JP5013692B2 - Fluoromethane production method and product - Google Patents

Fluoromethane production method and product Download PDF

Info

Publication number
JP5013692B2
JP5013692B2 JP2005256674A JP2005256674A JP5013692B2 JP 5013692 B2 JP5013692 B2 JP 5013692B2 JP 2005256674 A JP2005256674 A JP 2005256674A JP 2005256674 A JP2005256674 A JP 2005256674A JP 5013692 B2 JP5013692 B2 JP 5013692B2
Authority
JP
Japan
Prior art keywords
fluoromethane
producing
catalyst
zeolite
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005256674A
Other languages
Japanese (ja)
Other versions
JP2006111611A (en
Inventor
博基 大野
龍晴 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005256674A priority Critical patent/JP5013692B2/en
Publication of JP2006111611A publication Critical patent/JP2006111611A/en
Application granted granted Critical
Publication of JP5013692B2 publication Critical patent/JP5013692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、フルオロメタン(CHF、以下HFC−41と称することがある。)の製造方法に関する。 The present invention relates to a method for producing fluoromethane (CH 3 F, hereinafter sometimes referred to as HFC-41).

ハイドロフルオロカ−ボン(HFC)類はオゾン破壊係数がゼロという特徴があり、またHFC−41、ジフルオロメタン(CH)やトリフルオロメタン(CHF)などは半導体用エッチングガスとして有用な化合物である。 Hydrofluorocarbons (HFCs) are characterized by zero ozone depletion potential, and HFC-41, difluoromethane (CH 2 F 2 ), trifluoromethane (CHF 3 ) and the like are useful compounds as etching gases for semiconductors. It is.

半導体用エッチングガスに用いられるHFC類は、高純度品が求められ、特に酸成分(塩化水素、フッ化水素など)については好ましくは1.0質量ppm以下、また水分についても10質量ppm以下、より好ましくは5質量ppm以下であることが求められている。   HFCs used for semiconductor etching gases are required to be high-purity products. Particularly, acid components (hydrogen chloride, hydrogen fluoride, etc.) are preferably 1.0 mass ppm or less, and moisture is also 10 mass ppm or less. More preferably, it is required to be 5 ppm by mass or less.

そのため、高純度のHFC類を製造するための多くの方法が提案されているが、これらは炭素原子を2つ以上有するものであり、炭素原子が1つのメタンはクロロホルムのフッ素化やジクロロメタンのフッ素化等に関するものであり、HFC−41の製造方法については殆ど提案されていない。その主な理由は、ハロゲン化炭化水素をフッ素化する場合、分子中に含まれる水素原子が多いほど、フッ素化の反応性が低くなり、分解または副反応を起こし易いためである。   Therefore, many methods for producing high-purity HFCs have been proposed. These methods have two or more carbon atoms, and methane having one carbon atom is fluorinated with chloroform or fluorinated with dichloromethane. There has been little proposal for a method for producing HFC-41. The main reason is that when the halogenated hydrocarbon is fluorinated, the more hydrogen atoms contained in the molecule, the lower the reactivity of fluorination, and the easier it is to cause decomposition or side reactions.

こうした中で、特許文献1(特公平4−7330号公報)には、メチルアルコールとフッ化水素(HF)とを、フッ素化触媒(フッ化クロム)を用いて、100〜500℃の温度で気相反応させることにより、HFC−41を製造する方法が開示されている。しかし、この方法は、副生する水によってフッ素化触媒の劣化および反応装置等の腐食を引き起こすという問題点を有している。   Under such circumstances, Patent Document 1 (Japanese Patent Publication No. 4-7330) discloses methyl alcohol and hydrogen fluoride (HF) at a temperature of 100 to 500 ° C. using a fluorination catalyst (chromium fluoride). A method for producing HFC-41 by gas phase reaction is disclosed. However, this method has a problem that water produced as a by-product causes deterioration of the fluorination catalyst and corrosion of the reaction apparatus.

また、特許文献2(特開昭60−13726号公報)には、塩化メチル(CH3Cl)とHFとを、フッ素化触媒(フッ化クロム)を用いて、反応温度100〜400℃の条件で気相反応させることにより、HFC−41を製造する方法が開示されている。しかし、この方法は、下記式1に示す平衡反応が存在するため、触媒活性を更に向上させること、ならびにHFC−41(大気圧下の沸点:−78.5℃)と塩化水素(大気圧下の沸点:−84.9℃)との沸点が近い、共沸混合物を形成する等により分離が難しいなどの問題点を有している。 Patent Document 2 (Japanese Patent Application Laid-Open No. Sho 60-13726) discloses that the reaction temperature is 100 to 400 ° C. using methyl chloride (CH 3 Cl) and HF using a fluorination catalyst (chromium fluoride). Discloses a method for producing HFC-41 by gas phase reaction. However, in this method, since the equilibrium reaction shown in the following formula 1 exists, the catalytic activity is further improved, and HFC-41 (boiling point under atmospheric pressure: −78.5 ° C.) and hydrogen chloride (under atmospheric pressure). Has a boiling point close to -84.9 ° C.) and is difficult to separate by forming an azeotropic mixture.

Figure 0005013692
Figure 0005013692

特公平4−7330号公報Japanese Patent Publication No. 4-7330 特開昭60−13726号公報Japanese Patent Laid-Open No. 60-13726

本発明は、半導体用エッチングガスとして使用することができる高純度のHFC−41を効率的に製造する方法およびその製品を提供することを課題とする。   An object of the present invention is to provide a method for efficiently producing high-purity HFC-41 that can be used as an etching gas for semiconductors, and a product thereof.

