JP2002173310A - Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate - Google Patents
Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formateInfo
- Publication number
- JP2002173310A JP2002173310A JP2000368555A JP2000368555A JP2002173310A JP 2002173310 A JP2002173310 A JP 2002173310A JP 2000368555 A JP2000368555 A JP 2000368555A JP 2000368555 A JP2000368555 A JP 2000368555A JP 2002173310 A JP2002173310 A JP 2002173310A
- Authority
- JP
- Japan
- Prior art keywords
- methyl formate
- carbon monoxide
- liquid phase
- reaction
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Carbon And Carbon Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はギ酸メチルを分解し
て高純度の一酸化炭素を製造する方法に関する。高純度
の一酸化炭素はC1化学の主原料として、或いはカルボ
ニル化反応の原料として重要な物質である。The present invention relates to a method for producing high-purity carbon monoxide by decomposing methyl formate. High-purity carbon monoxide is an important substance as a main raw material for C1 chemistry or as a raw material for the carbonylation reaction.
【0002】[0002]
【従来の技術】ギ酸メチルの分解反応は次式で示され
る。 HCOOCH3 → CO + CH3OH ギ酸メチルを分解して一酸化炭素を得る方法としては、
(A)アルカリ土類金属酸化物からなる固体触媒を用い
て200〜500℃で気相熱分解する方法(米国特許第
3812210号)、(B)活性炭を触媒として200
〜550℃の温度においてギ酸メチルを気相で熱分解す
る方法(特開昭52−36609号)および(C)メタ
ノールと共存するギ酸メチルを、ナトリウムメチラート
を触媒とし、2,500psi(17.57MPa)以下の圧
力および35〜200℃の温度で熱分解する方法(米国
特許第3716619号)が知られている。2. Description of the Related Art The decomposition reaction of methyl formate is represented by the following formula. HCOOCH 3 → CO + CH 3 OH As a method of decomposing methyl formate to obtain carbon monoxide,
(A) A method of performing a gas phase pyrolysis at 200 to 500 ° C. using a solid catalyst composed of an alkaline earth metal oxide (U.S. Pat. No. 3,812,210);
A method in which methyl formate is thermally decomposed in the gas phase at a temperature of from 550 ° C. to 550 ° C. (JP-A-52-36609), and (C) methyl formate coexisting with methanol at 2,500 psi (17. A method of pyrolyzing at a pressure of 57 MPa) or less and a temperature of 35 to 200 ° C. (US Pat. No. 3,716,619) is known.
【0003】しかしながら、上記3つの方法のうち、
(A)および(B)の方法は気相で200℃以上の温度
を必要とするため熱エネルギー的に不利であり、またギ
酸メチル分解時の不純物の生成が避けられず、高純度の
一酸化炭素を得るには適さない。一方、(C)の方法は
条件的には温和で優れているが、均一触媒を使用するた
め生成物との分離回収系が必要となりプロセスが煩雑と
なる。However, of the above three methods,
The methods (A) and (B) are disadvantageous in terms of thermal energy because they require a temperature of 200 ° C. or more in the gas phase, and unavoidable generation of impurities at the time of decomposition of methyl formate. Not suitable for obtaining carbon. On the other hand, the method (C) is mild in terms of conditions, but requires a system for separating and recovering the product since a homogeneous catalyst is used, which complicates the process.
【0004】[0004]
【発明が解決しようとする課題】これらの従来技術の欠
点を補う方法として、特開平9−40413号公報には
触媒として強塩基性陰イオン交換樹脂を使用する高純度
一酸化炭素の製造方法が記載されている。この方法は温
和な条件で分解反応を進行させ、高選択性を以て目的物
の高純度一酸化炭素を得ることができ、且つ触媒の分離
回収および再使用が極めて容易であるなどの特徴を有す
る。As a method for compensating for these disadvantages of the prior art, Japanese Patent Application Laid-Open No. 9-40413 discloses a method for producing high-purity carbon monoxide using a strongly basic anion exchange resin as a catalyst. Has been described. This method is characterized in that the decomposition reaction proceeds under mild conditions, high-purity carbon monoxide can be obtained with high selectivity, and the separation, recovery and reuse of the catalyst are extremely easy.
【0005】イオン交換樹脂を触媒とする上記方法の反
応方式としては次のように記述されている。すなわち、
原料と触媒である強塩基性陰イオン交換樹脂とが接触方
法であれば何れの方法も採用できる。一般的な反応方法
としては、流動床、或いは固定床などが挙げられ、又回
分式、連続式何れの方式でも実施される。[0005] The reaction system of the above method using an ion exchange resin as a catalyst is described as follows. That is,
Any method can be adopted as long as the raw material and the strong basic anion exchange resin as a catalyst are in contact with each other. Examples of a general reaction method include a fluidized bed and a fixed bed, and the reaction can be carried out in any of a batch system and a continuous system.
