KR20070038566A - Fluoromethane production process and product - Google Patents
Fluoromethane production process and product Download PDFInfo
- Publication number
- KR20070038566A KR20070038566A KR1020077004515A KR20077004515A KR20070038566A KR 20070038566 A KR20070038566 A KR 20070038566A KR 1020077004515 A KR1020077004515 A KR 1020077004515A KR 20077004515 A KR20077004515 A KR 20077004515A KR 20070038566 A KR20070038566 A KR 20070038566A
- Authority
- KR
- South Korea
- Prior art keywords
- fluoromethane
- producing
- catalyst
- zeolite
- molecular sieve
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
- C07C17/383—Separation; Purification; Stabilisation; Use of additives by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C19/00—Acyclic saturated compounds containing halogen atoms
- C07C19/08—Acyclic saturated compounds containing halogen atoms containing fluorine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 염화메틸과 불화수소를 기상으로 불소화 촉매의 존재하에서 반응시키고, 플루오로메탄과 염화수소를 함유하는 얻어진 혼합물을 증류탑에 주입하여 플루오로메탄과 염화수소를 상층부분으로서 분리 및 정제하는 것에 관한 것이다. 이렇게 하여 반도체 에칭가스로서의 용도로 적합한 고순도의 HFC-41을 효과적으로 제조할 수 있다.The present invention relates to the reaction of methyl chloride and hydrogen fluoride in the presence of a fluorination catalyst in a gas phase, and to injecting the resulting mixture containing fluoromethane and hydrogen chloride into a distillation column to separate and purify fluoromethane and hydrogen chloride as an upper layer. . In this way, HFC-41 of high purity suitable for use as a semiconductor etching gas can be effectively produced.
Description
(관련 출원의 상호 참조)(Cross-reference of related application)
본 출원은 35 U.S.C. §111(b)의 조항하에 2004년 9월 24일에 출원된 미국 가출원 제60/612,538호의 출원일의 35 U.S.C. §119(e)(1)에 따른 우선권 이익을 주장하는 35 U.S.C. §111(a)의 규정하에 출원된 출원이다.This application claims 35 U.S.C. Under 35. U.S.C. 35 U.S.C. Claims Priority Benefits Under §119 (e) (1) An application filed under § 111 (a).
본 발명은 플루오로메탄(CH3F, 이하 HFC-41이라고도 한다)의 제조방법에 관한 것이다.The present invention relates to a method for producing fluoromethane (CH 3 F, hereinafter also referred to as HFC-41).
히드로플루오로카본(HFC)은 오존파괴계수가 0인 것이 특징이고, 특히 HFC-41, 디플루오로메탄(CH2F2) 및 트리플루오로메탄(CHF3)은 반도체 에칭가스로서 유용하다. Hydrofluorocarbon (HFC) is characterized by having an ozone depletion coefficient of 0, in particular, HFC-41, difluoromethane (CH 2 F 2 ) and trifluoromethane (CHF 3 ) are useful as semiconductor etching gases.
반도체 에칭가스로서 사용되는 HFC류는 고순도이어야 하고, 보다 구체적으로, 이들의 산성분(염화수소, 불화수소 등) 함유량은 1.0질량ppm 이하가 바람직하고, 이들의 수분 함유량은 10질량ppm 이하가 바람직하고, 보다 바람직하게는 5질량ppm 이하이다.HFCs used as semiconductor etching gases should be of high purity, more specifically, the content of these acid components (hydrogen chloride, hydrogen fluoride, etc.) is preferably 1.0 mass ppm or less, and their water content is preferably 10 mass ppm or less. More preferably, it is 5 mass ppm or less.
그러므로 고순도의 HFC류를 제조하기 위한 많은 방법이 제안되었지만, 이들은 탄소원자가 2개 이상인 분자인 반면, 클로로포름의 불소화 또는 디클로로메탄의 불소화는 탄소원자가 1개인 메탄에 관한 것이고, HFC-41의 제조방법은 거의 제안되어 있지 않다. 그 주요이유는, 할로겐화 탄화수소를 불소화할 경우, 분자 중의 수소원자의 수가 많을수록 불소화 반응성이 저하하여, 분해 또는 부생성물을 촉진시키는 경향이 있기 때문이다.Therefore, many methods for producing high purity HFCs have been proposed, but these are molecules having two or more carbon atoms, whereas fluorination of chloroform or fluorination of dichloromethane is related to methane having one carbon atom, and the method of preparing HFC-41 Almost not proposed. The main reason is that when the halogenated hydrocarbon is fluorinated, the larger the number of hydrogen atoms in the molecule, the lower the fluorinated reactivity and tend to promote decomposition or by-products.
일본특허공고 평4-7330호 공보에는 메틸알콜과 불화수소(HF)를 불소화 촉매(불화크롬)를 사용하여 100~500℃의 온도에서 기상반응시키는 HFC-41의 제조방법이 개시되어 있다. 그러나, 상기 방법은 그 결과로서 얻어진 부생성물인 물에 의한 불소화 촉매의 열화 및 반응장치의 부식의 문제가 있다.Japanese Patent Application Laid-open No. Hei 4-7330 discloses a method for producing HFC-41 in which gaseous reaction of methyl alcohol and hydrogen fluoride (HF) is carried out at a temperature of 100 to 500 ° C. using a fluorination catalyst (chromium fluoride). However, the above method has a problem of deterioration of the fluorination catalyst with water as a by-product obtained as a result and corrosion of the reaction apparatus.
