JPS60248647A - Production of alpha-phenylethylamine - Google Patents

Production of alpha-phenylethylamine

Info

Publication number
JPS60248647A
JPS60248647A JP59104656A JP10465684A JPS60248647A JP S60248647 A JPS60248647 A JP S60248647A JP 59104656 A JP59104656 A JP 59104656A JP 10465684 A JP10465684 A JP 10465684A JP S60248647 A JPS60248647 A JP S60248647A
Authority
JP
Japan
Prior art keywords
acetophenone
phenylethylamine
ammonia
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59104656A
Other languages
Japanese (ja)
Inventor
Shinichi Taira
平 進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamakawa Yakuhin Kogyo KK
Unipres Corp
Original Assignee
Yamakawa Industrial Co Ltd
Yamakawa Yakuhin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamakawa Industrial Co Ltd, Yamakawa Yakuhin Kogyo KK filed Critical Yamakawa Industrial Co Ltd
Priority to JP59104656A priority Critical patent/JPS60248647A/en
Publication of JPS60248647A publication Critical patent/JPS60248647A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain alpha-phenylethylamine, economically, in high yield and purity, by the catalytic reduction of acetophenone in the presence of hydrogen, ammonia, a solvent and hydrated alumina, using a hydrogenation catalyst. CONSTITUTION:The objective compound can be produced by the catalytic reduction of acetophenone in the presence of a hydrogenation catalyst (e.g. nickel, cobalt, palladium, etc.), hydrogen, ammonia, and a solvent (e.g. methanol, dioxane, etc.), and in the presence of a hydrated alumina [e.g. Al(OH)3, Al2O3.3H2O, etc.) at 50-150 deg.C, preferably 70-130 deg.C, under a hydrogen pressure of 2kg/cm<2>- 100kg/cm<2>. The amount of the hydrated alumina is preferably 1-10pts.wt. per 1pt.wt. of the catalytic metal, and that of the ammonia is 1-20mol per 1mol of acetophenone.

Description

【発明の詳細な説明】 に関する。[Detailed description of the invention] Regarding.

水素化触媒を用いてアセトフェノンより水素、アンモニ
アおよび溶媒の存在下にα−フェニルエチルアミンを合
成する反応はよく知られており、水素化触媒としてはニ
ッケル触媒、特にラネーニッケルが一般に用いられる。
The reaction of synthesizing α-phenylethylamine from acetophenone in the presence of hydrogen, ammonia and a solvent using a hydrogenation catalyst is well known, and a nickel catalyst, particularly Raney nickel, is generally used as the hydrogenation catalyst.

例えば、メトーデン・デア・オルガニツシエン・ヘミ−
(Georg Thieme Verlag 1 9 
5 7年刊)第11巻1号,6t2被一ジには溶媒とし
てメタノールと少量の酢酸存在下に、水素圧100〜1
50気圧、130°−150℃で反応させる方法が述べ
られており、91%の収率で目的物が得られるとしてい
る。この場合添加される酢酸は反応の中間体であるアセ
トフェノンとアンモニアの縮合物l−フェニルエタンイ
ミンのO生成を促進する作用を有すると推定されており
、酢酸その他の酸性物質の非存在下の反応ではアセトフ
ェノン自身の還元生成物であるα−フェニルエチルアル
コールの副生率が高くなり、目的物の収率が低下する。
For example,
(Georg Thieme Verlag 1 9
5 7th edition) Vol. 11 No. 1, 6t2 was heated under hydrogen pressure of 100 to 1 in the presence of methanol as a solvent and a small amount of acetic acid.
A method of reacting at 50 atm and 130°-150°C is described, and it is said that the desired product can be obtained with a yield of 91%. It is assumed that the acetic acid added in this case has the effect of promoting the O formation of l-phenylethanimine, a condensation product of acetophenone and ammonia, which is an intermediate in the reaction, and the reaction in the absence of acetic acid or other acidic substances. In this case, the by-product rate of α-phenylethyl alcohol, which is a reduction product of acetophenone itself, increases, and the yield of the target product decreases.