【0006】ギ酸メチルの分解反応は種種の反応方式の
採用が可能である。回分方式では反応器に触媒とギ酸メ
チルを仕込み所定の温度で反応させる。反応時間経過と
ともに分解反応がすすみ反応圧力が上昇するが、やがて
平衡近くなると反応速度が遅くなり殆ど反応が停止す
る。その後反応器温度を下げ気相部の生成一酸化炭素を
抜き出す。半回分方式では、反応器に触媒とギ酸メチル
を仕込み所定の温度で反応させる。反応時間経過ととも
に分解反応がすすみ反応圧力が上昇するので、液相を保
持できる所定圧力で生成一酸化炭素を連続的に抜き出す
ことができる。反応器内の液組成は反応開始時のギ酸メ
チルに富んでいるが、反応の進行に伴ってメタノール濃
度が高くなる。この結果、反応速度が遅くなり生成一酸
化炭素量が減少する。これらの2方式で、両者はそれぞ
れ次のような欠点を有している。回分方式は生成一酸化
炭素を抜き出さないため温度、圧力条件の平衡の影響を
受け反応速度が遅くなるとともに連続的に一酸化炭素を
得ることができない。半回分方式は連続的に生成一酸化
炭素を抜き出しているが、反応の進行に伴ってメタノー
ルの割合が増え液相組成が変化するため反応速度が遅く
なる。For the decomposition reaction of methyl formate, various reaction systems can be employed. In the batch method, a catalyst and methyl formate are charged into a reactor and reacted at a predetermined temperature. As the reaction time elapses, the decomposition reaction proceeds, and the reaction pressure increases. However, when the reaction becomes near equilibrium, the reaction rate slows down and the reaction almost stops. Thereafter, the reactor temperature is lowered, and the carbon monoxide produced in the gas phase is extracted. In the semi-batch system, a catalyst and methyl formate are charged into a reactor and reacted at a predetermined temperature. Since the decomposition reaction proceeds with the elapse of the reaction time and the reaction pressure increases, the generated carbon monoxide can be continuously extracted at a predetermined pressure capable of maintaining the liquid phase. The liquid composition in the reactor is rich in methyl formate at the start of the reaction, but the methanol concentration increases as the reaction proceeds. As a result, the reaction rate decreases, and the amount of carbon monoxide produced decreases. Both of these two methods have the following disadvantages. Since the batch method does not extract generated carbon monoxide, the reaction rate is slow due to the influence of the equilibrium of temperature and pressure conditions, and carbon monoxide cannot be obtained continuously. In the semi-batch method, generated carbon monoxide is continuously extracted, but the reaction rate is slowed down because the proportion of methanol increases as the reaction proceeds and the liquid phase composition changes.
【0007】一方、他の反応方式として、流通方式があ
る。この方式は触媒を充填若しくは固定した反応器に連
続的に原料を供給し、生成一酸化炭素を連続的に抜き出
すとともに、反応器内の液相の一部を連続的に取り出
す。この方法により、反応器内液組成が一定になり、定
常的に生成一酸化炭素を得ることができる。流通方式で
は槽型反応器を使用することができる。この方式では槽
型反応器に触媒を仕込み原料を連続供給し反応させる。
槽型反応器では触媒と原料の接触機会を多くし反応を効
率的にすすめることを目的として多くの場合反応器内部
を攪拌する。しかしながら、この方式は機械的な攪拌操
作により攪拌羽根等が触媒を物理的に破壊、損傷する、
また反応器内の液を連続的に抜き出す際触媒との分離の
ためのフィルターが詰まりやすくなる等の欠点を有す
る。本発明の目的は、ギ酸メチルの液相接触分解による
一酸化炭素製造方法において流通方式で反応をさらに有
利に進行させる方法を提案することである。On the other hand, there is a distribution system as another reaction system. In this method, the raw material is continuously supplied to a reactor filled or fixed with a catalyst, carbon monoxide is continuously extracted, and a part of the liquid phase in the reactor is continuously extracted. According to this method, the liquid composition in the reactor becomes constant, and the generated carbon monoxide can be obtained constantly. In the flow system, a tank reactor can be used. In this method, a catalyst is charged into a tank reactor, and raw materials are continuously supplied to cause a reaction.
In a tank-type reactor, the inside of the reactor is often stirred for the purpose of increasing the chance of contact between the catalyst and the raw material and efficiently promoting the reaction. However, in this method, the stirring blade or the like physically destroys and damages the catalyst due to mechanical stirring operation.
