JP4609613B2 - Carbon monoxide production method - Google Patents

Carbon monoxide production method Download PDF

Info

Publication number
JP4609613B2
JP4609613B2 JP2000299434A JP2000299434A JP4609613B2 JP 4609613 B2 JP4609613 B2 JP 4609613B2 JP 2000299434 A JP2000299434 A JP 2000299434A JP 2000299434 A JP2000299434 A JP 2000299434A JP 4609613 B2 JP4609613 B2 JP 4609613B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
methyl formate
reaction
exchange resin
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000299434A
Other languages
Japanese (ja)
Other versions
JP2002114509A (en
Inventor
秀司 江端
幹男 米岡
賢司 中村
太志 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000299434A priority Critical patent/JP4609613B2/en
Publication of JP2002114509A publication Critical patent/JP2002114509A/en
Application granted granted Critical
Publication of JP4609613B2 publication Critical patent/JP4609613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はギ酸メチルを分解し、高純度の一酸化炭素を製造する方法に関する。高純度の一酸化炭素はC1化学の主原料として、あるいはカルボニレーション原料として重要な物質である。
【0002】
【従来の技術】
ギ酸メチルを分解して一酸化炭素を得る方法として、米国特許第3812210号にはアルカリ土類金属酸化物からなる固体触媒を用いて200〜500℃で気相熱分解する方法が記載されている。特開昭52−36609号には活性炭を触媒として200〜550℃の温度において気相熱分解する方法が記載されている。しかし、これらの方法は200℃以上の温度を必要とするため熱エネルギー的に不利であり、またギ酸メチル分解時の不純物生成が避けられず、高純度の一酸化炭素を得るには適さない。一方、米国特許第3716619号には、メタノールと共存するギ酸メチルを、ナトリウムメトキシドを触媒に用いて、2500psig(17.3MPa)以下の圧力で35〜200℃の温度で熱分解する方法が記載されている。しかし、この方法もナトリウムメトキシドが均一触媒であるため生成物との分離および回収工程が必要であり、プロセスが複雑になる。更に、特開平9−40413号には強塩基性陰イオン交換樹脂を用いて20〜100℃の温和な条件で一酸化炭素を得る方法が記載されている。しかし、この場合も原料中に含まれる微量の水分とギ酸メチルが反応し、生成したギ酸により容易に強塩基性陰イオン交換樹脂が被毒失活するため、長期間、安定して一酸化炭素を製造することが難しい。
【0003】
【発明を解決しようとする課題】
一酸化炭素の製造に関して種々の方法が知られているが、上記の如く高温でのギ酸メチルの分解反応では不純物が生成しやすく、高純度の一酸化炭素を得る場合においては、分解反応以降にガスの精製、例えば吸着、或いは吸収分離といった精製プロセスを設けるのが一般的である。また、強塩基性イオン交換樹脂を用いた場合には、温和な条件でギ酸メチルを分解し一酸化炭素を得ることができるが、酸性物質の被毒は避けられず、水酸化アルカリ水溶液による再生プロセスが必要となり、時間ロスにつながり水酸化アルカリの原料費も嵩む。
本発明の目的は、イオン交換樹脂の存在下でギ酸メチルを分解して一酸化炭素を製造する際に、得られた一酸化炭素ガスの精製プロセスおよびイオン交換樹脂の再生プロセスが不要であり、プロセス面および熱エネルギー面で優位で、且つ、長期間に渡り、安定して高純度一酸化炭素を製造する方法を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の如き課題を解決すべく鋭意検討した結果、強塩基性陰イオン交換樹脂、およびギ酸メチル中の水分に対し1.0〜10.0倍モルの金属アルコラートを共存させることにより、熱エネルギー面で優位な温和な条件で分解反応が進行し、高選択率にて目的物の高純度一酸化炭素を長期間に渡り、安定して得ることができ、且つ、得られた一酸化炭素ガスの精製プロセスおよびイオン交換樹脂の再生プロセスが不要であり経済的にも極めて有利となることを見出し、本発明を完成させるに至った。
即ち本発明は、強塩基性陰イオン交換樹脂、およびギ酸メチル中の水分に対し1.0〜10.0倍モルの金属アルコラートの共存下でギ酸メチルを分解することを特徴とする一酸化炭素の製造方法である。
【0005】
【発明の実施の態様】
以下、本発明を具体的に説明する
本発明に用いられる原料のギ酸メチルは工業用グレードで良く、通常含まれる水分は50〜200ppmである。
【0006】
本発明で用いられる強塩基性陰イオン交換樹脂は、架橋構造を持った樹脂を母体とし、これに陰イオン交換基を導入したものである。樹脂の母体としては、スチレン−ジビニルベンゼン系の架橋ポリスチレンやアクリル酸系のポリアクリレート、或いはエーテル基やカルボニル基を導入した耐熱性芳香族ポリマーなどが用いられる。一般にイオン交換樹脂における陰イオン交換基には、アミノ基、置換アミノ基または第4アンモニウム基などが知られているが、本発明に用いられる強塩基性陰イオン交換樹脂の場合には、陰イオン交換基が第4アンモニウム基のうち、トリアルキル置換窒素原子(−N+3)を導入したもの、またはジアルキルエタノールアミン陽イオン、例えば−N+(CH32・(C24OH)を導入したものである。本発明で用いられる強塩基性陰イオン交換樹脂について、市販品を例に挙げて示すと、アンバーリストA−26、ダウエックスTG−550A、レバチットM504、ダイヤイオンPA306等がある。
【0007】
本発明で用いられる金属アルコラートとしては、例えばリチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、セシウムメトキシド、カルシウムジメトキシドおよびバリウムジメトキシド等のアルカリ金属アルコラートおよびアルカリ土類金属アルコラートであり、単独または溶媒に溶解して使用される。
金属アルコラートの使用量は原料ギ酸メチル中の水分に対し1.0〜10.0倍モル、好ましくは2.0〜7.0倍モルの範囲である。これより使用量が少ないとギ酸メチル中の水分の影響により強塩基性陰イオン交換樹脂が被毒され、失活する。一方、これより使用量が多いと金属アルコラートのコストが嵩み、経済的に不利となる。