そこでこの副成するα−フェニルエチルアルコールを効
率よく、かつ経済的に目的物より分離する方法(例えば
特開昭55−2630)、選択性の良い触媒を使用する
方法(例えば特開昭54−132534)、反応の選択
性を向上させる特別な反応方法(例えは特開昭54−1
03804)、などが提案されているが、操作が煩雑で
あるなどの欠点がある。
Therefore, there are methods for efficiently and economically separating this by-produced α-phenylethyl alcohol from the target product (e.g., JP-A-55-2630), and methods using catalysts with good selectivity (e.g., JP-A-54-1999). 132534), special reaction methods that improve the selectivity of the reaction (for example, JP-A-54-1
03804), etc. have been proposed, but they have drawbacks such as complicated operations.

そこで本発明者はこれらの欠点のない方法を鋭意探索し
た結果、本発明に到達した。
Therefore, the inventor of the present invention earnestly searched for a method that does not have these drawbacks, and as a result, arrived at the present invention.

即ち本発明の目的は、アセトフェノンよりα−フェニル
エチルアミンを製造するに際し、アルミナ水和物を反応
系に共存させて反応を行なうことにより、従来法に比較
して飛躍的に経済性よく目的物を得る方法を提供するこ
とにある。
That is, the purpose of the present invention is to produce α-phenylethylamine from acetophenone by allowing alumina hydrate to coexist in the reaction system, thereby producing the desired product much more economically than with conventional methods. The purpose is to provide a way to obtain

本発明の方法によれば、仕込んだアセトフェノンを実質
的にすべて反応させることができ、95%以上の高選択
率で目的物が得られるので、目的によっては単蒸留だけ
で副生するα−フェニルエチルアルコールを釜残として
分離して、高純度のα−フェニルエチルアミンを高収率
で得ることが可能である。
According to the method of the present invention, substantially all of the charged acetophenone can be reacted and the target product can be obtained with a high selectivity of 95% or more. By separating ethyl alcohol as a bottom residue, it is possible to obtain highly pure α-phenylethylamine in high yield.

本発明に用いられる触媒は一般的に使用されている水素
化触媒、即ちニッケル、コバルト、ノRラジウムなどで
あればよいが、ニッケル触媒が特に好ましい。触媒の使
用量は任意に設定できるが、触媒金属としてアセトフェ
ノンの重量の1%ないし50%の範囲が好ましく・。
The catalyst used in the present invention may be any commonly used hydrogenation catalyst, such as nickel, cobalt, orradium, but nickel catalysts are particularly preferred. The amount of catalyst to be used can be set arbitrarily, but it is preferably in the range of 1% to 50% of the weight of acetophenone as the catalyst metal.

アルミナ水和物はル(OH)3 またはAl2O,・3
H20で一般的にあられされ、その製法は種々知られて
いるが、上記の化学式であられされるものであれば、い
ずれも効果的に使用できる。使用量は特に制限はないが
、あまりすくないと効果が減少し、あまり多いと反応容
器の大きさの制限やその他経済性に影響するので、触媒
金属と等重量以上100倍量、通常は等重量から10倍
量の範囲が好ましい。反応系にアルミナ水和物を共存さ
せるには、単に必要量のアルミナ水和物を反応系に加え
るか、触媒金属を担持したアルミナ水和物を使用するな
どの方法がとられる。
Alumina hydrate is ru(OH)3 or Al2O,・3
H20 is generally produced, and various methods for producing it are known, but any one produced by the above chemical formula can be effectively used. There is no particular restriction on the amount used, but if it is too small, the effect will decrease, and if it is too large, it will limit the size of the reaction vessel and affect other economic efficiency. A range of 10 times the amount is preferred. In order to make alumina hydrate coexist in the reaction system, methods such as simply adding the necessary amount of alumina hydrate to the reaction system or using alumina hydrate supporting a catalyst metal are taken.

アンモニアの使用量はアセトフェノンに対して理論上は
等モル以上あれば良いが、あまり多量に用いてもより良
い結果が得られることはないので、アセトフェノンの量
に対して1倍モル〜20倍モルの範囲で好ましく選ばれ
る。
Theoretically, the amount of ammonia to be used should be at least equimolar to the amount of acetophenone, but good results cannot be obtained even if it is used in too large a quantity, so it is 1 to 20 times the amount of acetophenone. Preferably selected within the range.