In addition, when the liquid in the reactor is continuously extracted, there is a disadvantage that a filter for separating from the catalyst is easily clogged. An object of the present invention is to propose a method for making the reaction proceed more advantageously in a flow system in a method for producing carbon monoxide by liquid phase catalytic decomposition of methyl formate.
【0008】[0008]
【課題を解決するための手段】本発明者らはギ酸メチル
の液相接触分解による一酸化炭素製造方法において流通
方式で反応をさらに有利に進行させる方法について鋭意
研究した結果、触媒を充填した反応器の下部からギ酸メ
チルを供給して液相下で反応させる流通方式が高い単流
成績を与えることを見出し、本発明を完成するに至っ
た。すなわち本発明は、ギ酸メチルが液相を保持できる
触媒層温度および圧力条件下で固体触媒を充填した反応
器の下部からギ酸メチルを供給して液相で分解反応さ
せ、且つ、生成した一酸化炭素および未反応ギ酸メチル
と生成メタノールの気液混相流を触媒層出口から連続的
に抜き出し反応圧力を調整することを特徴とするギ酸メ
チルの液相接触分解による高純度一酸化炭素製造方法で
ある。Means for Solving the Problems The present inventors have conducted intensive studies on a method of producing a carbon monoxide by the liquid phase catalytic cracking of methyl formate in which the reaction proceeds more advantageously in a flow-through manner. The present inventors have found that a flow system in which methyl formate is supplied from the lower part of the vessel and reacted in a liquid phase gives a high single flow performance, and the present invention has been completed. That is, according to the present invention, methyl formate is supplied from the lower part of a reactor filled with a solid catalyst under the conditions of temperature and pressure of a catalyst layer capable of maintaining a liquid phase, to cause a decomposition reaction in a liquid phase, and to produce a generated monoxide. A method for producing high-purity carbon monoxide by liquid-phase catalytic decomposition of methyl formate, comprising continuously extracting a gas-liquid mixed phase flow of carbon and unreacted methyl formate and produced methanol from an outlet of a catalyst layer and adjusting a reaction pressure. .
【0009】[0009]
【発明の実施の形態】ギ酸メチルの標準沸点が31.5
℃と低いため液相下で反応を行うには反応系内を加圧に
する必要がある。ギ酸メチル分解触媒のイオン交換樹脂
は使用温度に制限があり、実用的には100℃付近が限
度となる。100℃のギ酸メチルの蒸気圧は0.78MP
aであるからギ酸メチルを液相で保持するためにはこれ
以上の反応圧力が採用される。したがって、液相下のギ
酸メチル分解反応に採用する圧力は触媒種、反応温度に
よって決められる。一般的な反応条件としては温度は0
〜150℃、特に20〜100℃の範囲が好ましい。反
応温度が低すぎる場合には実用的な反応速度が得られ
ず、また、反応温度が高すぎる場合には副反応の併発や
触媒の失活を招きやすい。DETAILED DESCRIPTION OF THE INVENTION The standard boiling point of methyl formate is 31.5.
Due to the low temperature of ℃, it is necessary to pressurize the inside of the reaction system in order to carry out the reaction in the liquid phase. The use temperature of the ion exchange resin as the methyl formate decomposition catalyst is limited, and practically around 100 ° C. The vapor pressure of methyl formate at 100 ° C is 0.78MP
Since it is a, a reaction pressure higher than this is employed to keep methyl formate in the liquid phase. Therefore, the pressure employed for the methyl formate decomposition reaction in the liquid phase is determined by the type of catalyst and the reaction temperature. As a general reaction condition, the temperature is 0.
The range is preferably from 150 to 150C, particularly preferably from 20 to 100C. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, concurrent side reactions and deactivation of the catalyst are likely to occur.
【0010】本発明の方式の利点は、(1)管状反応器の
使用が可能になるので反応器設置面積が少ない、(2)攪
拌機および攪拌動力を必要としない、(3)攪拌操作によ
る触媒の破壊、損傷がない、(4)触媒の分離を必要とし
ない、(5)生成一酸化炭素が定常的に得られる (6)安定
した運転が可能である ことなどが挙げられる。The advantages of the method of the present invention are as follows: (1) the use of a tubular reactor becomes possible, so that the installation area of the reactor is small; (2) a stirrer and a stirring power are not required; (4) no need to separate the catalyst, (5) stable production of carbon monoxide, (6) stable operation is possible, and the like.