【0008】
金属アルコラートの溶媒としてはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール等のアルコールが使用できる。溶媒中の金属アルコラート濃度は通常2.0〜28.0重量%であり、好ましくは5.0〜15.0重量%である。ただし、反応条件などを勘案することで、上述の範囲に限らず適宜選択できる。
【0009】
本発明の方法において、反応温度と反応圧力はギ酸メチルの供給量および強塩基性陰イオン交換樹脂の使用量、更には目標の反応率に応じて広範に選ぶことができる。
一般的には反応温度は0〜150℃、特に20〜100℃の範囲が好ましい。反応温度が低過ぎる場合には実用的な反応速度が得られず、また反応温度が高過ぎる場合には副反応やイオン交換樹脂の失活を招きやすく不利である。
ギ酸メチルの供給量はイオン交換樹脂の容量および単位時間当たり0.1〜3.0(mL/樹脂 mL・hr)の範囲であり、特に0.2〜1.5が一般的である。
【0010】
本発明の方法における反応圧力は、その分解温度で示される蒸気圧下で分解を遂行させることもできるが、平衡的には低圧ほど有利となる。一般に反応圧力としては常圧〜3.0MPa、実用的には常圧〜2.0MPaの範囲が好ましい。
【0011】
本反応における反応方式としては原料および金属アルコラートと触媒である強塩基性陰イオン交換樹脂とが接触する方式であれば、特に制限はない。一般的な反応方式としては、流動床、或いは固定床等が挙げられ、また回分式、連続式の何れでも実施される。
【0012】
本発明により得られる一酸化炭素は非常に高純度であり、更なる精製操作は特に必要としない。また、金属アルコラートが共存することによりイオン交換樹脂の性能維持が図られるため、イオン交換樹脂の再生プロセスを別途設けなくてもよい。
【0013】
【実施例】
次に実施例により本発明を更に詳しく説明する。但し、本発明はこれら実施例に限定されるものではない。
【0014】
実施例1
圧力調整器付きの二重管式ステンレス製反応管(内径10mm、長さ300mm)に、OH型の強塩基性陰イオン交換樹脂(レバチットM504、バイエル製)を15ml充填後、熱媒を外管に通液し40℃とした後、反応器下部より、ギ酸メチル3ml/hrおよびナトリウムメトキシド10重量%のメタノール溶液を0.17g/hrで供給した。反応圧力0.5MPaにおいて、反応器上部の圧力調整器より抜き出された反応液および生成ガスを、それぞれガスクロマトグラフにより分析した結果、反応開始10時間後の生成ガスは一酸化炭素が100%であり、ギ酸メチルの分解率は18.9%であった。更に反応開始350時間後の生成ガスは一酸化炭素が100%で、ギ酸メチルの分解率は18.2%であり、長期間に渡り安定して高純度の一酸化炭素が得られた。
【0015】
実施例2
実施例1のOH型の強塩基性陰イオン交換樹脂を三菱化学製のダイヤイオンPA306に代えて、実施例1と同様な方法で行った。反応圧力0.5MPaにおいて、反応器上部の圧力調整器より抜き出された反応液および生成ガスを、それぞれガスクロマトグラフにより分析した結果、反応開始10時間後の生成ガスは一酸化炭素が100%であり、ギ酸メチルの分解率は20.2%であった。更に反応開始350時間後の生成ガスは一酸化炭素が100%で、ギ酸メチルの分解率は20.1%であり、長期間に渡り安定して高純度の一酸化炭素が得られた。
【0016】
実施例3
実施例1のナトリウムメトキシドをカリウムメトキシド代えて、0.29g/hrで供給した以外、実施例1と同様な方法で行った。反応圧力0.5MPaにおいて、反応器上部の圧力調整器より抜き出された反応液および生成ガスを、それぞれガスクロマトグラフにより分析した結果、反応開始10時間後の生成ガスは一酸化炭素が100%であり、ギ酸メチルの分解率は19.0%であった。更に反応開始350時間後の生成ガスは一酸化炭素が100%で、ギ酸メチルの分解率は19.0%であり、長期間に渡り安定して高純度の一酸化炭素が得られた。
【0017】
比較例1
圧力調整器付きの二重管式ステンレス製反応管(内径10mm、長さ300mm)に、OH型の強塩基性陰イオン交換樹脂(レバチットM504、バイエル製)を15ml充填後、熱媒を外管に通液し40℃とした後、反応器下部より、ギ酸メチルを3ml/hr供給した。反応圧力0.5MPaにおいて、反応器上部の圧力調整器より抜き出された反応液および生成ガスを、それぞれガスクロマトグラフにより分析した結果、反応開始10時間後の生成ガスは一酸化炭素が100%であり、ギ酸メチルの分解率は17.2%であった。更に反応開始350時間後の生成ガスは一酸化炭素が100%で、ギ酸メチルの分解率は0.9%であり、経時的なギ酸メチル分解率の低下が起こり、安定して一酸化炭素が得られなかった。
【0018】
比較例2
比較例1のOH型の強塩基性陰イオン交換樹脂を三菱化学製のダイヤイオンPA306に代えて、比較例1と同様な方法で行った。反応圧力0.5MPaにおいて、反応器上部の圧力調整器より抜き出された反応液および生成ガスを、それぞれガスクロマトグラフにより分析した結果、反応開始10時間後の生成ガスは一酸化炭素が100%であり、ギ酸メチルの分解率は18.3%であった。更に反応開始340時間後の生成ガスは一酸化炭素が100%で、ギ酸メチルの分解率は0.1%であり、経時的なギ酸メチル分解率の低下が起こり、安定して一酸化炭素が得られなかった。
【0019】
【発明の効果】
本発明の方法によれば、ギ酸メチルの分解を強塩基性陰イオン交換樹脂および金属アルコラートを共存下で行うことにより、熱エネルギー面で優位な温和な条件で分解反応が進行し、高選択率にて目的物の高純度一酸化炭素を長期間に渡り安定して得ることができ、且つ、得られた一酸化炭素ガスの精製プロセスおよびイオン交換樹脂の再生プロセスを設ける必要がなく経済的にも極めて有利であることから、本発明の工業的な意義は極めて大きい。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for decomposing methyl formate to produce high purity carbon monoxide. High purity carbon monoxide is an important substance as a main raw material of C1 chemistry or as a carbonation raw material.
[0002]
[Prior art]