本発明者らは、上記課題を解決すべく鋭意検討した結果、塩化メチルとフッ化水素とを、気相で、フッ素化触媒の存在下で反応させ、フルオロメタンと塩化水素とを含む混合物を蒸留塔に導き、フルオロメタンと塩化水素とを塔頂留分として分離し、精製を行うことにより、実質的に塩化水素(HCl)を含まないHFC−41(HCl濃度:20質量ppm以下)を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have reacted methyl chloride and hydrogen fluoride in the gas phase in the presence of a fluorination catalyst, and obtained a mixture containing fluoromethane and hydrogen chloride. HFC-41 (HCl concentration: 20 mass ppm or less) that does not substantially contain hydrogen chloride (HCl) is obtained by leading to a distillation column, separating fluoromethane and hydrogen chloride as a column top fraction, and performing purification. The present invention has been found, and the present invention has been completed.

本発明は、以下の[1]〜[11]に示されるHFC−41の製造方法に関する。   The present invention relates to a method for producing HFC-41 shown in the following [1] to [11].

[1]次の4つの工程を含むことを特徴とするフルオロメタンの製造方法。
(1)塩化メチルをゼオライトと液相で接触させる工程、
(2)(1)の工程を経た塩化メチルとフッ化水素を、フッ素化触媒の存在下、気相で反応させて主としてフルオロメタンを得る工程、
(3)(2)の工程で得られたフルオロメタンを含む混合ガスを蒸留塔に導き、主としてフルオロメタンと塩化水素を含む塔頂留分と、主として塩化メチルとフッ化水素を含む塔底留分とに分離する工程、および
(4)(3)の工程で得られた塔頂留分からフルオロエタンを分離精製する工程。
[1] A method for producing fluoromethane, comprising the following four steps.
(1) contacting methyl chloride with zeolite in a liquid phase;
(2) A step of mainly obtaining fluoromethane by reacting methyl chloride and hydrogen fluoride which have undergone the step of (1) in the gas phase in the presence of a fluorination catalyst,
(3) The mixed gas containing fluoromethane obtained in the process of (2) is led to a distillation column, and a column top fraction containing mainly fluoromethane and hydrogen chloride, and a column bottom fraction containing mainly methyl chloride and hydrogen fluoride. And (4) a step of separating and purifying fluoroethane from the top fraction obtained in steps (4) and (3).

[2]前記(3)の工程で得られた塔底留分を工程(2)に循環する工程を含む上記[1]に記載のフルオロメタンの製造方法。   [2] The method for producing fluoromethane according to the above [1], comprising a step of circulating the bottom fraction obtained in the step (3) to the step (2).

[3]前記(1)の工程で用いるゼオライトが、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aである上記[1]または[2]に記載のフルオロメタンの製造方法。   [3] The method for producing fluoromethane according to the above [1] or [2], wherein the zeolite used in the step (1) is molecular sieve 3A and / or molecular sieve 4A.

[4]前記(2)の工程で用いるフッ素化触媒が、3価の酸化クロムを主成分として、In、Zn、Ni、Co、MgおよびAlからなる群より選ばれる少なくとも1種の元素を含む担持型または塊状型触媒である上記[1]に記載のフルオロメタンの製造方法。   [4] The fluorination catalyst used in the step (2) contains at least one element selected from the group consisting of In, Zn, Ni, Co, Mg, and Al with trivalent chromium oxide as a main component. The method for producing fluoromethane according to the above [1], which is a supported type or bulk type catalyst.

[5]前記(2)の工程で用いるフッ素化触媒が、活性アルミナに担持された担持型触媒であり、活性アルミナは中心細孔径が50〜400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5〜1.6ml/gの範囲で製造された、純度99.9質量%以上、かつ、ナトリウム含有量が100ppm以下である上記[1]または[4]に記載のフルオロメタンの製造方法。   [5] The fluorination catalyst used in the step (2) is a supported catalyst supported on activated alumina, and the activated alumina has a center pore diameter of 50 to 400 mm and a distribution with a center diameter of ± 50%. The pores occupy 70% or more, the pore volume was produced in the range of 0.5 to 1.6 ml / g, the purity was 99.9% by mass or more, and the sodium content was 100 ppm or less [1 ] Or the manufacturing method of the fluoromethane as described in [4].

[6]前記(2)の工程における反応温度が、150〜350℃である上記[1]、[4]または[5]に記載のフルオロメタンの製造方法。   [6] The method for producing fluoromethane according to the above [1], [4] or [5], wherein the reaction temperature in the step (2) is 150 to 350 ° C.

[7]前記(3)の工程における蒸留が、0.1〜5MPaの圧力範囲内で行なわれる上記[1]に記載のフルオロメタンの製造方法。   [7] The method for producing fluoromethane according to [1], wherein the distillation in the step (3) is performed within a pressure range of 0.1 to 5 MPa.

[8]前記(4)の工程における分離精製工程が、フルオロメタンを、水および/またはアルカリを含む処理剤に接触させて、塩化水素を含む酸成分を除去する工程を含む上記[1]に記載のフルオロメタンの製造方法。   [8] In the above [1], the separation and purification step in the step (4) includes a step of contacting fluoromethane with a treating agent containing water and / or alkali to remove an acid component containing hydrogen chloride. The manufacturing method of fluoromethane as described.