【0011】本発明による方法はさらに次の特徴を有す
る。すなわち、本発明の方法によると、高い単流成績が
得られる。液相のギ酸メチル分解反応の平衡は気液混相
系の平衡となるが、平衡反応率は気液混相の平行反応率
(O.A.Tagaev, Y.A.Pazderskii, I.M.Gutor and I.I.Mo
iseev ,Kint. I Katal., 27, 1122(1986)より推算)よ
りも気相の平衡反応率(△GはD.R.Stull、E.F.Wwstru
m,JR and G.C.Sinke.,The Chemical Thermodynamics o
f Organic Compounds、WILEY の値を用いた)が高い。
原料供給速度が比較的遅いときに高い成績を与えること
は当然であるが、驚くべきことには供給速度が遅いとき
のギ酸メチル反応率は気相の平衡反応率に近い成績であ
った。The method according to the invention further has the following characteristics. That is, according to the method of the present invention, a high single-stream result is obtained. The equilibrium of the liquid phase methyl formate decomposition reaction is the equilibrium of the gas-liquid mixed phase system, but the equilibrium reaction rate is the parallel reaction rate of the gas-liquid mixed phase (OATagaev, YAPazderskii, IMGutor and IIMo
gaseous phase equilibrium reaction rate (alG is DRStull, EFWwstru) than iseev, Kint. I Katal., 27, 1122 (1986)
m, JR and GCSinke., The Chemical Thermodynamics o
f Organic Compounds, using the value of WILEY).
Naturally, a high performance was obtained when the feed rate was relatively low, but surprisingly, the methyl formate conversion at a low feed rate was close to the equilibrium conversion in the gas phase.
【0012】この理由は次のように考えられる。触媒で
あるイオン交換樹脂は反応器に充填し、反応器外側を加
温し触媒層温度が所定温度になるようにした。原料のギ
酸メチルは反応器下部より上方に向かって供給した。触
媒層でギ酸メチルの分解反応が起こるが、生成一酸化炭
素の容積は液体容積と比較すると圧倒的に分解生成ガス
の容積が大きい。例えば、常圧で1モルの液体ギ酸メチ
ルが全て反応したとすると、生成一酸化炭素と等モルの
メタノールが同時に生成するが、メタノールが液状であ
るとすればそれぞれの容積が異なる。 反応前; 原料ギ酸メチル(液状) 1モル 60ml 反応後; 一酸化炭素(ガス状) 1モル 22,400ml メタノール(液状) 1モル 40ml 実際には液体ギ酸メチルが触媒層を下部から上部に向か
って通過する間に逐次反応が進行するのでこの試算例は
触媒層出口相当の想定となる。触媒層の温度、圧力を考
慮しても生成一酸化炭素/液体の容積比はかなり大き
く、数十〜100ほどになる。すなわち、反応条件下の
生成一酸化炭素/液体の容積比から考えると、僅かに数
%程度の液体が一酸化炭素ガス中に存在することになる
ので、液体はミスト状あるいは霧状に近い状態で存在し
ていることが容易に想像される。系としては気液混相で
はあるけれども、あたかも気相に近づいたような状態に
なり、結果的に気相の平衡反応率に近い反応率が得られ
たものと解釈される。他の理由としては、触媒層を出た
生成一酸化炭素および未反応ギ酸メチルと生成メタノー
ルの気液混相流を連続的に抜き出し反応器圧力を調整す
ることで反応器内の状態を定常に維持できることが挙げ
られる。The reason is considered as follows. The ion exchange resin as a catalyst was charged into the reactor, and the outside of the reactor was heated so that the temperature of the catalyst layer became a predetermined temperature. The raw material methyl formate was supplied upward from the lower part of the reactor. The decomposition reaction of methyl formate occurs in the catalyst layer, but the volume of generated carbon monoxide is much larger than the volume of liquid compared to the volume of liquid. For example, if one mole of liquid methyl formate reacts at normal pressure, the generated carbon monoxide and the same mole of methanol are generated at the same time, but if the methanol is liquid, the respective volumes are different. Before the reaction; Raw material methyl formate (liquid) 1 mol 60 ml After the reaction; Carbon monoxide (gaseous) 1 mol 22,400 ml Methanol (liquid) 1 mol 40 ml Actually, liquid methyl formate forms the catalyst layer from the bottom to the top. Since the reaction proceeds sequentially during the passage, this trial calculation example is assumed to correspond to the outlet of the catalyst layer. Even if the temperature and pressure of the catalyst layer are taken into consideration, the volume ratio of the generated carbon monoxide / liquid is considerably large, and is about several tens to 100. In other words, considering the volume ratio of generated carbon monoxide / liquid under the reaction conditions, only a few% of the liquid is present in the carbon monoxide gas, and the liquid is in a state close to a mist or mist. It is easily imagined that it exists. Although the system is a gas-liquid mixed phase, it is interpreted as if it approaches a gas phase, and as a result, a reaction rate close to the equilibrium reaction rate of the gas phase is obtained. Another reason is to continuously extract the gas-liquid mixed phase flow of generated carbon monoxide and unreacted methyl formate and generated methanol from the catalyst layer and adjust the reactor pressure to maintain a steady state in the reactor. What you can do is listed.