水素圧は水素分圧として1 ki / cr71以下で
も良いが、2 Jt9 / citないし100I&/
−の範囲が好ましい。
The hydrogen pressure may be 1 ki/cr71 or less as a hydrogen partial pressure, but 2 Jt9/cit to 100I &/
- is preferred.

反応温度は50℃ないし150℃がよいが、好ましくは
70℃ないし130 ’Cの範囲がよい。
The reaction temperature is preferably from 50°C to 150°C, preferably from 70°C to 130'C.

溶媒は反応の結果水を生成するので、水およびアセトフ
ェノン、反応生成物であるα−フェニルエチルアミンな
どとよく混合しうる物質が好ましく、通常はメタノール
などのアルコール類、ジオキサン、テトラヒドロフラン
などのエーテル類が好ましく選ばれる。
Since water is produced as a result of the reaction, the solvent is preferably a substance that can be mixed well with water, acetophenone, and the reaction product α-phenylethylamine. Usually, alcohols such as methanol, ethers such as dioxane, and tetrahydrofuran are used. Preferred choice.

以下に本発明の方法を実施例によりμ体的に説明するが
、本発明は実施例により限定されるものではない。
EXAMPLES The method of the present invention will be specifically explained below using Examples, but the present invention is not limited by the Examples.

実施例1 内容積20ONのステンレススチール製オートクレーブ
にアセトフェノン30F(0,25モル)、液体アンモ
ニア12.8F(0,75モル)、メタノール60?、
アルミナ水和物18v1ラネーニツケル62を仕込み、
器内の空気を水素ガスで79−ジしてから、26℃で水
素ガスを圧入して全圧を30kf//crliとし、1
00℃まで昇温してから400分間かきまぜて反応を行
なった。
Example 1 Acetophenone 30F (0.25 mol), liquid ammonia 12.8F (0.75 mol), and methanol 60? were placed in a stainless steel autoclave with an internal volume of 20ON. ,
Prepare alumina hydrate 18v1 Raney Nickel 62,
After the air inside the vessel was diluted with hydrogen gas, hydrogen gas was pressurized at 26℃ to make the total pressure 30kf//crli, and
After raising the temperature to 00°C, the reaction was carried out by stirring for 400 minutes.

反応液をガスクロマトグラフ法で分析した結果、アセト
フェノンの転化率98.9%、α−フェニルエチルアミ
ンへの選択率99.3%であった。
Analysis of the reaction solution by gas chromatography revealed that the conversion rate of acetophenone was 98.9% and the selectivity to α-phenylethylamine was 99.3%.

実施例2 内容積200WLlのステンレススチール製オートクレ
ーブにアセトフェノン15 F (0,125モル)、
液体アンモニア12.8f(0,75モル)、メタノー
ル402、塩化ニッケルをアルミナ水相物15Fに担持
させて、水素化ホウ素ナトリウムで還元して得られたニ
ッケル32を含む触媒を仕込んだ。器内を水素ガスで置
換してから、22℃で水素ガスを圧入して全圧を20#
/cr!とし、85℃まで昇温してから440分間かき
まぜて反応を行なった。反応液をガスクロマトグラフ法
で分析した結果、アセトフェノンの転化率97%、α−
フェニルエチルアミンへの選択率96.1%であり、α
−フェニルエチルアルコールの副生率は3.9%であっ
た。
Example 2 Acetophenone 15 F (0,125 mol) was placed in a stainless steel autoclave with an internal volume of 200 WLl.
A catalyst containing nickel 32 obtained by supporting 12.8 f (0.75 mol) of liquid ammonia, 402 methanol, and nickel chloride on alumina aqueous phase 15F and reducing it with sodium borohydride was charged. After replacing the inside of the vessel with hydrogen gas, pressurize hydrogen gas at 22℃ to bring the total pressure to 20#.
/cr! The reaction was carried out by raising the temperature to 85°C and stirring for 440 minutes. As a result of analyzing the reaction solution by gas chromatography, the conversion rate of acetophenone was 97%, α-
The selectivity to phenylethylamine was 96.1%, and α
- The by-product rate of phenylethyl alcohol was 3.9%.