또한, 일본특허공개 소60-13726호 공보에는 염화메틸(CH3Cl)과 HF를 불소화 촉매(불화크롬)를 사용하여 100~400℃의 반응온도에서 기상반응시키는 HFC-41의 제조방법이 개시되어 있다. 그러나, 상기 방법은 하기 식(1)에 나타낸 평형반응으로 인하여, 촉매활성을 향상시킬 필요가 있고, HFC-41(대기압에서의 비점: -78.5℃) 및 염화수소(대기압에서의 비점: -84.9℃)에 근접한 비점을 갖는 공비혼합물을 형성하기 때문에 분리가 어려운 문제가 있다.In addition, Japanese Patent Application Laid-open No. 60-13726 discloses a method for producing HFC-41 in which gaseous reaction of methyl chloride (CH 3 Cl) and HF is carried out at a reaction temperature of 100 to 400 ° C. using a fluorination catalyst (chromium fluoride). It is. However, the method needs to improve the catalytic activity due to the equilibrium reaction shown in the following formula (1), HFC-41 (boiling point at atmospheric pressure: -78.5 ° C) and hydrogen chloride (boiling point at atmospheric pressure: -84.9 ° C Separation is difficult because it forms an azeotrope having a boiling point close to).
CH3Cl + HF ⇔ CH3F + HCl (1)CH 3 Cl + HF ⇔ CH 3 F + HCl (1)
본 발명의 목적은 반도체 에칭가스로서 사용할 수 있는 고순도의 HFC-41을 효율적으로 제조하는 방법 및 그 제품을 제공하는 것이다.An object of the present invention is to provide a method for efficiently producing a high purity HFC-41 that can be used as a semiconductor etching gas, and a product thereof.
상술한 과제를 해결하기 위해 예의 검토한 결과, 본 발명자들은 염화메틸과 불화수소를 기상으로 불소화 촉매의 존재하에서 반응시키고, 플루오로메탄과 염화수소를 포함하는 혼합물을 증류탑에 주입하여 플루오로메탄과 염화수소를 상층부분으로서 분리 및 정제하는 것에 의해, 실질적으로 염화수소(HCl)를 함유하지 않는 HFC-41(HCl농도: 20질량ppm 이하)을 얻을 수 있는 것을 발견하였고, 이것에 의해 본 발명을 완성하였다.As a result of earnestly examining in order to solve the above-mentioned problem, the present inventors reacted methyl chloride and hydrogen fluoride in the presence of a fluorination catalyst in the gaseous phase, and injected a mixture containing fluoromethane and hydrogen chloride into a distillation column to produce fluoromethane and hydrogen chloride. It was found that HFC-41 (HCl concentration: 20 mass ppm or less) substantially free of hydrogen chloride (HCl) can be obtained by separating and purifying as an upper portion, thereby completing the present invention.
본 발명은 이하의 [1]~[11]에 따른 HFC-41의 제조방법에 관한 것이다.The present invention relates to a method for producing HFC-41 according to the following [1] to [11].
[1] (1) 염화메틸을 제올라이트와 액상으로 접촉시키는 공정,[1] (1) a step of bringing methyl chloride into contact with the zeolite in the liquid phase;
(2) 공정(1)에서 얻어진 염화메틸과 불화수소를 불소화 촉매의 존재하에서 기상으로 반응시켜서 주로 플루오로메탄을 얻는 공정,(2) a step of reacting methyl chloride and hydrogen fluoride obtained in step (1) in the gas phase in the presence of a fluorination catalyst to obtain mainly fluoromethane,
(3) 공정(2)에서 얻어진 플루오로메탄을 함유하는 혼합가스를 증류탑에 주입하고, 주로 염화메틸과 불화수소를 포함하는 하층부분으로부터 주로 플루오로메탄과 염화수소를 포함하는 상층부분을 분리하는 공정, 및(3) A step of injecting the mixed gas containing fluoromethane obtained in step (2) into the distillation column, and separating the upper layer portion mainly containing fluoromethane and hydrogen chloride from the lower portion mainly containing methyl chloride and hydrogen fluoride. , And
(4) 공정(3)에서 얻어진 상층부분으로부터 플루오로메탄을 분리 및 정제하는 공정의 4단계 공정을 포함하는 것을 특징으로 하는 플루오로메탄의 제조방법.(4) A process for producing fluoromethane, comprising a four-step process of separating and purifying fluoromethane from the upper layer portion obtained in step (3).
[2] 상기 [1]에 있어서, 공정(3)에서 얻어진 하층부분을 공정(2)으로 순환시키는 공정을 더 포함하는 것을 특징으로 하는 플루오로메탄의 제조방법.[2] The method for producing fluoromethane according to the above [1], further comprising the step of circulating the lower portion obtained in the step (3) to the step (2).
[3] 상기 [1] 또는 [2]에 있어서, 공정(1)에서 사용되는 제올라이트는 분자체 3A 및/또는 분자체 4A인 것을 특징으로 하는 플루오로메탄의 제조방법.[3] The method for producing fluoromethane according to the above [1] or [2], wherein the zeolite used in the step (1) is molecular sieve 3A and / or molecular sieve 4A.