[9]前記フルオロメタン中の酸成分を除去する工程の後に、フルオロメタンをゼオライトと接触させる工程を含む上記[8]に記載のフルオロメタンの製造方法。   [9] The method for producing fluoromethane according to the above [8], comprising a step of contacting the fluoromethane with zeolite after the step of removing the acid component in the fluoromethane.

[10]前記ゼオライトが、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aである上記[9]に記載のフルオロメタンの製造方法。   [10] The method for producing fluoromethane according to the above [9], wherein the zeolite is molecular sieve 3A and / or molecular sieve 4A.

[11]上記[1]〜[10]のいずれかに記載の方法により得られるフルオロメタンであって、塩化水素濃度が1.0質量ppm以下であるフルオロメタンを含むことを特徴とするフルオロメタン製品。   [11] Fluoromethane obtained by the method according to any one of [1] to [10] above, comprising fluoromethane having a hydrogen chloride concentration of 1.0 mass ppm or less. Product.

[12]上記[1]〜[10]のいずれかに記載の方法により得られるフルオロメタンであって、水分濃度が10質量ppm以下であるフルオロメタンを含むことを特徴とするフルオロメタン製品。   [12] A fluoromethane product obtained by the method according to any one of [1] to [10] above, comprising fluoromethane having a water concentration of 10 ppm by mass or less.

本発明によれば、塩化メチルとフッ化水素とを、気相でフッ素化触媒の存在下で反応させ、生成物のHFC−41とHClとを含む混合物からHClを効率よく分離することができ、高純度のHFC−41を得ることができる。   According to the present invention, methyl chloride and hydrogen fluoride can be reacted in a gas phase in the presence of a fluorination catalyst, and HCl can be efficiently separated from a mixture containing the product HFC-41 and HCl. High-purity HFC-41 can be obtained.

以下に、本発明に係るHFC−41の製造方法、およびその製品について詳しく説明する。   Below, the manufacturing method of HFC-41 which concerns on this invention, and its product are demonstrated in detail.

本発明のHFC−41の製造方法は、原料として塩化メチルとフッ化水素とを用い、これらを気相で3価の酸化クロムを主成分とする担持型または塊状型フッ素化触媒の存在下で反応させ、HFC−41とHClとを含む混合物を蒸留塔に導き、蒸留塔の塔頂からHFC−41とHClを留出させ、精製を行うことにより高純度のHFC−41を得ることを特徴とする。   The method for producing HFC-41 of the present invention uses methyl chloride and hydrogen fluoride as raw materials, and these are used in the presence of a supported or bulk fluorination catalyst mainly composed of trivalent chromium oxide in the gas phase. The reaction is characterized in that a mixture containing HFC-41 and HCl is introduced into a distillation column, HFC-41 and HCl are distilled off from the top of the distillation column, and purification is performed to obtain high-purity HFC-41. And

原料の塩化メチルは、反応領域に供給される前段でゼオライトと液相で接触させて含まれる水分を極力低減することが好ましい。また、安定剤を含む場合は、これも除去することが触媒寿命を維持するため必要である。反応領域への水分の混入は、装置の材料の腐触や分解による副生物の生成等の悪影響を及ぼす。ゼオライトとしては、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aが好ましい。塩化メチルとフッ化水素は反応器入り口で混合され、反応器に導入される。フッ化水素と塩化メチルとのモル比(HF/CHCl)は、5〜30が好ましく、より好ましくは8〜20のモル比である。モル比が5未満では不純物の生成割合が多く、選択率が悪くなる。また、30を超えると、収率が低下したり、未反応原料の循環量が多くなるために装置が大きくなる等、好ましくない。 The raw material methyl chloride is preferably brought into contact with the zeolite in a liquid phase before being supplied to the reaction zone to reduce the contained water as much as possible. Moreover, when a stabilizer is included, it is necessary to remove the stabilizer in order to maintain the catalyst life. Incorporation of moisture into the reaction region has an adverse effect such as by-product formation due to corrosion or decomposition of the material of the apparatus. As the zeolite, molecular sieve 3A and / or molecular sieve 4A are preferable. Methyl chloride and hydrogen fluoride are mixed at the reactor inlet and introduced into the reactor. The molar ratio of hydrogen fluoride and methyl chloride (HF / CH 3 Cl) is preferably from 5 to 30, more preferably the molar ratio of 8 to 20. When the molar ratio is less than 5, the generation ratio of impurities is large and the selectivity is deteriorated. On the other hand, if it exceeds 30, the yield is lowered, and the amount of unreacted raw material is increased.

反応器は、偏流防止の観点から多管式のものが好ましい。反応器に充填されるフッ素化触媒は、3価の酸化クロムを主成分とし、塊状型触媒または担持型触媒であるのが好ましい。塊状型触媒は、3価の酸化クロムを主成分とし、In、Zn、Ni、Co、MgおよびAlからなる群より選ばれる少なくとも1種の元素を含むものであるのが好ましい。担持型触媒は、中心細孔径が50〜400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5〜1.6ml/gの範囲で製造された、純度99.9質量%以上で、かつ、ナトリウム含有量が100ppm以下である活性アルミナを触媒担体として、これに3価の酸化クロムを担持させたもの、または前記の活性アルミナ担体に3価の酸化クロムを主成分とし、In、Zn、Ni、CoおよびMgからなる群より選ばれる少なくとも1種の元素を含むものであるのが好ましく、担持率としては30質量%以下が好ましい。これらのフッ素化触媒は、反応に使用する前に、例えば、少なくとも一部がフッ化水素等によりフッ素化処理(触媒の活性化)されるのが好ましい。   The reactor is preferably a multi-tube type from the viewpoint of preventing drift. The fluorination catalyst charged in the reactor is preferably a bulk catalyst or a supported catalyst mainly composed of trivalent chromium oxide. The bulk catalyst preferably contains trivalent chromium oxide as a main component and contains at least one element selected from the group consisting of In, Zn, Ni, Co, Mg, and Al. The supported catalyst has a center pore diameter of 50 to 400 mm, pores having a distribution with a center diameter of ± 50% occupy 70% or more, and the pore volume is in the range of 0.5 to 1.6 ml / g. The activated alumina having a purity of 99.9% by mass or more and a sodium content of 100 ppm or less is used as a catalyst carrier, and trivalent chromium oxide is supported on the activated alumina carrier, or the activated alumina carrier is 3 It is preferable that the main component is valent chromium oxide and contains at least one element selected from the group consisting of In, Zn, Ni, Co, and Mg, and the loading is preferably 30% by mass or less. These fluorination catalysts are preferably subjected to fluorination treatment (activation of the catalyst), for example, at least partly with hydrogen fluoride before use in the reaction.

