった部分に絶縁膜を埋
込む方法が特開昭56−87346号に開示されている
が、より簡単で、確実に不良を防止する方法として、第
2導電形領域上の窒化珪素膜を完全に除去し、酸化を行
なって連続した酸化膜で第1導電形層と接続される電極
用の多結晶シリコンを被うものである。
As a method of preventing this defect, a method of embedding an insulating film in the thinned part is disclosed in JP-A-56-87346, but as a simpler and more reliable method of preventing the defect, The upper silicon nitride film is completely removed and oxidized to cover the polycrystalline silicon for the electrode connected to the first conductivity type layer with a continuous oxide film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。同図
(a)は第2図(a)に示した構造を形成後窒化珪素膜
3を熱リン酸により除去した所である。すなわち、n型
シリコン基板1を酸化し。
An embodiment of the present invention will be described below with reference to FIG. FIG. 2(a) shows the structure shown in FIG. 2(a) having been formed and the silicon nitride film 3 removed using hot phosphoric acid. That is, the n-type silicon substrate 1 is oxidized.

50nmの酸化膜2を形成後、1100nの窒化珪素膜
3を被着し、第1導電形層のコンタクト領域の同二層膜
を除去し、300nmの多結晶シリコン層4を形成し、
ボロンを添加後、第2導電形層上の多結晶シリコンを選
択的に除去して酸化をj′ 行ない酸化膜5を形成し、
第2導電形層の酸化防止用に使用した窒化珪素膜を除去
した。なお、第(3) 2導電形層6は多結晶シリコン4の酸化時に同シリコン
中のボロンが拡散して形成される。
After forming an oxide film 2 of 50 nm, a silicon nitride film 3 of 1100 nm is deposited, the same two-layer film in the contact region of the first conductivity type layer is removed, and a polycrystalline silicon layer 4 of 300 nm is formed.
After adding boron, the polycrystalline silicon on the second conductivity type layer is selectively removed and oxidized to form an oxide film 5,
The silicon nitride film used to prevent oxidation of the second conductivity type layer was removed. The (3) second conductivity type layer 6 is formed by diffusing boron in the polycrystalline silicon 4 when it is oxidized.

第3図(b)は窒化珪素膜の下の酸化膜2(同図(a)
)を除去し、酸化を行ない、酸化膜10を形成した状態
を示す。次に方向性のあるエツチング方法により第2導
電形層上の酸化膜10を除去し、第1導電形層7を形成
し、多結晶シリコン11を被着し、ヒ素を拡散させて第
2導電形層9を形成した(第3図(C))。
FIG. 3(b) shows the oxide film 2 under the silicon nitride film (FIG. 3(a)).
) is removed and oxidized to form an oxide film 10. Next, the oxide film 10 on the second conductivity type layer is removed by a directional etching method, a first conductivity type layer 7 is formed, polycrystalline silicon 11 is deposited, and arsenic is diffused to form the second conductivity type layer 7. A shaped layer 9 was formed (FIG. 3(C)).

なお、本実施例では説明を簡単にするためにトランジス
タの一部のみを述べたが、集積回路に使用する実際のト
ランジスタでは埋込み層やアイソレーションを始め配線
工程が必要なことは云うまでもない。
Note that in this example, only a part of the transistor is described to simplify the explanation, but it goes without saying that actual transistors used in integrated circuits require wiring processes such as buried layers and isolation. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば簡単な方法で第1および第2導電形層に
それぞれ接続される多結晶シリコン間の接触を完全に防
止することが可能で、特に高いトランジスタ歩留が要求
される大規模集積回路の製作時にその効果が顕著になる
According to the present invention, it is possible to completely prevent contact between the polycrystalline silicon connected to the first and second conductivity type layers by a simple method, especially in large-scale integration where high transistor yield is required. The effect becomes noticeable when manufacturing the circuit.

(4、(4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来法の問題点を説明するための
断面構造図、第3図は本発明の一実施例を示す工程図で
ある。 1・・・シリコン基板、2,5・・・シリコンの酸化膜
。 (5) 第1図 第2図 Cb) 第3図 (a−) (b) (C)
1 and 2 are cross-sectional structural views for explaining the problems of the conventional method, and FIG. 3 is a process diagram showing an embodiment of the present invention. 1... Silicon substrate, 2, 5... Silicon oxide film. (5) Figure 1 Figure 2 Cb) Figure 3 (a-) (b) (C)

Claims (1)

【特許請求の範囲】[Claims] 第1導電型領域に接続した多結晶シリコンが第2導電型
領域を形成する領域に形成されている耐酸化性被膜上に
まで延びている構造において、前記多結晶シリコン層の
一部を酸化し、絶縁膜で被った後、前記耐酸化性被膜を
完全に除去し、前記多結晶シリコン層の露出部を酸化す
ることを特徴とする半導体装置の製造方法。
In a structure in which polycrystalline silicon connected to a first conductivity type region extends onto an oxidation-resistant film formed in a region forming a second conductivity type region, a part of the polycrystalline silicon layer is oxidized. . A method of manufacturing a semiconductor device, characterized in that after covering with an insulating film, the oxidation-resistant film is completely removed and exposed portions of the polycrystalline silicon layer are oxidized.
JP11456384A 1984-06-06 1984-06-06 Manufacture of semiconductor device Pending JPS60258920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11456384A JPS60258920A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor device
US06/741,525 US4640721A (en) 1984-06-06 1985-06-05 Method of forming bipolar transistors with graft base regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456384A JPS60258920A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60258920A true JPS60258920A (en) 1985-12-20

Family

ID=14640942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456384A Pending JPS60258920A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60258920A (en)

Similar Documents

Publication Publication Date Title
JPH1070281A (en) Semiconductor device and fabrication thereof
JPS6112382B2 (en)
JPH059939B2 (en)
JPH08148649A (en) Method of manufacturing semiconductor device
JPH04348053A (en) Manufacture of semiconductor device
JPS6242382B2 (en)
JPS6115595B2 (en)
JPS60258920A (en) Manufacture of semiconductor device
JPS6047437A (en) Semiconductor device and manufacture thereof
JP2567867B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS581542B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6124245A (en) Semiconductor device
JPS6120141B2 (en)
JPS5984543A (en) Bipolar integrated circuit device and its manufacture
JPH061785B2 (en) Method for manufacturing bipolar semiconductor integrated circuit device
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPH04348039A (en) Semiconductor device and manufacture thereof
JPH0562999A (en) Semiconductor device and manufacture thereof
JPH08236608A (en) Fabrication of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPH056344B2 (en)
JPH0218587B2 (en)
JPS6224951B2 (en)
JPH10200124A (en) Semiconductor device
JPS63150967A (en) Mos integrated circuit device