[4] 상기 [1]에 있어서, 공정(2)에서 사용되는 불소화 촉매는 주로 3가의 산화크롬으로 구성되고 In, Zn, Ni, Co, Mg 및 Al로 이루어지는 군에서 선택되는 1종 이상의 원소를 함유하는 담지촉매 또는 벌크촉매인 것을 특징으로 하는 플루오로메탄의 제조방법.[4] The above-mentioned [1], wherein the fluorination catalyst used in the step (2) comprises at least one element mainly composed of trivalent chromium oxide and selected from the group consisting of In, Zn, Ni, Co, Mg and Al. A process for producing fluoromethane, which is a supported catalyst or a bulk catalyst.
[5] 상기 [1] 또는 [4]에 있어서, 공정(2)에서 사용되는 불소화 촉매는 활성 알루미나에 담지된 담지촉매이고, 여기서 활성 알루미나는 중심기공 크기가 50~400Å이고, 중심크기의 ±50%의 분포를 갖는 기공 70% 이상으로 이루어지고 기공체적이 0.5~1.6ml/g의 범위이고, 또한 순도가 99.9질량% 이상이고, 나트륨 함유량이 100ppm 이하인 것을 특징으로 하는 플루오로메탄의 제조방법.[5] The above-mentioned [1] or [4], wherein the fluorinated catalyst used in the step (2) is a supported catalyst supported on activated alumina, wherein the activated alumina has a central pore size of 50 to 400 mm 3 and a ± ± center size. A method for producing fluoromethane, characterized in that the pore volume is made up of 70% or more with a distribution of 50%, the pore volume is in the range of 0.5 to 1.6 ml / g, the purity is 99.9% by mass or more, and the sodium content is 100 ppm or less. .
[6] 상기 [1], [4] 또는 [5]에 있어서, 공정(2)에서의 반응온도가 150~350℃인 것을 특징으로 하는 플루오로메탄의 제조방법.[6] The method for producing fluoromethane according to the above [1], [4] or [5], wherein the reaction temperature in the step (2) is 150 to 350 ° C.
[7] 상기 [1]에 있어서, 공정(3)에서의 증류가 0.1~5MPa의 압력범위 내에서 행하여지는 것을 특징으로 하는 플루오로메탄의 제조방법.[7] The method for producing fluoromethane according to the above [1], wherein the distillation in the step (3) is performed within a pressure range of 0.1 to 5 MPa.
[8] 상기 [1]에 있어서, 공정(4)에서의 분리 및 정제 공정은 플루오로메탄을 물 및/또는 알칼리를 함유하는 처리제에 접촉시켜 염화수소를 함유하는 산성분을 제거하는 공정을 더 포함하는 것을 특징으로 하는 플루오로메탄의 제조방법.[8] The above-mentioned [1], wherein the separation and purification step in the step (4) further includes the step of contacting the fluoromethane with a treatment agent containing water and / or an alkali to remove an acid component containing hydrogen chloride. Method for producing fluoromethane, characterized in that.
[9] 상기 [8]에 있어서, 플루오로메탄 중의 산성분을 제거하는 공정 후에 플루오로메탄을 제올라이트와 접촉시키는 공정을 더 포함하는 것을 특징으로 하는 플루오로메탄의 제조방법.[9] The method for producing fluoromethane according to the above [8], further comprising contacting fluoromethane with zeolite after removing an acid component in fluoromethane.
[10] 상기 [9]에 있어서, 제올라이트는 분자체 3A 및/또는 분자체 4A인 것을 특징으로 하는 플루오로메탄의 제조방법.[10] The method for producing fluoromethane according to the above [9], wherein the zeolite is molecular sieve 3A and / or molecular sieve 4A.
[11] 상기 [1]~[10] 중 어느 하나에 기재된 방법으로 얻어지고 염화수소 농도가 1.0질량ppm 이하인 플루오로메탄을 함유하는 것을 특징으로 하는 플루오로메탄 제품.[11] A fluoromethane product obtained by the method according to any one of [1] to [10] and containing fluoromethane having a hydrogen chloride concentration of 1.0 mass ppm or less.
[12] 상기 [1]~[10] 중 어느 하나에 기재된 방법으로 얻어지고 수분 농도가 10질량ppm 이하인 플루오로메탄을 함유하는 것을 특징으로 하는 플루오로메탄 제품.[12] A fluoromethane product obtained by the method according to any one of [1] to [10] and containing fluoromethane having a water concentration of 10 mass ppm or less.
본 발명에 따르면, 염화메틸과 불화수소를 기상으로 불소화 촉매의 존재하에서 반응시켜 얻어진 HFC-41과 HCl의 혼합물로부터 HCl을 효율적으로 분리하여, 고순도의 HFC-41을 얻을 수 있다.According to the present invention, high purity HFC-41 can be obtained by efficiently separating HCl from a mixture of HFC-41 and HCl obtained by reacting methyl chloride and hydrogen fluoride in the presence of a fluorination catalyst in the gas phase.
본 발명에 따른 HFC-41의 제조방법은, 원료로서 염화메틸과 불화수소를 사용하고, 이들을 주로 3가의 산화크롬으로 구성된 담지 또는 벌크 불소화 촉매의 존재하에서 기상으로 반응시키고, HFC-41과 HCl를 함유하는 혼합물을 증류탑에 주입하고, 증류탑 상부로부터 HFC-41과 HCl을 증류 및 정제하여 고순도의 HFC-41을 얻는 것을 특징으로 한다.In the method for producing HFC-41 according to the present invention, methyl chloride and hydrogen fluoride are used as raw materials, and these are reacted in the gas phase in the presence of a supported or bulk fluorination catalyst composed mainly of trivalent chromium oxide, and HFC-41 and HCl are reacted. The mixture containing the mixture is injected into a distillation column, and HFC-41 and HCl are distilled and purified from the top of the distillation column to obtain high purity HFC-41.