反応の温度範囲は150〜350℃が好ましく、より好ましくは200〜300℃である。150℃未満では反応収率が低下し、また350℃を超えると不純物が増加し、好ましくない。反応の圧力範囲は0.05〜1.0MPaが好ましく、より好ましくは0.1〜0.7MPaの範囲である。0.05MPa未満では操作が困難であり、1.0MPaを超えると装置をより耐圧の構造にしなければならない等、経済的でない。反応器で反応させた生成(出口)ガスを、例えば、冷却し、ポンプで蒸留塔に導入するか、またはコンプレッサ−を用いて蒸留塔に導入する。蒸留塔の操作圧力は、経済性、操作性の観点から0.1〜5MPaの範囲がよく、より好ましくは0.3〜3MPaが好ましい。蒸留塔に導入された生成ガスは、塔頂より主としてHCl、HFC−41が分離され、塔底より、主として未反応物であるフッ化水素と塩化メチルが分離され、これらの少なくとも一部は反応工程に循環し再利用される。   The temperature range of the reaction is preferably 150 to 350 ° C, more preferably 200 to 300 ° C. If it is less than 150 ° C., the reaction yield decreases, and if it exceeds 350 ° C., impurities increase, which is not preferable. The pressure range of the reaction is preferably 0.05 to 1.0 MPa, more preferably 0.1 to 0.7 MPa. If it is less than 0.05 MPa, the operation is difficult, and if it exceeds 1.0 MPa, the apparatus must have a more pressure-resistant structure, which is not economical. The product (exit) gas reacted in the reactor is cooled, for example, introduced into the distillation column with a pump, or introduced into the distillation column using a compressor. The operation pressure of the distillation tower is preferably in the range of 0.1 to 5 MPa, more preferably 0.3 to 3 MPa from the viewpoints of economy and operability. In the product gas introduced into the distillation column, mainly HCl and HFC-41 are separated from the top of the column, and mainly unreacted hydrogen fluoride and methyl chloride are separated from the bottom of the column. At least a part of these is reacted. It is recycled to the process and reused.

蒸留塔の塔頂より分離されたHFC−41は、HClを含むため、水および/またはアルカリを含む処理剤と接触させてHClを含む酸成分を除去する。アルカリを含む処理剤としては、アルカリ水溶液でも、アルカリを含む固体材料(例えば、ソーダライム等)でもよい。好ましい処理剤としては、水またはアルカリ水溶液である。アルカリ水溶液としては水酸化ナトリウムまたは水酸化カリウムが好ましく、アルカリ水溶液の濃度は、0.01〜20%の範囲内、特に0.1〜10%の範囲内であることが好ましい。接触時間は特に限定されないが、接触温度は、HFC−41の水への溶解度がやや大きいことから、より低温領域が好ましく、具体的には5〜40℃の範囲内が望ましい。   Since HFC-41 separated from the top of the distillation column contains HCl, it is brought into contact with a treatment agent containing water and / or alkali to remove the acid component containing HCl. The treating agent containing alkali may be an aqueous alkali solution or a solid material containing alkali (for example, soda lime). A preferable treating agent is water or an aqueous alkali solution. As the alkaline aqueous solution, sodium hydroxide or potassium hydroxide is preferable, and the concentration of the alkaline aqueous solution is preferably within a range of 0.01 to 20%, particularly preferably within a range of 0.1 to 10%. Although the contact time is not particularly limited, the contact temperature is preferably in a lower temperature range because the solubility of HFC-41 in water is slightly high, and specifically, it is preferably in the range of 5 to 40 ° C.

酸分除去処理されたHFC−41では、HCl濃度は1.0質量ppm以下となる(測定機器:イオンクロマトグラフィ−)。   In HFC-41 that has been subjected to acid removal treatment, the HCl concentration is 1.0 mass ppm or less (measuring instrument: ion chromatography).

酸分除去されたHFC−41中には水分が含有されるため、ゼオライトと接触させて脱水することが望ましい。ゼオライトとしては、HFC−41の分子径が小さいため、吸着熱による発熱、分解等を考慮して、細孔径の小さいゼオライト、例えば、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aと接触させることが好ましく、水分除去処理されたHFC−41では、水分濃度は10質量ppm以下となる(測定機器:カールフィシャー)。   Since the water content is contained in the acid-removed HFC-41, it is desirable to dehydrate by contacting with zeolite. As the zeolite, since the molecular diameter of HFC-41 is small, it is preferable to make contact with zeolite with a small pore diameter, for example, molecular sieve 3A and / or molecular sieve 4A in consideration of heat generation due to heat of adsorption, decomposition, etc. In HFC-41 that has been subjected to moisture removal treatment, the moisture concentration is 10 ppm by mass or less (measuring instrument: Karl Fischer).