As a method for decomposing methyl formate to obtain carbon monoxide, U.S. Pat. No. 3,812,210 describes a method in which gas phase pyrolysis is performed at 200 to 500 ° C. using a solid catalyst made of an alkaline earth metal oxide. . Japanese Patent Application Laid-Open No. 52-36609 describes a method for thermal decomposition at 200 to 550 ° C. using activated carbon as a catalyst. However, these methods are disadvantageous in terms of thermal energy because they require a temperature of 200 ° C. or higher, and impurity generation during the decomposition of methyl formate is inevitable, and is not suitable for obtaining high-purity carbon monoxide. Meanwhile, US Pat. No. 3,716,619 describes a method in which methyl formate coexisting with methanol is pyrolyzed at a temperature of 35 to 200 ° C. at a pressure of 2500 psig (17.3 MPa) or less using sodium methoxide as a catalyst. Has been. However, since this method also uses sodium methoxide as a homogeneous catalyst, separation and recovery steps from the product are necessary, and the process becomes complicated. Furthermore, JP-A-9-40413 describes a method for obtaining carbon monoxide under mild conditions of 20 to 100 ° C. using a strongly basic anion exchange resin. However, in this case as well, the trace amount of water contained in the raw material reacts with methyl formate, and the strong basic anion exchange resin is easily poisoned and deactivated by the generated formic acid. Difficult to manufacture.
[0003]
[Problems to be solved by the invention]
Various methods are known for the production of carbon monoxide, but as described above, impurities are easily generated in the decomposition reaction of methyl formate at a high temperature, and in the case of obtaining high purity carbon monoxide, after the decomposition reaction, It is common to provide a purification process such as gas purification, eg adsorption or absorption separation. In addition, when a strongly basic ion exchange resin is used, methyl formate can be decomposed under mild conditions to obtain carbon monoxide, but poisoning of acidic substances is inevitable, and regeneration with an aqueous alkali hydroxide solution is inevitable. A process is required, which leads to time loss and increases the raw material cost of the alkali hydroxide.
The object of the present invention is to eliminate the purification process of the obtained carbon monoxide gas and the regeneration process of the ion exchange resin when producing carbon monoxide by decomposing methyl formate in the presence of the ion exchange resin. To provide a method for producing high-purity carbon monoxide which is superior in terms of process and thermal energy and stably over a long period of time.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-described problems, the present inventors coexisted a strongly basic anion exchange resin and 1.0 to 10.0 times moles of metal alcoholate with respect to the water in methyl formate. As a result, the decomposition reaction proceeds under mild conditions that are superior in terms of thermal energy, and high-purity carbon monoxide as a target product can be stably obtained over a long period of time with high selectivity. In addition, the present inventors have found that a carbon monoxide gas purification process and an ion exchange resin regeneration process are unnecessary and are extremely advantageous from an economical viewpoint, and the present invention has been completed.