【0013】本発明においてギ酸メチル分解に用いる固
体触媒としてはイオン交換樹脂が好適に用いられる。よ
り好ましくは強塩基性陰イオン交換樹脂である。この強
塩基性陰イオン交換樹脂は、架橋構造を持った樹脂を母
体とし、これに陰イオン交換基を導入したものである。
樹脂の母体としてはスチレン−ジビニルベンゼン系の架
橋ポリスチレンやアクリル酸系のポリアクリレート、或
いはエーテル基やカルボニル基を導入した耐熱性芳香族
ポリマーなどが用いられる。一般にイオン交換樹脂にお
ける陰イオン交換基にはアミノ基、置換アミノ基または
第4アンモニウム基などが知られているが、本発明で用
いられる強塩基性陰イオン交換樹脂には、イオン交換基
がトリアルキル置換窒素原子を持つ第4アンモニウム
基、またはジアルキルエタノールアミン陽イオンを持つ
第4アンモニウム基、例えば−N+(CH2)2・(C2H4O
H)である陰イオン交換基を有するものが好適である。
本発明で用いられる強塩基性陰イオン交換樹脂につい
て、市販品を例に挙げて示すと、アンバーリストA−2
6(オルガノ製)、ダウエックスTG−550A(ダウ
ケミカル製)、レバチットM504(バイエル製)、ダ
イヤイオンPA306(三菱化学製)等がある。In the present invention, an ion exchange resin is suitably used as a solid catalyst used for decomposing methyl formate. More preferred are strongly basic anion exchange resins. This strong basic anion exchange resin is obtained by introducing a resin having a crosslinked structure as a base and introducing an anion exchange group into the resin.
As the resin base, styrene-divinylbenzene-based cross-linked polystyrene or acrylic acid-based polyacrylate, or a heat-resistant aromatic polymer into which an ether group or a carbonyl group is introduced is used. In general, amino groups, substituted amino groups, quaternary ammonium groups, and the like are known as anion exchange groups in ion exchange resins. However, in strongly basic anion exchange resins used in the present invention, ion exchange groups have A quaternary ammonium group having an alkyl-substituted nitrogen atom or a quaternary ammonium group having a dialkylethanolamine cation, for example, -N + (CH 2 ) 2. (C 2 H 4 O
Those having an anion exchange group which is H) are preferred.
As for the strongly basic anion exchange resin used in the present invention, a commercially available product is exemplified as Amberlyst A-2.
6 (manufactured by Organo), Dowex TG-550A (manufactured by Dow Chemical), Levatit M504 (manufactured by Bayer), and Diaion PA306 (manufactured by Mitsubishi Chemical).
【0014】本発明による原料ギ酸メチルは単独で、ま
たは溶媒共存下で使用される。溶媒としてはメタノー
ル、エタノール、1−プロパノール、2−プロパノー
ル、1−ブタノール、2−ブタノール、1−ペンタノー
ルなどのアルコール類が用いられる。アルコール類の使
用比率はギ酸メチルに対して10重量倍以下であり、好
ましくは3重量倍以下である。本発明の方法において、
この使用比率の範囲はとくに制限されるものでは無く、
触媒の使用量、反応条件等を勘案し適宜選択される。The raw material methyl formate according to the present invention is used alone or in the presence of a solvent. As the solvent, alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-pentanol are used. The use ratio of alcohols is 10 times by weight or less, and preferably 3 times by weight or less, based on methyl formate. In the method of the present invention,
The range of this usage ratio is not particularly limited,
It is appropriately selected in consideration of the amount of the catalyst used, the reaction conditions, and the like.
【0015】[0015]
【実施例】次に、実施例により本発明を更に具体的に説
明する。但し本発明はこれらの実施例に限定されるもの
ではない。Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
【0016】実施例1〜4 内径10mmφ、長さ300mmのステンレス製反応管にイ
オン交換樹脂(レバチットM504)を15ml充填した。
反応管ジャケットに所定温度に調節した熱媒を通して触
媒層温度を調節した。ギ酸メチル原料は定量プンプで反
応管下部に供給した。供給量はギ酸メチルタンクが乗っ
た秤量値から求め、充填触媒容積に対する供給液体ギ酸
メチル容積である液空間速度(LHSV)で整理した。触媒層
出口の生成した一酸化炭素および未反応ギ酸メチルと生
成メタノールの気液混相流を所定圧力に設定した圧力調
整器を経て連続的に抜き出し反応圧力を調整した。圧力
調整器を出た一酸化炭素ガスおよび未反応ギ酸メチルと
生成メタノール混合液はマイナス70℃に冷却された気液
分離器で一酸化炭素と混合液に分離した。一酸化炭素は
ガス流量計で計量し、ガスクロマトグラフで分析した。
混合液は分離器の液面が一定になるように抜き出し、ガ
スクロマトグラフで分析した。実験結果を表1に示し
た。表1には気液混相平衡反応率、気相平衡反応率も併
記した。実施例1〜3の結果は気液混相平衡反応率より
も高く、気相平衡反応率に近いことがわかる。Examples 1 to 4 A stainless steel reaction tube having an inner diameter of 10 mm and a length of 300 mm was filled with 15 ml of an ion exchange resin (Levatit M504).