以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples.

実施例1
触媒の調製例1
純水0.6Lを入れた10Lの容器に、452gのCr(NO・9HOと42gにIn(NO・nHO(nは約5)を純水1.2Lに溶かした溶液と、0.3Lの28%アンモニア水を撹拌しながら、反応液のpHが7.5〜8.5の範囲内になるように、2種の水溶液の流量をコントロールしながら約1時間かけて滴下した。得られた水酸化物のスラリ−を濾別し、純水でよく洗浄した後、120℃で12時間乾燥した。得られた固体を粉砕後、黒鉛と混合し、打錠成型器によってペレット化した。窒素気流下、このペレットを400℃で4時間焼成し、触媒前駆体を得た。次に、触媒前駆体をインコネル製反応器に充填し、常圧下に350℃で、窒素希釈したフッ化水素気流下、次いで100%フッ化水素気流下でフッ素化処理(触媒の活性化)を行い、触媒の調製を行った。
Example 1
Catalyst preparation example 1
In a 10 L container containing 0.6 L of pure water, 452 g of Cr (NO 3 ) 3 · 9H 2 O and 42 g of In (NO 3 ) 3 · nH 2 O (n is about 5) 1.2 L of pure water While stirring 0.3 L of 28% aqueous ammonia and a solution dissolved in the solution, the flow rate of the two aqueous solutions is controlled so that the pH of the reaction solution is within the range of 7.5 to 8.5. The solution was added dropwise over 1 hour. The obtained hydroxide slurry was filtered off, washed thoroughly with pure water, and dried at 120 ° C. for 12 hours. The obtained solid was pulverized, mixed with graphite, and pelletized by a tableting machine. Under a nitrogen stream, this pellet was calcined at 400 ° C. for 4 hours to obtain a catalyst precursor. Next, the catalyst precursor is charged into an Inconel reactor, and fluorination treatment (activation of the catalyst) is performed at 350 ° C. under normal pressure, in a hydrogen fluoride stream diluted with nitrogen, and then in a 100% hydrogen fluoride stream. The catalyst was prepared.

実施例2
触媒の調製例2
触媒担体として、中心細孔径が50〜400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5〜1.6ml/gの範囲で製造された純度99.9質量%以上で、かつ、ナトリウム含有量が100ppm以下である活性アルミナ(日揮ユニバーサル(株)NST−7)を使用。
Example 2
Catalyst Preparation Example 2
The catalyst support has a center pore diameter of 50 to 400 mm, pores having a distribution with a center diameter of ± 50% occupy 70% or more, and the pore volume is in the range of 0.5 to 1.6 ml / g. Further, activated alumina (JGC Universal Co., Ltd. NST-7) having a purity of 99.9% by mass or more and a sodium content of 100 ppm or less is used.

塩化クロム(CrCl・6HO)191.5gを純水132mlに投入し、湯浴上で70〜80℃に加熱して溶解した。溶液を室温まで冷却後、上記の活性アルミナ400gを浸漬して、アルミナに前記溶液を全量吸収させた。次いで、濡れた状態のアルミナを90℃の湯浴上で乾燥し、乾固した。乾固した触媒を空気循環型の熱風乾燥器内で3時間乾燥した。次に、触媒をインコネル製反応器に充填し、常圧下に330℃で、窒素希釈したフッ化水素気流下、次いで100%フッ化水素気流下でフッ素化処理(触媒の活性化)を行い、触媒の調製を行った。 Chromium chloride (CrCl 3 · 6H 2 O) 191.5g were put in pure water 132 ml, it was dissolved by heating to 70 to 80 ° C. on a hot water bath. After cooling the solution to room temperature, 400 g of the above-mentioned activated alumina was immersed, and the entire amount of the solution was absorbed in alumina. Next, the wet alumina was dried on a 90 ° C. hot water bath and solidified. The dried catalyst was dried in an air circulation type hot air dryer for 3 hours. Next, the catalyst is filled in an Inconel reactor, and fluorination treatment (activation of the catalyst) is performed under a normal pressure at 330 ° C. under a hydrogen fluoride stream diluted with nitrogen and then under a 100% hydrogen fluoride stream. Catalyst preparation was performed.

実施例3
触媒の調製例3
実施例2の触媒の調製例2に第2成分として塩化亜鉛(ZnCl)16.57gを添加した以外は、触媒の調製例2と同様にして触媒を得た。
Example 3
Catalyst Preparation Example 3
A catalyst was obtained in the same manner as in Catalyst Preparation Example 2, except that 16.57 g of zinc chloride (ZnCl 2 ) was added as a second component to Catalyst Preparation Example 2 of Example 2.

実施例4
市販されている塩化メチル(純度99.9vol%、水分48質量ppm)を反応系に供給する前にゼオライト(モレキュラーシーブ3A(ユニオン昭和(株)製:平均細孔径3Å))と液相で接触させた後、塩化メチル中の水分を水分計(カールフィシャー)により分析したところ、6質量ppmであった。
Example 4
Contact with zeolite (Molecular Sieve 3A (Union Showa Co., Ltd .: average pore diameter: 3 mm)) in liquid phase before supplying commercially available methyl chloride (purity 99.9 vol%, moisture 48 mass ppm) to the reaction system Then, the moisture in the methyl chloride was analyzed by a moisture meter (Karl Fischer) and found to be 6 mass ppm.