That is, the present invention is a carbon monoxide characterized by decomposing methyl formate in the presence of a strongly basic anion exchange resin and 1.0 to 10.0 moles of metal alcoholate with respect to the water in methyl formate. It is a manufacturing method.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the following, the raw material methyl formate used in the present invention specifically explaining the present invention may be an industrial grade, and the water content is usually 50 to 200 ppm.
[0006]
The strongly basic anion exchange resin used in the present invention is obtained by introducing a resin having a crosslinked structure as a base material and introducing an anion exchange group thereto. As the matrix of the resin, styrene-divinylbenzene-based crosslinked polystyrene, acrylic acid-based polyacrylate, or a heat-resistant aromatic polymer into which an ether group or a carbonyl group is introduced is used. Generally, an anion exchange group in an ion exchange resin is known as an amino group, a substituted amino group or a quaternary ammonium group. In the case of a strongly basic anion exchange resin used in the present invention, an anion is used. Among the quaternary ammonium groups as an exchange group, a trialkyl-substituted nitrogen atom (—N + R 3 ) is introduced, or a dialkylethanolamine cation such as —N + (CH 3 ) 2. (C 2 H 4 OH ). Examples of the strong base anion exchange resin used in the present invention include Amberlyst A-26, Dowex TG-550A, Levacit M504, Diaion PA306 and the like.
[0007]
Examples of the metal alcoholate used in the present invention include alkali metal alcoholates and alkaline earth metal alcoholates such as lithium methoxide, sodium methoxide, potassium methoxide, cesium methoxide, calcium dimethoxide and barium dimethoxide, Used by dissolving in a solvent.
The amount of metal alcoholate used is in the range of 1.0 to 10.0 times mol, preferably 2.0 to 7.0 times mol, of the water in the raw material methyl formate. If the amount used is less than this, the strongly basic anion exchange resin is poisoned due to the influence of water in methyl formate and deactivated. On the other hand, if the amount used is larger than this, the cost of the metal alcoholate increases, which is economically disadvantageous.
[0008]
As the metal alcoholate solvent, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol can be used. The concentration of metal alcoholate in the solvent is usually 2.0 to 28.0% by weight, preferably 5.0 to 15.0% by weight. However, by considering the reaction conditions and the like, the selection is not limited to the above range and can be selected as appropriate.
[0009]
In the method of the present invention, the reaction temperature and reaction pressure can be widely selected depending on the amount of methyl formate supplied, the amount of strongly basic anion exchange resin used, and the target reaction rate.
In general, the reaction temperature is preferably in the range of 0 to 150 ° C, particularly 20 to 100 ° C. When the reaction temperature is too low, a practical reaction rate cannot be obtained, and when the reaction temperature is too high, side reactions and deactivation of the ion exchange resin are liable to be disadvantageous.