원료인 염화메틸은 반응영역으로 공급되기 이전 단계에서 제올라이트와 액상으로 접촉시켜서, 수분을 최소한으로 저감하는 것이 바람직하다. 안정제가 포함되어 있는 경우에는, 이것도 촉매수명을 유지하기 위해 제거해야 한다. 반응영역으로의 수분 혼입은 장치재료의 부식 및 분해 부생성물의 생성을 불리하게 촉진시킬 수 있다. 제올라이트는 분자체 3A 및/또는 분자체 4A가 바람직하다. 염화메틸과 불화수소는 반응기 입구에서 혼합되어 반응기로 도입된다. 염화메틸에 대한 불화수소의 몰비(HF/CH3Cl)는 5~30이 바람직하고, 보다 바람직하게는 8~20이다. 몰비가 5 미만이면 불순물의 생성 비율이 증가하여 선택율이 나빠진다. 30을 초과하면 수율이 저하되고, 미반응 원료의 순환이 증가하여, 장치의 대형화가 필요하므로, 바람직하지 않다. The raw material methyl chloride is preferably in contact with the zeolite in the liquid phase in a step before feeding into the reaction zone to minimize the moisture. If a stabilizer is included, this must also be removed to maintain catalyst life. Moisture incorporation into the reaction zone can adversely promote the generation of corrosion and decomposition byproducts of the device material. The zeolite is preferably molecular sieve 3A and / or molecular sieve 4A. Methyl chloride and hydrogen fluoride are mixed at the reactor inlet and introduced into the reactor. The molar ratio of hydrogen fluoride to methyl chloride (HF / CH 3 Cl) is 5 to 30, and preferably, and more preferably 8-20. If the molar ratio is less than 5, the generation rate of impurities is increased, resulting in poor selectivity. If it exceeds 30, the yield decreases, the circulation of unreacted raw materials increases, and the size of the apparatus is required, which is not preferable.
반응기는 편류방지의 관점에서 다관식이 바람직하다. 반응기에 충전되는 불소화 촉매는 주로 3가의 산화크롬으로 구성된 벌크촉매 또는 담지촉매인 것이 바람직하다. 벌크촉매는 주로 3가의 산화크롬으로 구성되고 In, Zn, Ni, Co, Mg 및 Al로 이루어지는 군에서 선택되는 1종 이상의 원소를 함유하는 것이 바람직하다. 담지촉매는, 촉매담체로서 중심기공 크기가 50~400Å이고, 중심크기의 ±50%의 분포를 갖는 기공 70% 이상으로 이루어지고, 기공 체적이 0.5~1.6ml/g의 범위이고, 순도가 99.9질량% 이상이고 나트륨 함유량이 100ppm 이하인 활성 알루미나를 갖고, 상기 활성 알루미나에 3가의 산화크롬 또는 주로 3가의 산화크롬으로 구성되고 In, Zn, Ni, Co 및 Mg로 이루어지는 군에서 선택되는 1종 이상의 원소를 함유하는 재료를 담지시킨 것이 바람직하고, 담지율은 30질량% 이하가 바람직하다. 반응에 사용하기 전에, 불소화 촉매의 적어도 일부가 불화수소 등에 의해 불소화 처리(촉매 활성화)되는 것이 바람직하다.The reactor is preferably a multi-pipe type in view of prevention of drift. The fluorinated catalyst charged in the reactor is preferably a bulk catalyst or a supported catalyst mainly composed of trivalent chromium oxide. The bulk catalyst is preferably composed of trivalent chromium oxide and preferably contains at least one element selected from the group consisting of In, Zn, Ni, Co, Mg and Al. The supported catalyst is a catalyst carrier with a pore size of 50 to 400Å, 70% or more of pores having a distribution of ± 50% of the center size, pore volume of 0.5 to 1.6ml / g, and purity of 99.9. At least one element selected from the group consisting of trivalent chromium oxide or trivalent chromium oxide, in which the active alumina is mass% or more and has a sodium content of 100 ppm or less and is selected from the group consisting of In, Zn, Ni, Co, and Mg. It is preferable to carry | support the material containing these, and 30 mass% or less of the support ratio is preferable. Prior to use in the reaction, at least part of the fluorination catalyst is preferably fluorinated (catalytically activated) by hydrogen fluoride or the like.
반응온도 범위는 150~350℃가 바람직하고, 보다 바람직하게는 200~300℃이다. 150℃ 미만에서는 반응 수율이 저하되는 경향이 있고, 350℃를 초과하면 불순물이 증가하는 경향이 있다. 반응압력 범위는 0.05~1.0MPa가 바람직하고, 보다 바람직하게는 0.1~0.7MPa의 범위이다. 0.05MPa 미만에서는 조작이 복잡해지고, 1.0MPa를 초과하면 장치를 보다 내압의 구조로 설계해야 하므로 비용이 증가한다. 반응기 중에서의 반응으로부터의 생성(출구) 가스를, 예컨대 냉각하고 펌프로 증류탑에 도입하거나, 또는 압축기를 사용하여 증류탑에 도입한다. 증류탑의 조작압력은 경제성 및 조작성의 관점에서 0.1~5MPa의 범위가 바람직하고, 보다 바람직하게는 0.3~3MPa이다. 증류탑에 도입된 생성 가스는 상부에서 주로 HCl와 HFC-41로 분리되고, 하부에서는 주로 미반응 성분인 불화수소와 염화메틸로 분리되어, 적어도 일부는 반응공정으로 순환되어 재사용된다. The reaction temperature range is preferably 150 to 350 ° C, more preferably 200 to 300 ° C. If it is less than 150 ° C, the reaction yield tends to decrease, and if it exceeds 350 ° C, impurities tend to increase. The reaction pressure range is preferably 0.05 to 1.0 MPa, more preferably 0.1 to 0.7 MPa. Below 0.05 MPa, operation is complicated, and above 1.0 MPa, the cost is increased because the device has to be designed with higher pressure resistance. The product (outlet) gas from the reaction in the reactor is, for example, cooled and introduced into the distillation column with a pump or introduced into the distillation column using a compressor. The operating pressure of the distillation column is preferably in the range of 0.1 to 5 MPa, more preferably 0.3 to 3 MPa from the viewpoint of economical efficiency and operability. The product gas introduced into the distillation column is mainly separated into HCl and HFC-41 at the top, and is mainly separated into hydrogen fluoride and methyl chloride, which are unreacted components, and at least part is circulated to the reaction process and reused.
증류탑 상부에서 분리된 HFC-41은 HCl을 함유하므로, 물 및/또는 알칼리를 함유하는 처리제와 접촉시켜 HCl을 함유하는 산성분을 제거한다. 알칼리를 함유하는 처리제는 알칼리 수용액 또는 알칼리를 함유하는 고체재료(예컨대, 소다 라임 등)이어도 좋다. 바람직한 처리제는 물 및 알칼리 수용액이다. 바람직한 알칼리 수용액은 수산화나트륨 및 수산화칼륨이고, 알칼리 수용액의 농도는 0.01~20%의 범위이고, 특히 0.1~10%의 범위 내인 것이 바람직하다. 접촉시간은 특별히 한정되지 않지만, 접촉온도는 물에서의 HFC-41의 용해도가 다소 높기 때문에 저온 범위가 바람직하고, 구체적으로는 5~40℃의 범위가 바람직하다. The HFC-41 separated at the top of the distillation column contains HCl and, therefore, is contacted with a treatment agent containing water and / or alkali to remove the acid component containing HCl. The treating agent containing an alkali may be an aqueous alkali solution or a solid material containing an alkali (for example, soda lime or the like). Preferred treatment agents are water and aqueous alkali solution. Preferred aqueous alkali solutions are sodium hydroxide and potassium hydroxide, and the concentration of the aqueous alkali solution is in the range of 0.01 to 20%, particularly preferably in the range of 0.1 to 10%. Although contact time is not specifically limited, Since the solubility of HFC-41 in water is rather high, the low temperature range is preferable, and the range of 5-40 degreeC is specifically, preferable.
산성분 제거처리된 HFC-41의 HCl 농도는 1.0질량ppm 이하이다(이온 크로마토그래피로 측정함).The HCl concentration of the acid component removed HFC-41 was 1.0 ppm by mass or less (measured by ion chromatography).
산성분이 제거된 HFC-41에 수분이 존재하므로, 제올라이트와 접촉시켜서 수분을 제거하는 것이 바람직하다. 제올라이트는 HFC-41의 작은 분자크기 및 흡착열에 의한 발열과 분해를 고려하여, 분자체 3A 및/또는 분자체 4A의 기공 크기가 작은 제올라이트인 것이 바람직하고, 수분제거 처리된 HFC-41는 수분농도가 10질량ppm 이하로 된다(측정기기: Carl Fisher).Since water is present in the HFC-41 from which the acid component has been removed, it is preferable to remove the water by contacting the zeolite. The zeolite is preferably a zeolite having a small pore size of the molecular sieve 3A and / or the molecular sieve 4A in consideration of the small molecular size of the HFC-41 and the heat generation and decomposition by the heat of adsorption. Is 10 mass ppm or less (measurement instrument: Carl Fisher).
본 발명을 실시예에 의해 상세히 설명하지만, 본 발명이 이들 실시예에 한정되는 것은 아니다. Although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
실시예1Example 1
촉매 제조예1Catalyst Preparation Example 1
순수 0.6L을 함유하고 있는 10L의 용기에, 순수 1.2L 중의 452g의 Cr(NO3)3·9H2O 및 42g의 In(NO3)3·nH2O(n= 약 5)의 용액과 0.3L의 28% 암모니아수를 교반하면서 반응용액의 pH가 7.5~8.5의 범위 내가 되도록 2개의 수용액의 유량을 조절하면서, 약 1시간 동안 적하했다. 얻어진 수산화물 슬러리를 여과하고 순수로 충분히 세정한 후, 120℃에서 12시간 건조했다. 얻어진 고체를 분쇄한 후, 흑연과 혼합하고, 정제기를 사용하여 펠릿으로 형성했다. 이 펠릿을 질소기류하에서 400℃에서 4시간 동안 발화시켜 촉매전구체를 얻었다. 촉매전구체를 인코넬 반응기에 충전한 다음, 상압, 350℃에서 질소희석한 불화수소 기류하에서, 또 그 다음 100% 불화수소 기류하에서 불소화 처리(촉매 활성화)를 행하여 촉매를 제조했다.In a 10 L vessel containing 0.6 L of pure water, a solution of 452 g of Cr (NO 3 ) 3 .9H 2 O and 42 g of In (NO 3 ) 3 .nh 2 O (n = about 5) in 1.2 L of pure water While stirring 0.3 L of 28% aqueous ammonia, the reaction solution was added dropwise for about 1 hour while adjusting the flow rates of the two aqueous solutions so that the pH of the reaction solution was within the range of 7.5 to 8.5. The obtained hydroxide slurry was filtered and thoroughly washed with pure water, and then dried at 120 ° C for 12 hours. The obtained solid was pulverized, mixed with graphite, and formed into pellets using a purifier. This pellet was ignited at 400 DEG C for 4 hours under a nitrogen stream to obtain a catalyst precursor. The catalyst was charged by charging the catalyst precursor to an Inconel reactor, followed by fluorination treatment (catalytic activation) under a nitrogen-dilute hydrogen fluoride stream at atmospheric pressure and 350 ° C., followed by a 100% hydrogen fluoride stream.
실시예2Example 2
촉매 제조예2Catalyst Preparation Example 2
촉매담체로서, 중심 기공 크기가 50~400Å이고, 중심크기의 ±50%의 분포를 갖는 기공 70% 이상으로 이루어지고, 기공 체적이 0.5~1.6ml/g의 범위이고, 순도 99.9질량% 이상이고 나트륨 함유량이 100ppm 이하인 활성 알루미나(NTS-7, Nikki Universal Co., Ltd. 제품)를 사용하였다.The catalyst carrier has a central pore size of 50 to 400 microns, a pore volume of 70% or more with a distribution of ± 50% of the central size, a pore volume of 0.5 to 1.6 ml / g, and a purity of 99.9 mass% or more. Activated alumina (NTS-7, manufactured by Nikki Universal Co., Ltd.) having a sodium content of 100 ppm or less was used.
염화크롬(CrCl3·6H2O) 191.5g을 순수 132ml에 투입하고, 혼합물을 온수배스에서 70~80℃로 가열하여 용해했다. 용액을 실온으로 냉각한 후, 상기 용액이 활성 알루미나에 모두 흡수될 때 까지 상기 활성 알루미나 400g을 침지했다. 다음에 젖은 상태의 알루미나를 90℃ 온수배스위에서 건조하여 경화시켰다. 경화된 촉매를 공기순환 열풍건조기 내에서 3시간 동안 건조했다. 그 다음, 촉매를 인코넬 반응기에 충전하고, 상압, 330℃에서 질소희석한 불화수소 기류하에서, 또 그 다음 100% 불화수소 기류하에서 불소화 처리(촉매 활성화)를 하여 촉매를 제조했다.191.5 g of chromium chloride (CrCl 3 · 6H 2 O) was added to 132 ml of pure water, and the mixture was heated and dissolved in a hot water bath at 70 to 80 ° C. After cooling the solution to room temperature, 400 g of the activated alumina was immersed until the solution was all absorbed into the activated alumina. Next, the wet alumina was dried on a 90 ° C. hot water bath and cured. The cured catalyst was dried for 3 hours in an air circulating hot air dryer. The catalyst was then charged to an Inconel reactor and subjected to fluorination (catalytic activation) under a nitrogen fluoride stream of hydrogen fluoride at atmospheric pressure, 330 ° C. and then under a 100% hydrogen fluoride stream.
실시예3Example 3
촉매 제조예3Catalyst Preparation Example 3
실시예2의 촉매 제조예2에 제2 성분으로서 염화아연(ZnCl2) 16.57g을 첨가하는 것을 제외하고는, 촉매 조제예2와 동일한 방법으로 촉매를 얻었다.A catalyst was obtained in the same manner as in Catalyst Preparation Example 2, except that 16.57 g of zinc chloride (ZnCl 2 ) was added as a second component to Preparation Example 2 of Example 2.
실시예4Example 4
시판의 염화메틸(순도 99.9vol%, 수분 함유량 48질량ppm)을 반응계에 공급하기 전에 제올라이트(분자체 3A(Union Showa Co., Ltd. 제품, 평균기공크기: 3Å ))와 액상으로 접촉시키고, 염화메틸 중의 수분이 6질량ppm인 것을 수분계(Carl Fisher)로 분석하였다. Commercially available methyl chloride (purity 99.9 vol%, water content 48 mass ppm) was contacted in liquid phase with zeolite (molecular sieve 3A (manufactured by Union Showa Co., Ltd., average pore size: 3 kPa)) before feeding to the reaction system. It was analyzed by a water meter (Carl Fisher) that the water in the methyl chloride is 6 ppm by mass.
내경 1인치, 길이 1m의 인코넬 600 반응기에 실시예1의 촉매 제조예1에서 제조한 촉매 80ml을 충전한 후, 질소가스를 순환시키면서 온도 300℃, 압력 0.25MPa로 유지하고, 그 후 불화수소를 73.85NL/hr로 공급하고, 질소가스의 공급을 종료한 다음, 상기 제올라이트 처리된 염화메틸을 6.15NL/hr로 공급하여 반응을 시작했다. 약 3시간 후, 반응기 출구가스 중의 산성분을 알칼리 수용액으로 제거하고 가스 크로마토그래피로 분석했다. 결과는 하기와 같다.80 ml of the catalyst prepared in Preparation Example 1 of the catalyst was charged to an Inconel 600 reactor having an internal diameter of 1 inch and a length of 1 m, and then maintained at a temperature of 300 ° C. and a pressure of 0.25 MPa while circulating nitrogen gas. The reaction was started by supplying 73.85 NL / hr and terminating the supply of nitrogen gas, and then supplying the zeolite treated methyl chloride at 6.15 NL / hr. After about 3 hours, the acid component in the reactor outlet gas was removed with an aqueous alkali solution and analyzed by gas chromatography. The results are as follows.
CH3F 18.9470 CH3Cl 80.9100CH 3 F 18.9470 CH 3 Cl 80.9100
기타 0.1431 (단위: vol%)Others 0.1431 (Unit: vol%)
염화메틸 전환율은 약 19.1%이고, 플루오로메탄 선택율은 약 99.2%이었다.The methyl chloride conversion was about 19.1% and the fluoromethane selectivity was about 99.2%.
실시예5Example 5
실시예2의 촉매 제조예2에서 제조한 촉매 80ml을 충전한 것을 제외하고는, 실시예4와 동일한 조건 및 순서로 반응 및 분석을 행했다. 결과는 하기와 같다.The reaction and analysis were carried out under the same conditions and procedures as in Example 4, except that 80 ml of the catalyst prepared in Preparation Example 2 of Example 2 was charged. The results are as follows.
CH3F 19.7816 CH3Cl 80.0976CH 3 F 19.7816 CH 3 Cl 80.0976
기타 0.1208 (단위:vol%)Others 0.1208 (Unit: vol%)
플루오로메탄 선택율은 약 99.4%로 만족스러운 결과를 얻었다.The fluoromethane selectivity was about 99.4%, yielding satisfactory results.
그 다음에, 상기 시판의 염화메틸(수분 함유량: 48질량ppm)에 순수를 첨가하여, 염화메틸 중의 수분 농도가 208질량ppm인 염화메틸 원료를 제조했다. 상기 제 올라이트 처리된 염화메틸의 공급을 종료하고, 상기 수분농도 208질량ppm의 염화메틸을 공급하여 반응을 재개했다. 약 8시간 후, 반응기 출구가스 중의 산성분을 알칼리 수용액으로 제거하고 가스 크로마토그래피로 분석했다. 결과는 하기와 같다.Next, pure water was added to the commercially available methyl chloride (water content: 48 mass ppm) to prepare a methyl chloride raw material having a water concentration of 208 mass ppm in methyl chloride. Supply of the said zeolite-treated methyl chloride was complete | finished, and the reaction was restarted by supplying the said methyl chloride of 208 mass ppm of water concentrations. After about 8 hours, the acid component in the reactor outlet gas was removed with an aqueous alkali solution and analyzed by gas chromatography. The results are as follows.
CH3F 17.4412 CH3Cl 82.1959CH 3 F 17.4412 CH 3 Cl 82.1959
기타 0.3629 (단위:vol%)Others 0.3629 (Unit: vol%)
상기 결과에서 보듯이, 원료 염화메틸 중에 수분은 반응에 악영향을 주고, 전환율 및 선택율을 저하시키기 때문에 바람직하지 못하다.As can be seen from the above results, moisture in the raw material methyl chloride is not preferable because it adversely affects the reaction and lowers the conversion and selectivity.
실시예6Example 6
실시예3의 촉매 제조예3에서 제조한 촉매 80ml을 충전하고, 반응온도를 250℃로 한 것을 제외하고는, 실시예4와 동일한 조건 및 순서로 반응 및 분석을 했다. 결과는 하기와 같다.Reaction and analysis were carried out in the same conditions and procedures as in Example 4, except that 80 ml of the catalyst prepared in Preparation Example 3 of Example 3 was charged and the reaction temperature was 250 ° C. The results are as follows.
CH3F 15.2266 CH3Cl 84.7576CH 3 F 15.2266 CH 3 Cl 84.7576
기타 0.0158 (단위: vol%)Others 0.0158 (Unit: vol%)
플루오로메탄 선택율은 약 99.9%로 만족스러운 결과를 얻었다. A fluoromethane selectivity of about 99.9% yielded satisfactory results.
그 다음에, 반응기 출구가스를 냉각기가 구비된 용기에 회수하고, 회수한 혼합물을 증류했다. 먼저 회수한 혼합물을 증류탑에 도입했다. 증류탑은 응축기를 구비하고 있고 이론단수가 20단(실제로 36단)이고; 탑의 상부에서 저비점 성분의 HCl과 CH3F를 분리하고 탑의 하부에서 고비점 성분의 CH3Cl과 HF를 분리했다. 상부에서 분리된 HCl과 CH3F를 약 5℃의 온도에서 2% 수산화칼륨 수용액에 접촉시킨 다음, HFC-41 중의 HCl농도를 이온 크로마토그래피로 분석하였을 때, HCl농도는 0.5질량ppm이었다.Then, the reactor outlet gas was collected in a vessel equipped with a cooler, and the recovered mixture was distilled off. The recovered mixture was introduced into a distillation column. The distillation column has a condenser and has 20 theoretical stages (36 in fact); At the top of the tower, HCl and CH 3 F of low boiling point components were separated and CH 3 Cl and HF of high boiling point components were separated from the bottom of the tower. When HCl and CH 3 F separated at the top were contacted with a 2% aqueous potassium hydroxide solution at a temperature of about 5 ° C., the HCl concentration in HFC-41 was analyzed by ion chromatography, and the HCl concentration was 0.5 ppm by mass.
상기 알칼리 수용액에 접촉시킨 후, HFC-41을 제올라이트(분자체3A(Union Showa Ci., Ltd. 제품)와 접촉시키고 HFC-41 중의 수분 함유량을 수분계(Carl Fisher)로 수분농도가 4질량ppm 이하인 것을 분석하여, 고순도의 HFC-41이 얻어졌음을 알았다.After contacting the aqueous alkali solution, HFC-41 was contacted with zeolite (molecular sieve 3A (manufactured by Union Showa Ci., Ltd.), and the water content in HFC-41 was 4 mass ppm or less using a water meter (Carl Fisher). It was found that HFC-41 of high purity was obtained.
본 발명에 의하면 HFC-41과 HCl을 함유하는 혼합물로부터 HCl을 효율적으로 분리하여, 고순도의 HFC-41을 얻을 수 있으므로, 산업상 유용하다.According to the present invention, since HCl can be efficiently separated from a mixture containing HFC-41 and HCl, high purity HFC-41 can be obtained, which is industrially useful.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004269660 | 2004-09-16 | ||
JPJP-P-2004-00269660 | 2004-09-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070038566A true KR20070038566A (en) | 2007-04-10 |
KR100884287B1 KR100884287B1 (en) | 2009-02-18 |
Family
ID=38159800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077004515A KR100884287B1 (en) | 2004-09-16 | 2005-09-01 | Fluoromethane production process and product |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100884287B1 (en) |
CN (1) | CN100562510C (en) |
TW (1) | TW200616929A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014221727A (en) * | 2013-05-13 | 2014-11-27 | 昭和電工株式会社 | Dichloromethane purification method and method of producing difluoromethane using the same |
CN106542959B (en) * | 2016-11-01 | 2019-05-14 | 北京宇极科技发展有限公司 | The preparation method of one fluoromethane |
CN110606797A (en) * | 2019-06-20 | 2019-12-24 | 绿菱电子材料(天津)有限公司 | Preparation method of high-conversion-rate monofluoromethane |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608235A (en) | 1983-06-28 | 1985-01-17 | Showa Denko Kk | Production of fluoromethane |
JPS6013726A (en) | 1983-07-04 | 1985-01-24 | Showa Denko Kk | Preparation of fluoromethane |
-
2005
- 2005-09-01 KR KR1020077004515A patent/KR100884287B1/en active IP Right Grant
- 2005-09-01 CN CNB2005800312479A patent/CN100562510C/en active Active
- 2005-09-12 TW TW094131358A patent/TW200616929A/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR100884287B1 (en) | 2009-02-18 |
CN101023051A (en) | 2007-08-22 |
TW200616929A (en) | 2006-06-01 |
TWI346097B (en) | 2011-08-01 |
CN100562510C (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5013692B2 (en) | Fluoromethane production method and product | |
KR101531734B1 (en) | Iodine compound production system and production process | |
ES2391880T3 (en) | Procedure for the preparation of 2,3,3,3-tetrafluoropropene | |
US7045668B2 (en) | Production and use of hexafluoroethane | |
KR20100130177A (en) | Inorganic iodide, production method thereof, and production system thereof | |
KR100884287B1 (en) | Fluoromethane production process and product | |
JP2010138164A (en) | Method for producing difluoroacetate | |
KR100854982B1 (en) | Process for production of 1,1,1,2-tetrafluoroethane and/or pentafluoroethane and applications of the same | |
KR100643674B1 (en) | Process for production of hydrofluorocarbons, products thereof and use of the products | |
KR100839063B1 (en) | Purification method of, 1,1-difluoroethane | |
KR100854983B1 (en) | Method for purification of 1,1-dichloroethane and process for production of 1,1-difluoroethane using this method | |
WO2006030677A1 (en) | Fluoromethane production process and product | |
KR20150133789A (en) | Purification method for dichloromethane, and production method for difluoromethane using said purification method | |
CN1384049A (en) | Preparation of nitrogen trifluoride | |
JP5357607B2 (en) | Method for producing carbonyl difluoride | |
KR100543253B1 (en) | Production and use of hexafluoroethane | |
JP4225736B2 (en) | Method for producing fluoroethane and use thereof | |
JP5217927B2 (en) | Method for producing difluoroacetic acid ester | |
JP5228817B2 (en) | Method for producing pyrazole compound | |
JP4609613B2 (en) | Carbon monoxide production method | |
KR100265580B1 (en) | Purification of 1,1,1,2-tetrafluoroethane | |
JPWO2006030656A1 (en) | Method for purifying ethyl chloride and method for producing fluoroethane using the same | |
US20040242943A1 (en) | Process for the production of fluoroethane and use of the produced fluoroethane | |
JP4458784B2 (en) | Method for producing pentafluoroethane and use thereof | |
JPH03240760A (en) | Production of dl-serine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130118 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140117 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150119 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160119 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170119 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180202 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190130 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20200205 Year of fee payment: 12 |