実施例3 内容積300酎のステンレススチール製オートクレーブ
にアセトフェノン45F(0,375モル)、液体アン
モニア9.5F(0,56モル)、エタノール702、
ラネー合金10vより調製した。アルミナ水和物を含む
触媒を仕込み、器内を水素ガスでパージしてから、30
℃で水素ガスを圧入して全圧を40kf//cr/Iと
し、110℃で360分間かきまぜて反応を行なった。
Example 3 Acetophenone 45F (0,375 mol), liquid ammonia 9.5F (0,56 mol), ethanol 702,
It was prepared from Raney alloy 10v. After charging the catalyst containing alumina hydrate and purging the inside of the vessel with hydrogen gas,
Hydrogen gas was pressurized at 110° C. to bring the total pressure to 40 kf//cr/I, and the reaction was carried out by stirring at 110° C. for 360 minutes.

反応液をガスクロマトグラフ法で分析した結果、アセト
フェノンの転化率99.6%、α−フェニルエチルアミ
ンへの選択率98.8%であった。
Analysis of the reaction solution by gas chromatography revealed that the conversion rate of acetophenone was 99.6% and the selectivity to α-phenylethylamine was 98.8%.

特許出願人 山川薬品工業株式会社Patent applicant Yamakawa Pharmaceutical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 水素化触媒、水素、アンモニアおよび溶媒の存在下にア
セトフェノンを接触還元して、α−フェニルエチルアミ
ンを製造する際に、アルミナ水和物の共存下に接触還元
を行なうことを特徴トスるα−フェニルエチルアミンの
製造法。
α-phenyl is characterized in that when acetophenone is catalytically reduced in the presence of a hydrogenation catalyst, hydrogen, ammonia and a solvent to produce α-phenylethylamine, the catalytic reduction is carried out in the presence of alumina hydrate. Method for producing ethylamine.
JP59104656A 1984-05-25 1984-05-25 Production of alpha-phenylethylamine Pending JPS60248647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104656A JPS60248647A (en) 1984-05-25 1984-05-25 Production of alpha-phenylethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104656A JPS60248647A (en) 1984-05-25 1984-05-25 Production of alpha-phenylethylamine

Publications (1)

Publication Number Publication Date
JPS60248647A true JPS60248647A (en) 1985-12-09

Family

ID=14386502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104656A Pending JPS60248647A (en) 1984-05-25 1984-05-25 Production of alpha-phenylethylamine

Country Status (1)

Country Link
JP (1) JPS60248647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038953A1 (en) * 1999-03-19 2000-09-27 Sumitomo Chemical Company, Limited Stereoselective transaminase, gene encoding said protein and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038953A1 (en) * 1999-03-19 2000-09-27 Sumitomo Chemical Company, Limited Stereoselective transaminase, gene encoding said protein and use thereof
US6413752B1 (en) 1999-03-19 2002-07-02 Sumitomo Chemical Company, Limited Protein capable of catalyzing transamination stereoselectively, gene encoding said protein and use thereof
US6727083B2 (en) 1999-03-19 2004-04-27 Sumitomo Chemical Company, Limited Protein capable of catalyzing transamination stereoselectively, gene encoding said protein and use thereof

Similar Documents

Publication Publication Date Title
KR100523866B1 (en) Process for preparation of methanol and catalyst therefor
JPS59112946A (en) Di(4-aminophenyl)methane catalytic hydrogenation
NZ204272A (en) The production of formate salts of nitrogenous bases
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
US5395989A (en) Process for producing neopentyl glycol
JPS61109782A (en) Manufacture of 1-alkyl- or 1-cycloalkyl- piperazine
JPH03133941A (en) Production of isopropanol and apparatus therefor
JP2813770B2 (en) Ethanol production method
JPH035374B2 (en)
JPS60248647A (en) Production of alpha-phenylethylamine
JPS63119436A (en) Production of methyl isobutyl ketone
JP2573687B2 (en) Method for producing isopropyl alcohol
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP2941022B2 (en) Method for producing liquid hydrocarbons from CO2 and H2
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2007245138A (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JPS6256788B2 (en)
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JPS62258335A (en) Production of methyl isobutyl ketone
JP4609613B2 (en) Carbon monoxide production method
JPH0136448B2 (en)
CA1140581A (en) Process for producing methyl formate by the catalytic conversion of methanol
JP3346820B2 (en) Production method of methyl chloride