The temperature of the catalyst layer was adjusted by passing a heat medium adjusted to a predetermined temperature through the jacket of the reaction tube. The methyl formate raw material was supplied to the lower part of the reaction tube by a quantitative pump. The supply amount was determined from the weighed value on which the methyl formate tank was loaded, and arranged by the liquid hourly space velocity (LHSV), which is the supply liquid methyl formate volume relative to the packed catalyst volume. A gas-liquid mixed phase flow of carbon monoxide and unreacted methyl formate and methanol produced at the outlet of the catalyst layer was continuously withdrawn through a pressure regulator set at a predetermined pressure to adjust the reaction pressure. The mixed gas of carbon monoxide gas, unreacted methyl formate and the produced methanol which came out of the pressure regulator was separated into carbon monoxide and the mixed solution by a gas-liquid separator cooled to minus 70 ° C. Carbon monoxide was weighed with a gas flow meter and analyzed with a gas chromatograph.
The mixed solution was withdrawn so that the liquid level of the separator became constant, and analyzed by gas chromatography. Table 1 shows the experimental results. Table 1 also shows the gas-liquid mixed-phase equilibrium reaction rate and the gas-phase equilibrium reaction rate. It can be seen that the results of Examples 1 to 3 are higher than the gas-liquid mixed-phase equilibrium reaction rate and close to the gas-phase equilibrium reaction rate.
【0017】[0017]
【表1】 [Table 1]
【0018】また、これらの実験結果から、反応条件下
における触媒層出口の一酸化炭素と混合液の容積比を計
算し、結果を表2に示した。From these experimental results, the volume ratio between carbon monoxide and the mixture at the outlet of the catalyst layer under the reaction conditions was calculated, and the results are shown in Table 2.
【0019】[0019]
【表2】 [Table 2]
【0020】この結果、反応条件下における触媒層出口
一酸化炭素ガス相の割合は、いずれの実施例においても
およそ99%であり、混合液容積は1%以下でミストあ
るいは霧状に近い状態で存在していると推察される。し
たがってあたかも気相反応が起こったようになり結果的
に気相の平衡反応率に近い反応率が得られたものと考え
られる。As a result, the ratio of the carbon monoxide gas phase at the outlet of the catalyst layer under the reaction conditions is about 99% in each of the examples, and the volume of the mixed solution is 1% or less, and the mixture is in a state close to mist or mist. It is presumed to exist. Therefore, it is considered that a gas-phase reaction had occurred, and as a result, a reaction rate close to the equilibrium reaction rate of the gas phase was obtained.
【0021】比較例1 回分方式でギ酸メチルの分解実験を行った。内容積10
0mlのステンレス製オートクレーブにギ酸メチル11.
0gを仕込み、次に予め1N−NaOH水溶液で処理し
OH型とした強塩基性陰イオン交換樹脂(レバチットM
504)を2ml加え、60℃で1時間反応させた。オー
トクレーブを室温まで冷却後、生成ガスを抜き出しガス
クロマトグラフで分析した。液体はオートクレーブから
取り出し、ガスクロマトグラフにより分析した。その結
果、得られた生成ガスは100%が一酸化炭素であり、
ギ酸メチルの反応率は29.1%であった。Comparative Example 1 A methyl formate decomposition experiment was performed in a batch mode. Internal volume 10
Methyl formate in a 0 ml stainless steel autoclave
0 g, and then treated with a 1N aqueous solution of NaOH to form an OH-type strongly basic anion exchange resin (Levatit M).
504) was added and reacted at 60 ° C. for 1 hour. After cooling the autoclave to room temperature, the produced gas was extracted and analyzed by gas chromatography. The liquid was taken out of the autoclave and analyzed by gas chromatography. As a result, 100% of the resulting product gas is carbon monoxide,
The conversion of methyl formate was 29.1%.