内径1インチ、長さ1mのインコネル600型反応器に、実施例1で示した触媒の調製例1で調製した触媒80mlを充填し、窒素ガスを流しながら温度を300℃、圧力0.25MPaに維持し、その後フッ化水素を73.85NL/hrで供給し、窒素ガスの供給を停止後、前記のゼオライト処理後の塩化メチルを6.15NL/hrで供給し、反応を開始した。約3時間後、反応器出口ガス中の酸分をアルカリ水溶液で除去し、ガスクロマトグラフィーにて分析した。結果を下記に示す。   An Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m is filled with 80 ml of the catalyst prepared in Preparation Example 1 of the catalyst shown in Example 1, and the temperature is set to 300 ° C. and the pressure is set to 0.25 MPa while flowing nitrogen gas. Then, hydrogen fluoride was supplied at 73.85 NL / hr, nitrogen gas supply was stopped, and methyl chloride after the zeolite treatment was supplied at 6.15 NL / hr to start the reaction. After about 3 hours, the acid content in the gas at the outlet of the reactor was removed with an aqueous alkali solution and analyzed by gas chromatography. The results are shown below.

CHF 18.9470 CHCl 80.9100
その他 0.1431 (単位:vol%)
塩化メチルの転化率は約19.1%であり、フルオロメタンの選択率は約99.2%であった。
CH 3 F 18.9470 CH 3 Cl 80.9100
Others 0.1431 (Unit: vol%)
The conversion of methyl chloride was about 19.1% and the selectivity for fluoromethane was about 99.2%.

実施例5
実施例2で示した触媒の調製例2で調製した触媒80mlを充填した以外は、実施例4と同一の条件および操作で反応、分析を行なった。結果を下記に示す。
Example 5
The reaction and analysis were performed under the same conditions and operations as in Example 4 except that 80 ml of the catalyst prepared in Preparation Example 2 of the catalyst shown in Example 2 was charged. The results are shown below.

CHF 19.7816 CHCl 80.0976
その他 0.1208 (単位:vol%)
目的とするフルオロメタンの選択率は約99.4%と良好な結果である。
CH 3 F 19.7816 CH 3 Cl 80.0976
Others 0.1208 (Unit: vol%)
The selectivity of the target fluoromethane is about 99.4%, which is a good result.

次に、市販の前記の塩化メチル(水分48質量ppm)に純水を添加し、塩化メチル中の水分濃度を208質量ppmとした塩化メチル原料を調製した。前記のゼオライト処理した塩化メチルの供給を停止し、前記の水分濃度208質量ppmの塩化メチルを供給し、反応を再開した。約8時間後、反応器出口ガス中の酸分をアルカリ水溶液で除去し、ガスクロマトグラフィーにて分析した。結果を下記に示す。   Next, pure water was added to the above-mentioned commercially available methyl chloride (water content: 48 mass ppm) to prepare a methyl chloride raw material having a water concentration in the methyl chloride of 208 mass ppm. The supply of the zeolite-treated methyl chloride was stopped, the methyl chloride having a water concentration of 208 mass ppm was supplied, and the reaction was restarted. After about 8 hours, the acid content in the reactor outlet gas was removed with an alkaline aqueous solution and analyzed by gas chromatography. The results are shown below.

CHF 17.4412 CHCl 82.1959
その他 0.3629 (単位:vol%)
上記の結果から明らかなように、原料の塩化メチル中に含まれる水分は反応に悪影響を与え、転化率、選択率とも低下し、好ましくない。
CH 3 F 17.4412 CH 3 Cl 82.959
Others 0.3629 (Unit: vol%)
As is apparent from the above results, moisture contained in the raw material methyl chloride adversely affects the reaction, and both the conversion and selectivity are unfavorable.

実施例6
実施例3で示した触媒の調製例3で調製した触媒80mlを充填し、反応温度を250℃とした以外は、実施例4と同一の条件および操作で反応および分析を行った。結果を下記に示す。
Example 6
The reaction and analysis were performed under the same conditions and operation as in Example 4 except that 80 ml of the catalyst prepared in Preparation Example 3 of the catalyst shown in Example 3 was charged and the reaction temperature was 250 ° C. The results are shown below.

CHF 15.2266 CHCl 84.7576
その他 0.0158 (単位:vol%)
目的とするフルオロメタンの選択率は約99.9%と良好な結果であった。
CH 3 F 15.2266 CH 3 Cl 84.7576
Others 0.0158 (Unit: vol%)
The selectivity of the intended fluoromethane was about 99.9%, which was a good result.

次に、反応出口ガスを冷却器を備えた容器に回収し、回収混合物の蒸留操作を行った。回収混合物を蒸留塔に導入した。蒸留塔は凝縮器を備えた理論段数20段(実段数36段)の蒸留塔であり、塔頂より低沸分のHClとCH3Fを分離し、塔底より高沸分のCHClとHFを分離した。塔頂より分離されたHClとCHFを、温度約5℃で2%水酸化カリウム水溶液に接触させて酸分を除去した後、HFC−41中のHCl濃度をイオンクロマトグラフィーにて分析したところ、HCl濃度は0.5質量ppmであった。 Next, reaction outlet gas was collect | recovered in the container provided with the cooler, and distillation operation of the collection | recovery mixture was performed. The recovered mixture was introduced into the distillation column. The distillation column is a distillation column equipped with a condenser and having 20 theoretical plates (36 actual plates), separating HCl and CH 3 F of low boiling point from the top of the column and CH 3 Cl of high boiling point from the bottom of the column. And HF were separated. HCl and CH 3 F separated from the top of the column were contacted with a 2% aqueous potassium hydroxide solution at a temperature of about 5 ° C. to remove the acid content, and then the HCl concentration in HFC-41 was analyzed by ion chromatography. However, the HCl concentration was 0.5 mass ppm.

前記のアルカリ水溶液に接触させた後、ゼオライト(モレキュラーシーブ3A(ユニオン昭和(株)製)と接触させ、HFC−41中の水分を水分計(カールフィシャー)により分析したところ、水分濃度は4質量ppm以下であり、高純度のHFC−41が得られた。   After contacting with the above alkaline aqueous solution, it was brought into contact with zeolite (Molecular Sieve 3A (Union Showa Co., Ltd.) and the moisture in HFC-41 was analyzed by a moisture meter (Karl Fischer). HFC-41 having a purity of not more than ppm and high purity was obtained.

本発明は、HFC−41とHClを含む混合物からHClを効率よく分離して、高純度のHFC−41を得ることを可能にするので産業上有用である。   The present invention is industrially useful because it makes it possible to efficiently separate HCl from a mixture containing HFC-41 and HCl to obtain high-purity HFC-41.

Claims (10)

次の4つの工程を含むことを特徴とするフルオロメタンの製造方法。
(1)塩化メチルをゼオライトと液相で接触させる工程、
(2)(1)の工程を経た塩化メチルとフッ化水素を、フッ素化触媒の存在下、気相で反応させて主としてフルオロメタンを得る工程、
(3)(2)の工程で得られたフルオロメタンを含む混合ガスを蒸留塔に導き、主としてフルオロメタンと塩化水素を含む塔頂留分と、主として塩化メチルとフッ化水素を含む塔底留分とに分離する工程、および
(4)(3)の工程で得られた塔頂留分からフルオロタンを分離精製する工程。
The manufacturing method of the fluoromethane characterized by including the following four processes.
(1) contacting methyl chloride with zeolite in a liquid phase;
(2) A step of mainly obtaining fluoromethane by reacting methyl chloride and hydrogen fluoride which have undergone the step of (1) in the gas phase in the presence of a fluorination catalyst,
(3) The mixed gas containing fluoromethane obtained in the process of (2) is led to a distillation column, and a column top fraction containing mainly fluoromethane and hydrogen chloride, and a column bottom fraction containing mainly methyl chloride and hydrogen fluoride. step of separating the minute and, and (4) (3) of the process obtained in the step of separating and purifying the fluoro methane from the top fraction.
前記(3)の工程で得られた塔底留分を工程(2)に循環する工程を含む請求項1に記載のフルオロメタンの製造方法。   The manufacturing method of the fluoromethane of Claim 1 including the process of circulating the tower bottom fraction obtained at the process of said (3) to process (2). 前記(1)の工程で用いるゼオライトが、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aである請求項1または2に記載のフルオロメタンの製造方法。   The method for producing fluoromethane according to claim 1 or 2, wherein the zeolite used in the step (1) is molecular sieve 3A and / or molecular sieve 4A. 前記(2)の工程で用いるフッ素化触媒が、3価の酸化クロムを主成分として、In、Zn、Ni、Co、MgおよびAlからなる群より選ばれる少なくとも1種の元素を含む担持型または塊状型触媒である請求項1に記載のフルオロメタンの製造方法。   The fluorination catalyst used in the step (2) is a supported type containing trivalent chromium oxide as a main component and containing at least one element selected from the group consisting of In, Zn, Ni, Co, Mg and Al or The method for producing fluoromethane according to claim 1, which is a bulk catalyst. 前記(2)の工程で用いるフッ素化触媒が、活性アルミナに担持された担持型触媒であり、活性アルミナは中心細孔径が50〜400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5〜1.6ml/gの範囲で製造された、純度99.9質量%以上、かつ、ナトリウム含有量が100ppm以下である請求項1または4に記載のフルオロメタンの製造方法。   The fluorination catalyst used in the step (2) is a supported catalyst supported on activated alumina, and the activated alumina has a central pore diameter of 50 to 400 mm and 70 pores having a distribution of the central diameter ± 50%. The purity is 99.9% by mass or more and the sodium content is 100 ppm or less, and the pore volume is 0.5 to 1.6 ml / g. The manufacturing method of fluoromethane as described. 前記(2)の工程における反応温度が、150〜350℃である請求項1、4または5に記載のフルオロメタンの製造方法。   The method for producing fluoromethane according to claim 1, 4 or 5, wherein the reaction temperature in the step (2) is 150 to 350 ° C. 前記(3)の工程における蒸留が、0.1〜5MPaの圧力範囲内で行なわれる請求項1に記載のフルオロメタンの製造方法。   The method for producing fluoromethane according to claim 1, wherein the distillation in the step (3) is performed within a pressure range of 0.1 to 5 MPa. 前記(4)の工程における分離精製工程が、フルオロメタンを、水および/またはアルカリを含む処理剤に接触させて、塩化水素を含む酸成分を除去する工程を含む請求項1に記載のフルオロメタンの製造方法。   2. The fluoromethane according to claim 1, wherein the separation and purification step in the step (4) includes a step of contacting the fluoromethane with a treating agent containing water and / or alkali to remove an acid component containing hydrogen chloride. Manufacturing method. 前記フルオロメタン中の酸成分を除去する工程の後に、フルオロメタンをゼオライトと接触させる工程を含む請求項8に記載のフルオロメタンの製造方法。   The method for producing fluoromethane according to claim 8, further comprising a step of contacting the fluoromethane with zeolite after the step of removing the acid component in the fluoromethane. 前記ゼオライトが、モレキュラーシーブ3Aおよび/またはモレキュラーシーブ4Aである請求項9に記載のフルオロメタンの製造方法。   The method for producing fluoromethane according to claim 9, wherein the zeolite is molecular sieve 3A and / or molecular sieve 4A.
JP2005256674A 2004-09-16 2005-09-05 Fluoromethane production method and product Active JP5013692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256674A JP5013692B2 (en) 2004-09-16 2005-09-05 Fluoromethane production method and product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004269660 2004-09-16
JP2004269660 2004-09-16
JP2005256674A JP5013692B2 (en) 2004-09-16 2005-09-05 Fluoromethane production method and product