The supply amount of methyl formate is in the range of 0.1 to 3.0 (mL / resin mL · hr) per unit time and the capacity of the ion exchange resin, and 0.2 to 1.5 is particularly common.
[0010]
Although the reaction pressure in the method of the present invention can be decomposed under the vapor pressure indicated by the decomposition temperature, a lower pressure is advantageous in equilibrium. In general, the reaction pressure is preferably from normal pressure to 3.0 MPa, and practically from normal pressure to 2.0 MPa.
[0011]
The reaction system in this reaction is not particularly limited as long as it is a system in which the raw material and metal alcoholate are in contact with a strong basic anion exchange resin as a catalyst. As a general reaction system, a fluidized bed, a fixed bed or the like can be mentioned, and either a batch system or a continuous system can be used.
[0012]
The carbon monoxide obtained by the present invention has a very high purity and does not require any further purification operation. In addition, since the performance of the ion exchange resin can be maintained by the coexistence of the metal alcoholate, it is not necessary to provide a separate regeneration process for the ion exchange resin.
[0013]
【Example】
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0014]
Example 1
A double-pipe stainless steel reaction tube with a pressure regulator (inner diameter: 10 mm, length: 300 mm) is filled with 15 ml of OH type strongly basic anion exchange resin (Lebatit M504, manufactured by Bayer). Then, the solution was fed at 40 ° C., and a methanol solution of methyl formate 3 ml / hr and sodium methoxide 10 wt% was supplied at 0.17 g / hr from the bottom of the reactor. At a reaction pressure of 0.5 MPa, the reaction liquid and product gas extracted from the pressure regulator at the top of the reactor were analyzed by gas chromatography. As a result, the product gas 10 hours after the start of the reaction was 100% carbon monoxide. Yes, the decomposition rate of methyl formate was 18.9%. Furthermore, the product gas 350 hours after the start of the reaction was 100% carbon monoxide and the decomposition rate of methyl formate was 18.2%, and high-purity carbon monoxide was obtained stably over a long period of time.
[0015]
Example 2
The OH-type strongly basic anion exchange resin of Example 1 was replaced with Diaion PA306 manufactured by Mitsubishi Chemical, and the same method as in Example 1 was performed. At a reaction pressure of 0.5 MPa, the reaction liquid and product gas extracted from the pressure regulator at the top of the reactor were analyzed by gas chromatography. As a result, the product gas 10 hours after the start of the reaction was 100% carbon monoxide. Yes, the decomposition rate of methyl formate was 20.2%. Furthermore, the product gas 350 hours after the start of the reaction was 100% carbon monoxide and the decomposition rate of methyl formate was 20.1%, and high-purity carbon monoxide was obtained stably over a long period of time.
[0016]
Example 3