【0022】比較例2 半回分方式でギ酸メチルの分解実験を行った。内容積1
00mlの攪拌機付き槽型ステンレス製オートクレーブに
ギ酸メチル60.4gを仕込み、1N−NaOH水溶液
で処理しOH型とした強塩基性陰イオン交換樹脂(レバ
チットM504)を10.3ml加え60℃で 反応し
た。反応圧力は1.1MPaとし、生成ガスを6.2時間
に亘って抜き出しガスクロマトグラフで分析した。得ら
れた生成ガスは100%が一酸化炭素であり、ギ酸メチ
ルの反応率は52.4%であった。Comparative Example 2 A methyl formate decomposition experiment was performed in a semi-batch mode. Internal volume 1
60.4 g of methyl formate was charged into a 00 ml tank-type stainless steel autoclave with a stirrer, and 10.3 ml of a strong basic anion exchange resin (LEVATIT M504) treated with an aqueous 1N-NaOH solution to form an OH type was added and reacted at 60 ° C. . The reaction pressure was set to 1.1 MPa, and the produced gas was withdrawn for 6.2 hours and analyzed by gas chromatography. The resulting product gas was 100% carbon monoxide, and the reaction rate of methyl formate was 52.4%.
【0023】[0023]
【発明の効果】ギ酸メチルの液相接触分解による一酸化
炭素製造方法において、流通方式で反応をさらに有利に
進行させる方法について鋭意研究した結果、触媒を充填
した反応器の下部からギ酸メチルを供給して液相下で反
応させる流通方式が高い単流成績を与えることがわかっ
た。すなわち本発明は、簡単な装置を用い、温和な反応
条件で液相のギ酸メチルを分解し、高純度の一酸化炭素
を高い単流成績で製造することができる。また、本発明
の利点は、 (1)管状反応器の使用が可能になるので反応器設置面積
が少ない、 (2)攪拌機および攪拌動力を必要としない、 (3)攪拌操作による触媒の破壊、損傷がない、 (4)触媒の分離を必要としない、 (5)生成一酸化炭素が定常的に得られる (6)安定した運転が可能である ことなどが挙げられる。したがって、本発明の工業的な
意義は極めて大きい。EFFECTS OF THE INVENTION In a method for producing carbon monoxide by the liquid phase catalytic decomposition of methyl formate, as a result of intensive research on a method of making the reaction proceed more advantageously in a flow system, methyl formate was supplied from the lower part of the reactor filled with the catalyst. It was found that the flow system in which the reaction was conducted under the liquid phase gave a high single flow performance. That is, according to the present invention, high-purity carbon monoxide can be produced with high single-flow performance by decomposing methyl formate in a liquid phase under mild reaction conditions using a simple apparatus. Further, the advantages of the present invention are as follows: (1) the use of a tubular reactor becomes possible, so that the reactor installation area is small; (2) a stirrer and a stirring power are not required; (3) destruction of a catalyst by a stirring operation; No damage, (4) no need for catalyst separation, (5) steady production of carbon monoxide, (6) stable operation. Therefore, the industrial significance of the present invention is extremely large.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 安行 京都府相楽郡木津町木津川台九丁目2番地 財団法人地球環境産業技術研究機構内 (72)発明者 米岡 幹男 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 Fターム(参考) 4G046 JA01 JB02 JB11 4H006 AA02 AC41 BA72 BC11 BC14 FE11 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuyuki Matsumura 9-2 Kizugawadai, Kizu-cho, Kizu-cho, Soraku-gun, Kyoto Prefecture Within the Research Institute for Global Environmental Technology (72) Inventor Mikio Yoneoka Taishihama, Niigata City, Niigata Prefecture 182% F-term in Niigata Research Laboratory, Mitsubishi Gas Chemical Company 4G046 JA01 JB02 JB11 4H006 AA02 AC41 BA72 BC11 BC14 FE11
Claims (5)
および圧力条件下で固体触媒を充填した反応器の下部か
らギ酸メチルを供給して液相で分解反応させ、且つ、生
成した一酸化炭素および未反応ギ酸メチルと生成メタノ
ールの気液混相流を触媒層出口から連続的に抜き出し反
応圧力を調整することを特徴とするギ酸メチルの液相接
触分解による高純度一酸化炭素製造方法。1. A method for supplying methyl formate from a lower part of a reactor filled with a solid catalyst under a temperature and pressure condition of a catalyst layer capable of maintaining a liquid phase in which methyl formate holds a liquid phase, to cause a decomposition reaction in a liquid phase, and to produce a produced monoxide. A method for producing high-purity carbon monoxide by liquid phase catalytic decomposition of methyl formate, comprising continuously extracting a gas-liquid mixed phase flow of carbon and unreacted methyl formate and produced methanol from an outlet of a catalyst layer and adjusting a reaction pressure.
記載のギ酸メチルの液相接触分解による一酸化炭素製造
方法。2. The solid catalyst is an ion exchange resin.
A process for producing carbon monoxide by liquid phase catalytic decomposition of methyl formate according to the above.