Publications (2)

Publication Number Publication Date
JP2006111611A JP2006111611A (en) 2006-04-27
JP5013692B2 true JP5013692B2 (en) 2012-08-29

Family

ID=36380424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256674A Active JP5013692B2 (en) 2004-09-16 2005-09-05 Fluoromethane production method and product

Country Status (1)

Country Link
JP (1) JP5013692B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928919B1 (en) * 2008-03-19 2011-07-29 Rhodia Operations PROCESS FOR THE PREPARATION OF DIFLUOROACETIC ACID AND ITS SALTS
JP2014530214A (en) * 2011-09-30 2014-11-17 ハネウェル・インターナショナル・インコーポレーテッド Method for producing 2,3,3,3-tetrafluoropropene
KR102000371B1 (en) 2012-11-14 2019-07-15 다이킨 고교 가부시키가이샤 Method for producing dry etching gas
JP2014221727A (en) * 2013-05-13 2014-11-27 昭和電工株式会社 Dichloromethane purification method and method of producing difluoromethane using the same
KR101751656B1 (en) 2013-08-09 2017-06-27 다이킨 고교 가부시키가이샤 Method for manufacturing methyl fluoride
GB201615197D0 (en) * 2016-09-07 2016-10-19 Mexichem Fluor Sa De Cv Catalyst and process using the catalyst
GB201615209D0 (en) * 2016-09-07 2016-10-19 Mexichem Fluor Sa De Cv Catalyst and process using the catalyst
KR20230017769A (en) 2020-05-29 2023-02-06 니폰 제온 가부시키가이샤 Method for producing monofluoromethane
JPWO2022255120A1 (en) 2021-05-31 2022-12-08
EP4414350A1 (en) * 2021-10-06 2024-08-14 Resonac Corporation (e)-1,1,1,4,4,4-hexafluoro-2-butene production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608234A (en) * 1983-06-27 1985-01-17 Showa Denko Kk Production of fluoromethane
JPS608235A (en) * 1983-06-28 1985-01-17 Showa Denko Kk Production of fluoromethane
JPS6013726A (en) * 1983-07-04 1985-01-24 Showa Denko Kk Preparation of fluoromethane
JPS6016943A (en) * 1983-07-07 1985-01-28 Showa Denko Kk Production of fluoromethane
JPS60116637A (en) * 1983-11-29 1985-06-24 Showa Denko Kk Preparation of fluoromethane
EP0366797A4 (en) * 1988-04-28 1990-12-27 Showa Denko Kabushiki Kaisha Process for producing organofluorine compound
JP3582798B2 (en) * 1993-06-18 2004-10-27 昭和電工株式会社 Fluorination catalyst and fluorination method
US6180518B1 (en) * 1999-10-29 2001-01-30 Lucent Technologies Inc. Method for forming vias in a low dielectric constant material

Also Published As

Publication number Publication date
JP2006111611A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP5013692B2 (en) Fluoromethane production method and product
US5523500A (en) Mass catalysts based on chromium and nickel oxides and their application to the fluorination of halogenated hydrocarbons
CN103429558A (en) Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
KR20110020253A (en) Manufacturing method and refining method for 1,2,3,4-tetrachlorohexafluorobutane
KR20100130177A (en) Inorganic iodide, production method thereof, and production system thereof
JP5473928B2 (en) Method for producing carbonyl difluoride
TW202043182A (en) Method for producing halogenated butene
JP2010138164A (en) Method for producing difluoroacetate
KR100854982B1 (en) Process for production of 1,1,1,2-tetrafluoroethane and/or pentafluoroethane and applications of the same
WO2010104742A2 (en) Processes for making alkyl halides
JP2001247518A (en) Method of producing diaryl carbonate
KR100884287B1 (en) Fluoromethane production process and product
KR100643674B1 (en) Process for production of hydrofluorocarbons, products thereof and use of the products
US4003984A (en) Production of sulfuryl fluoride
KR100839063B1 (en) Purification method of, 1,1-difluoroethane
CN1384049A (en) Preparation of nitrogen trifluoride
JP5357607B2 (en) Method for producing carbonyl difluoride
KR20150133789A (en) Purification method for dichloromethane, and production method for difluoromethane using said purification method
WO2006030677A1 (en) Fluoromethane production process and product
JP4738035B2 (en) Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof
JP4225736B2 (en) Method for producing fluoroethane and use thereof
JP4574259B2 (en) Method for purifying fluoromethane
JP2007119292A (en) Method and apparatus for production of nitrogen trifluoride
JPH06171907A (en) Production of chlorine
JP2005206584A (en) Method for purifying 1,1-difluoroethane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350