The same procedure as in Example 1 was performed, except that sodium methoxide in Example 1 was replaced with potassium methoxide and supplied at 0.29 g / hr. At a reaction pressure of 0.5 MPa, the reaction liquid and product gas extracted from the pressure regulator at the top of the reactor were analyzed by gas chromatography. As a result, the product gas 10 hours after the start of the reaction was 100% carbon monoxide. Yes, the decomposition rate of methyl formate was 19.0%. Furthermore, the product gas 350 hours after the start of the reaction was 100% carbon monoxide and the decomposition rate of methyl formate was 19.0%, and high-purity carbon monoxide was obtained stably over a long period of time.
[0017]
Comparative Example 1
A double-pipe stainless steel reaction tube with a pressure regulator (inner diameter: 10 mm, length: 300 mm) is filled with 15 ml of OH type strongly basic anion exchange resin (Lebatit M504, manufactured by Bayer). The solution was allowed to pass through to 40 ° C., and then 3 ml / hr of methyl formate was supplied from the bottom of the reactor. At a reaction pressure of 0.5 MPa, the reaction liquid and product gas extracted from the pressure regulator at the top of the reactor were analyzed by gas chromatography. As a result, the product gas 10 hours after the start of the reaction was 100% carbon monoxide. Yes, the decomposition rate of methyl formate was 17.2%. Further, after 350 hours from the start of the reaction, the product gas is 100% carbon monoxide, the decomposition rate of methyl formate is 0.9%, the degradation rate of methyl formate over time occurs, and the carbon monoxide is stable. It was not obtained.
[0018]
Comparative Example 2
The OH-type strongly basic anion exchange resin of Comparative Example 1 was replaced with Diaion PA306 manufactured by Mitsubishi Chemical, and the same method as Comparative Example 1 was performed. At a reaction pressure of 0.5 MPa, the reaction liquid and product gas extracted from the pressure regulator at the top of the reactor were analyzed by gas chromatography. As a result, the product gas 10 hours after the start of the reaction was 100% carbon monoxide. Yes, the decomposition rate of methyl formate was 18.3%. Further, after 340 hours from the start of the reaction, the product gas is 100% carbon monoxide, the decomposition rate of methyl formate is 0.1%, the degradation rate of methyl formate over time occurs, and the carbon monoxide is stable. It was not obtained.
[0019]
【The invention's effect】
According to the method of the present invention, by performing the decomposition of methyl formate in the presence of a strongly basic anion exchange resin and a metal alcoholate, the decomposition reaction proceeds under mild conditions superior in terms of thermal energy, and high selectivity is achieved. The high purity carbon monoxide of the target product can be obtained stably over a long period of time, and it is economically unnecessary to provide a purification process for the obtained carbon monoxide gas and a regeneration process for the ion exchange resin. Therefore, the industrial significance of the present invention is extremely large.