脂である請求項2記載のギ酸メチルの液相接触分解によ
る一酸化炭素製造方法。3. The method for producing carbon monoxide by liquid phase catalytic decomposition of methyl formate according to claim 2, wherein the ion exchange resin is a strongly basic anion exchange resin.
置換窒素原子を持つ第4アンモニウム基またはジアルキ
ルエタノールアミン陽イオンを持つ第4アンモニウム基
を有する請求項3記載のギ酸メチルの液相接触分解によ
る一酸化炭素製造方法。4. The liquid phase catalytic decomposition of methyl formate according to claim 3, wherein the strongly basic anion exchange resin has a quaternary ammonium group having a trialkyl-substituted nitrogen atom or a quaternary ammonium group having a dialkylethanolamine cation. For producing carbon monoxide.
る請求項1〜請求項4のいずれかに記載のギ酸メチルの
液相接触分解による一酸化炭素製造方法。5. The method for producing carbon monoxide according to claim 1, wherein methyl formate is decomposed in the presence of an alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000368555A JP2002173310A (en) | 2000-12-04 | 2000-12-04 | Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000368555A JP2002173310A (en) | 2000-12-04 | 2000-12-04 | Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002173310A true JP2002173310A (en) | 2002-06-21 |
Family
ID=18838762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000368555A Pending JP2002173310A (en) | 2000-12-04 | 2000-12-04 | Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002173310A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06247707A (en) * | 1993-02-23 | 1994-09-06 | Sumitomo Seika Chem Co Ltd | Production of carbon monoxide and apparatus therefor |
JPH0940413A (en) * | 1995-07-26 | 1997-02-10 | Mitsubishi Gas Chem Co Inc | Production of high purity carbon monoxide |
JP2002114509A (en) * | 2000-09-29 | 2002-04-16 | Mitsubishi Gas Chem Co Inc | Method for producing carbon monoxide |
-
2000
- 2000-12-04 JP JP2000368555A patent/JP2002173310A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06247707A (en) * | 1993-02-23 | 1994-09-06 | Sumitomo Seika Chem Co Ltd | Production of carbon monoxide and apparatus therefor |
JPH0940413A (en) * | 1995-07-26 | 1997-02-10 | Mitsubishi Gas Chem Co Inc | Production of high purity carbon monoxide |
JP2002114509A (en) * | 2000-09-29 | 2002-04-16 | Mitsubishi Gas Chem Co Inc | Method for producing carbon monoxide |
Non-Patent Citations (1)
Title |
---|
梶山士郎他: "エコエネ都市プロジェクトにおける液相ギ酸メチル分解・合成反応の動力学", 熱工学講演会講演論文集, JPN6010066174, 1997, pages 61 - 62, ISSN: 0001779725 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3301542B2 (en) | Ethyl acetate production method | |
US8637580B2 (en) | Process for the preparation of ethanol and higher alcohols | |
EP0994091B1 (en) | Production process for methanol | |
AU2010363852A1 (en) | Process for the selective preparation of 1-propanol, iso-butanol and other C3+ alcohols from synthesis gas and methanol | |
JPH03133941A (en) | Production of isopropanol and apparatus therefor | |
JP2002173310A (en) | Method of manufacturing carbon monoxide by liquid phase catalytic decomposition of methyl formate | |
JP3358631B2 (en) | Method for dehydrogenation of methanol | |
JP2008019176A (en) | Method for synthesizing methanol and dimethyl ether | |
JP3824025B2 (en) | Method for producing high purity carbon monoxide | |
JP2013091621A (en) | Reaction process using supercritical water | |
JP3801283B2 (en) | Heat recovery and utilization methods using chemical energy | |
JPH0942779A (en) | Method for heat recovery and heat utilization using chemical energy | |
WO2000001651A1 (en) | Hydroformylation reactions | |
JP4609613B2 (en) | Carbon monoxide production method | |
JP4048332B2 (en) | Method for producing hydrogen | |
JP2001263828A (en) | Energy converting system using hydrogenating reaction of methyl formate | |
JP4344846B2 (en) | Method and apparatus for producing dimethyl ether | |
JP4502096B2 (en) | Regeneration method of strongly basic anion exchange resin | |
JP4691632B2 (en) | Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate | |
JP2008037843A (en) | Method for synthesizing methanol | |
EP1185492A1 (en) | Acid-catalysed reactions | |
EP0853075B1 (en) | Method for heat recovery and utilization by use of chemical energy of synthesis and decomposition of methyl formate | |
JPH09286603A (en) | Production of gaseous mixture of carbon monoxide and hydrogen | |
JPH11349301A (en) | Production of mixed gas of carbon monoxide with hydrogen | |
WO2005030686A1 (en) | Method for producing organic compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110308 |