Claims (3)

強塩基性陰イオン交換樹脂、およびギ酸メチル中の水分に対し1.0〜10.0倍モルの金属アルコラートの共存下でギ酸メチルを分解することを特徴とする一酸化炭素の製造方法。A method for producing carbon monoxide, comprising decomposing methyl formate in the presence of a strongly basic anion exchange resin and 1.0 to 10.0-fold moles of metal alcoholate relative to the water in methyl formate. 金属アルコラートがアルカリ金属および/またはアルカリ土類金属のアルコラートである請求項1記載の一酸化炭素の製造方法。The method for producing carbon monoxide according to claim 1, wherein the metal alcoholate is an alkali metal and / or alkaline earth metal alcoholate. 金属アルコラートの溶媒としてアルコールを用いる請求項1または請求項2記載の一酸化炭素の製造方法。The method for producing carbon monoxide according to claim 1 or 2, wherein an alcohol is used as a solvent for the metal alcoholate.
JP2000299434A 2000-09-29 2000-09-29 Carbon monoxide production method Expired - Fee Related JP4609613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299434A JP4609613B2 (en) 2000-09-29 2000-09-29 Carbon monoxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299434A JP4609613B2 (en) 2000-09-29 2000-09-29 Carbon monoxide production method

Publications (2)

Publication Number Publication Date
JP2002114509A JP2002114509A (en) 2002-04-16
JP4609613B2 true JP4609613B2 (en) 2011-01-12

Family

ID=18781242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299434A Expired - Fee Related JP4609613B2 (en) 2000-09-29 2000-09-29 Carbon monoxide production method

Country Status (1)

Country Link
JP (1) JP4609613B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173310A (en) * 2000-12-04 2002-06-21 National Institute Of Advanced Industrial & Technology Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate
US20060211778A1 (en) * 2003-03-10 2006-09-21 Kenichi Aika Solid catalyst, reaction vessel, and process for producing methanol
JP5434919B2 (en) 2008-07-28 2014-03-05 宇部興産株式会社 Method for producing carbamate compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688801A (en) * 1979-10-27 1981-07-18 Mitsubishi Gas Chem Co Inc Separating and obtaining method of hydrogen and carbon monoxide
JPH0940413A (en) * 1995-07-26 1997-02-10 Mitsubishi Gas Chem Co Inc Production of high purity carbon monoxide
JPH10194715A (en) * 1997-01-08 1998-07-28 Mitsubishi Gas Chem Co Inc Production of carbon monoxide
JPH1192419A (en) * 1997-09-25 1999-04-06 Mitsubishi Chemical Corp Catalytic reaction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688801A (en) * 1979-10-27 1981-07-18 Mitsubishi Gas Chem Co Inc Separating and obtaining method of hydrogen and carbon monoxide
JPH0940413A (en) * 1995-07-26 1997-02-10 Mitsubishi Gas Chem Co Inc Production of high purity carbon monoxide
JPH10194715A (en) * 1997-01-08 1998-07-28 Mitsubishi Gas Chem Co Inc Production of carbon monoxide
JPH1192419A (en) * 1997-09-25 1999-04-06 Mitsubishi Chemical Corp Catalytic reaction

Also Published As

Publication number Publication date
JP2002114509A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
JP4018175B2 (en) Method for producing hydrogen rich gas
JPH0131506B2 (en)
AU2009229636A1 (en) Method of extracting butyric acid from a fermented liquid and chemically converting butyric acid into biofuel
JP5101495B2 (en) Method for producing 3-methyl-1,5-pentanediol
US10597344B2 (en) Method for preparing 1,3-cyclohexanedimethanol
GB2087383A (en) Preparation of 1,1,1,3,3,-hexafluoropropane-2-ol
JP4609613B2 (en) Carbon monoxide production method
KR20070112457A (en) Method for preparing sugar alcohols using ruthenium zirconia catalyst
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP4502096B2 (en) Regeneration method of strongly basic anion exchange resin
US5510523A (en) Process for the preparation of acetic acid
JP3824025B2 (en) Method for producing high purity carbon monoxide
US4242525A (en) Process for producing salts of pyruvic acid
JP2955866B2 (en) Method for producing dialkyl carbonate
AU2575800A (en) Process for producing hydrogenated ester, hydrogenation catalyst for use therein, and process for producing the catalyst
JPS58198442A (en) Improved method for preparation of methyl methacrylate or methyl acrylate
EP2660237B1 (en) Tertiary amine preparation process
US5225593A (en) Process for preparing pyruvate
JPS6113689B2 (en)
WO2007094471A1 (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
EP0337246B1 (en) Process for preparing pyruvate
KR20070038566A (en) Fluoromethane production process and product
JP2003128634A (en) Method for preparing alkyl nitrite
EP0526974B1 (en) Process for the preparation of acetic acid
JP2625490B2 (en) Purification method of pyruvate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees