KR100643674B1 - Process for production of hydrofluorocarbons, products thereof and use of the products - Google Patents

Process for production of hydrofluorocarbons, products thereof and use of the products Download PDF

Info

Publication number
KR100643674B1
KR100643674B1 KR1020057008285A KR20057008285A KR100643674B1 KR 100643674 B1 KR100643674 B1 KR 100643674B1 KR 1020057008285 A KR1020057008285 A KR 1020057008285A KR 20057008285 A KR20057008285 A KR 20057008285A KR 100643674 B1 KR100643674 B1 KR 100643674B1
Authority
KR
South Korea
Prior art keywords
hydrofluorocarbon
producing
gas
distillation column
column
Prior art date
Application number
KR1020057008285A
Other languages
Korean (ko)
Other versions
KR20050086475A (en
Inventor
히로모토 오노
타츠하루 아라이
Original Assignee
쇼와 덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쇼와 덴코 가부시키가이샤 filed Critical 쇼와 덴코 가부시키가이샤
Publication of KR20050086475A publication Critical patent/KR20050086475A/en
Application granted granted Critical
Publication of KR100643674B1 publication Critical patent/KR100643674B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Detergent Compositions (AREA)

Abstract

할로겐화메탄 혼합물과 불화수소를, 기상에서, 불소화 촉매의 존재하에 단일 반응대에서 반응시켜, 생성가스를 증류탑에 안내하여 분리정제한 후, 2종이상의 하이드로플루오로카본을 얻는다. 반도체 디바이스의 제조공정에서 에팅가스 혹은 클리닝가스로서 사용할 수 있는 고순도의 하이드로플루오로카본류, 특히 플루오로메탄, 디플루오로메탄을 공업적으로 유리하게 제조할 수 있다.The methane halide mixture and the hydrogen fluoride are reacted in a gaseous phase in the presence of a fluorination catalyst in a single reaction zone, and the product gas is led to a distillation column for separation and purification, thereby obtaining two or more hydrofluorocarbons. High purity hydrofluorocarbons, in particular fluoromethane and difluoromethane, which can be used as an etching gas or a cleaning gas in the manufacturing process of a semiconductor device, can be industrially advantageously produced.

Description

하이드로플루오로카본의 제조방법, 그 제품 및 그 용도{PROCESS FOR PRODUCTION OF HYDROFLUOROCARBONS, PRODUCTS THEREOF AND USE OF THE PRODUCTS}Process for producing hydrofluorocarbons, products thereof and uses thereof {PROCESS FOR PRODUCTION OF HYDROFLUOROCARBONS, PRODUCTS THEREOF AND USE OF THE PRODUCTS}

본 발명은, 고순도의 하이드로플루오로카본의 제조방법, 그 제품 및 그 용도에 관한 것이다.The present invention relates to a method for producing high purity hydrofluorocarbon, a product thereof, and a use thereof.

하이드로플루오로카본(이하, 「HFC」이라고 하는 일이 있다)류는 오존 파괴계수가 제로라고 하는 특징을 갖고, 예를 들면 주로 1,1,1,2-테트라플루오로에탄, 펜타플루오로에탄이나 디플루오로메탄(이하, 「HFC-32」이라고 하는 일이 있다)은 냉매 가스로서 유용한 화합물이며, 또 플루오로메탄(이하, 「HFC-41」이라고 하는 일이 있다), 디플루오로메탄이나 트리플루오로메탄(이하, 「HFC-23」이라고 하는 일이 있다) 등은 반도체용 에칭가스로서 유용한 화합물이다.Hydrofluorocarbons (hereinafter may be referred to as "HFC") have the characteristic of having an ozone depletion coefficient of zero, for example, mainly 1,1,1,2-tetrafluoroethane and pentafluoroethane. Ina difluoromethane (hereinafter may be referred to as "HFC-32") is a compound useful as a refrigerant gas, and fluoromethane (hereinafter may be referred to as "HFC-41"), difluoromethane Or trifluoromethane (hereinafter sometimes referred to as "HFC-23") is a compound useful as an etching gas for semiconductors.

디플루오로메탄의 제조방법으로서는, 예를 들면 염화메틸렌(이하, 「디클로로메탄」이라고 하는 일이 있다) 또는 클로로플루오로메탄(이하, 「HCFC-31」이라고 하는 일이 있다)과 불화수소를, 불소화 촉매의 존재하에, 기상에서 반응시키는 방법(미국특허 제2745886호 명세서, 미국특허 제3235612호 명세서) 등이 알려지고, 한편 액상법으로 할로겐화 안티몬를 촉매로서 사용하는 방법(미국특허 제2005711호 명세서) 등도 알려져 있지만, 어느 것이나 주로 촉매에 관한 제안이다.As a method for producing difluoromethane, for example, methylene chloride (hereinafter may be referred to as "dichloromethane") or chlorofluoromethane (hereinafter may be referred to as "HCFC-31") and hydrogen fluoride. And a method of reacting in a gas phase in the presence of a fluorination catalyst (US Patent No. 2745886, US Patent No. 3235612) and the like are known, and a method of using antimony halide as a catalyst by liquid phase method (US Patent No. 2005711) Although these etc. are also known, all are proposals regarding a catalyst mainly.

플루오로메탄의 제조방법으로서는, 예를 들면, 메틸알콜과 불화수소를 기상에서 불화크롬 촉매를 이용하여 불소화하는 방법(일본 특허공개 평4-7330호 공보) 등이나 염화메틸과 불화수소를 불화크롬 촉매의 존재하에, 기상에서 반응시키는 방법(일본 특허공개 소60-13726호 공보) 등이 알려져 있지만, 생성수에 의한 부식이나 선택율이 나쁜 등의 문제가 있다.As a method for producing fluoromethane, for example, a method of fluorinating methyl alcohol and hydrogen fluoride using a chromium fluoride catalyst in the gas phase (Japanese Patent Laid-Open No. Hei 4-7330), or chromium chloride and hydrogen fluoride Although a method of reacting in the gas phase in the presence of a catalyst (Japanese Patent Laid-Open No. 60-13726) and the like are known, there are problems such as corrosion due to generated water and poor selectivity.

또한 2종이상의 하이드로플루오로카본의 제조방법으로서는, 예를 들면 2-클로로-1,1,1-트리플루오로에탄과 불화수소를 반응시켜서 1,1,1,2-테트라플루오로에탄을 생성시키고, 이 1,1,1,2-테트라플루오로에탄의 존재하에 염화메틸 및 트리클로로에틸렌을 불화수소와 반응시키는 방법(WO95/15937호 공보)이나 트리클로로에틸렌과 불화수소를 반응시켜서 2-클로로-1,1,1-트리플루오로에탄을 생성시키고, 이어서 2-클로로-1,1,1-트리플루오로에탄과 불화수소를 반응시켜서 1,1,1,2-테트라플루오로에탄을 생성시키는 공정 중에, 예를 들면 2,2-디클로로-1,1,1-트리플루오로에탄이나 2-클로로-1,1,1,2-테트라플루오로에탄을 첨가함으로써 1,1,1,2-테트라플루오로에탄과 함께 펜타플루오로에탄을 생성시키는 방법(일본 특허공표 평7-507787호 공보) 등이 알려져 있지만, 어느 것이나 반응조건이 다른 2개의 반응대(제1반응기 및 제2반응기)를 갖고 있어, 경제적이지 않은 등의 문제가 있고, 과제가 남겨져 있다.As a method for producing two or more kinds of hydrofluorocarbons, for example, 2-chloro-1,1,1-trifluoroethane and hydrogen fluoride are reacted to generate 1,1,1,2-tetrafluoroethane. In the presence of 1,1,1,2-tetrafluoroethane, methyl chloride and trichloroethylene are reacted with hydrogen fluoride (WO95 / 15937) or trichloroethylene and hydrogen fluoride are reacted to give 2- Chloro-1,1,1-trifluoroethane is produced, followed by reaction of 2-chloro-1,1,1-trifluoroethane with hydrogen fluoride to form 1,1,1,2-tetrafluoroethane. During the production process, for example, 2,2-dichloro-1,1,1-trifluoroethane or 2-chloro-1,1,1,2-tetrafluoroethane may be added to add 1,1,1, A method for producing pentafluoroethane with 2-tetrafluoroethane (Japanese Patent Laid-Open No. 7-507787) and the like are known, but any It has two reaction zones (1st reactor and 2nd reactor) different from reaction conditions, and there exists a problem of being uneconomical, and the subject remains.

본 발명은, 이러한 배경하에 이루어진 것이며, 반도체 디바이스의 제조공정에서 에칭가스 혹은 클리닝가스로서 사용할 수 있는 고순도의 하이드로플루오로카본류, 특히 플루오로메탄, 디플루오로메탄을 공업적으로 유리하게 제조하는 방법, 그 제품 및 그 용도를 제공하는 것을 과제로 한다.The present invention has been made under such a background, and the industrially advantageous method for producing high-purity hydrofluorocarbons, in particular fluoromethane and difluoromethane, which can be used as etching gas or cleaning gas in the manufacturing process of semiconductor devices. The object of this invention is to provide the product and its use.

본 발명자는, 상기 과제를 해결하기 위해 예의검토한 결과, 원료로서 할로겐화메탄 혼합물과 불화수소를 사용하고, 이들을 기상에서, 불소화 촉매의 존재하에, 단일 반응대(1개의 반응기)에서 반응시켜, 생성가스를 증류탑에 안내하여 분리 정제후, 2종이상의 하이드로플루오로카본을 얻는 공정을 포함하는 방법을 사용하면 상기 과제를 해결할 수 있는 것을 찾아내고, 본 발명을 완성하기에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, as a raw material, it uses the halogenated methane halide mixture and hydrogen fluoride as a raw material, and makes them react in a gaseous phase in presence of a fluorination catalyst, in a single reaction zone (one reactor), Using a method comprising a step of guiding gas to a distillation column to separate and purify and then obtaining two or more hydrofluorocarbons, the inventors have found that the above problems can be solved, and have completed the present invention.

따라서, 본 발명은, 할로겐화메탄 혼합물과 불화수소를, 기상에서 불소화 촉매의 존재하에 단일 반응대에서 반응시켜, 생성가스를 증류탑에 안내하여 분리 정제후, 2종이상의 하이드로플루오로카본을 얻는 공정을 포함하는 것을 특징으로 하는 하이드로플루오로카본의 제조방법을 제공한다.Accordingly, the present invention provides a process for obtaining two or more hydrofluorocarbons by reacting a methane halide mixture and hydrogen fluoride in a single reaction zone in the presence of a fluorination catalyst in a gas phase, and then separating and purifying the product gas through a distillation column. It provides a method for producing a hydrofluorocarbon comprising the.

본 발명은, 또한 상기의 제조방법을 이용하여 얻어지고, 순도가 99.999vol%이상인 플루오로메탄을 함유하는 것을 특징으로 하는 플루오로메탄 제품 또는 순도가 99.999vol%이상인 디플루오로메탄을 함유하는 것을 특징으로 하는 디플루오로메탄 제품을 제공한다.The present invention further provides a fluoromethane product obtained by using the above production method and containing fluoromethane having a purity of 99.999 vol% or more, or containing difluoromethane having a purity of 99.999 vol% or more. Provided is a difluoromethane product.

본 발명은, 또한, 상기의 플루오로메탄 제품 또는 디플루오로메탄 제품을 함유하는 것을 특징으로 하는 에칭가스 또는 클리닝가스를 제공한다.The present invention also provides an etching gas or a cleaning gas comprising the above fluoromethane product or difluoromethane product.

즉, 본 발명은, 예를 들면 이하의 [1]∼[19]에 나타내어지는 사항을 포함한다.That is, this invention includes the matter shown to the following [1]-[19], for example.

[1]할로겐화메탄 혼합물과 불화수소를, 기상에서 불소화 촉매의 존재하에 단일 반응대에서 반응시키고, 생성가스를 증류탑에 안내하여 분리 정제한 후, 2종이상의 하이드로플루오로카본을 얻는 공정을 포함하는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.[1] a process of obtaining a mixture of methane halides and hydrogen fluoride in a gaseous phase in a single reaction zone in the presence of a fluorination catalyst, separating and purifying the product gas by distillation column, and then obtaining two or more hydrofluorocarbons. Method for producing a hydrofluorocarbon, characterized in that.

[2]원료의 할로겐화메탄 혼합물이, 염화메틸, 염화메틸렌, 클로로포름, 디클로로플루오로메탄, 클로로플루오로메탄 및 클로로디플루오로메탄으로 이루어지는 군에서 선택되는 2종이상의 화합물로 이루어지는 상기 [1]에 기재된 하이드로플루오로카본의 제조방법.[2] The above-mentioned [1], wherein the halogenated methane mixture of the raw material is composed of two or more compounds selected from the group consisting of methyl chloride, methylene chloride, chloroform, dichlorofluoromethane, chlorofluoromethane and chlorodifluoromethane. Process for producing the hydrofluorocarbons described.

[3]할로겐화메탄 혼합물이, 염화메틸 및 염화메틸렌으로 이루어지는 상기 [1] 또는 [2]에 기재된 하이드로플루오로카본의 제조방법.[3] The method for producing a hydrofluorocarbon according to the above [1] or [2], wherein the halogenated methane mixture is made of methyl chloride and methylene chloride.

[4]얻어지는 하이드로플루오로카본이, 플루오로메탄, 디플루오로메탄 및 트리플루오로메탄으로 이루어지는 군으로부터 선택되는 2종이상의 화합물인 상기 [1]∼[3] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[4] The hydrofluoro according to any one of the above [1] to [3], wherein the obtained hydrofluorocarbon is at least two compounds selected from the group consisting of fluoromethane, difluoromethane and trifluoromethane. Method of producing carbon.

[5]얻어지는 하이드로플루오로카본이, 플루오로메탄 및 디플루오로메탄인 상기 [1]∼[4] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[5] The method for producing a hydrofluorocarbon according to any one of [1] to [4], wherein the obtained hydrofluorocarbons are fluoromethane and difluoromethane.

[6]할로겐화메탄 혼합물 중에 함유되는 1종의 할로겐화메탄의 농도가 5∼95질량%의 범위 내에 있는 상기 [1]∼[5] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[6] The method for producing hydrofluorocarbons according to any one of [1] to [5], wherein the concentration of one halogenated methane contained in the halogenated methane mixture is in the range of 5 to 95 mass%.

[7]할로겐화메탄 혼합물 중에 함유되는 1종의 할로겐화메탄의 농도가 10∼90질량%의 범위 내에 있는 상기 [6]에 기재된 하이드로플루오로카본의 제조방법.[7] The method for producing a hydrofluorocarbon according to the above [6], wherein the concentration of one halogenated methane contained in the halogenated methane mixture is in the range of 10 to 90 mass%.

[8]반응원료인 불화수소와 할로겐화메탄의 몰비가 5∼30의 범위 내에서 반응이 행하여지는 상기 [1]∼[7] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[8] The method for producing a hydrofluorocarbon according to any one of [1] to [7], wherein the reaction is performed in a molar ratio of hydrogen fluoride and methane halide as a reaction raw material within a range of 5 to 30.

[9]반응이 150∼350℃의 온도범위 내에서 행하여지는 상기 [1]∼[8] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[9] The method for producing a hydrofluorocarbon according to any one of [1] to [8], wherein the reaction is performed within a temperature range of 150 to 350 ° C.

[10]반응이 0.05∼1㎫의 압력범위 내에서 행하여지는 상기 [1]∼[9] 중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[10] The method for producing a hydrofluorocarbon according to any one of [1] to [9], wherein the reaction is performed within a pressure range of 0.05 to 1 MPa.

[11]불소화촉매가 3가의 산화크롬을 주성분으로 하는 담지형 또는 괴상형 촉매인 상기 [1]∼[10]중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[11] The method for producing hydrofluorocarbons according to any one of [1] to [10], wherein the fluorinated catalyst is a supported or bulk catalyst having a trivalent chromium oxide as a main component.

[12]단일 반응대에서 반응시킨 생성가스를 제1증류탑에 도입하고, 탑정상으로부터 주로 염화수소와 하이드로플루오로카본을 분리하고, 탑밑바닥으로부터 주로 불화수소와 미반응의 할로겐화메탄을 분리하는 상기 [1]∼[11]중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[12] The above-mentioned gas which introduces a product gas reacted in a single reactor into a first distillation column, separates hydrogen chloride and hydrofluorocarbon mainly from the top of the column, and separates hydrogen fluoride and unreacted halogenated methane halide from the bottom of the column. The manufacturing method of the hydrofluorocarbon in any one of 1]-[11].

[13]제1증류탑의 탑정상으로부터 분리된 주로 염화수소와 하이드로플루오로카본을 제2증류탑에 도입하고, 탑정상으로부터 주로 염화수소를 분리하고, 탑밑바닥으로부터 주로 하이드로플루오로카본을 분리하며, 하이드로플루오로카본을 분리 정제해서 제품으로서 회수하는 상기 [1]∼[12]중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[13] Hydrogen chloride and hydrofluorocarbons separated from the top of the first distillation column are introduced into the second distillation column, hydrogen chloride is separated mainly from the top of the column, and hydrofluorocarbons are separated from the bottom of the column. The manufacturing method of the hydrofluorocarbon in any one of said [1]-[12] which isolate | separates and refine | purifies a carboxyl carbon and collect | recovers as a product.

[14]제1증류탑의 탑밑바닥으로부터 분리된 주로 불화수소와 미반응의 할로겐화메탄을 반응공정인 단일 반응대에 순환시키는 상기 [1]∼[13]중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[14] The production of hydrofluorocarbons according to any one of [1] to [13], wherein mainly hydrogen fluoride and unreacted halogenated methane separated from the bottom of the column of the first distillation column are circulated to a single reaction zone as a reaction step. Way.

[15]제1증류탑 및 제2증류탑의 조작 압력이 0.3∼3㎫의 범위 내에 있는 상기 [1]∼[14]중 어느 하나에 기재된 하이드로플루오로카본의 제조방법.[15] The method for producing a hydrofluorocarbon according to any one of [1] to [14], wherein the operating pressures of the first distillation column and the second distillation column are in the range of 0.3 to 3 MPa.

[16]상기 [1]∼[15] 중 어느 하나에 기재된 제조방법을 이용하여 얻어지고, 순도가 99·999vol%이상인 플루오로메탄을 함유하는 것을 특징으로 하는 플루오로메탄 제품.[16] A fluoromethane product obtained by using the production method according to any one of [1] to [15] and containing fluoromethane having a purity of 99.999 vol% or more.

[17]상기 [1]∼[15] 중 어느 한 항에 기재된 제조방법을 이용하여 얻어지고, 순도가 99.999vol%이상인 디플루오로메탄을 함유하는 것을 특징으로 하는 디플루오로메탄 제품.[17] A difluoromethane product obtained by using the production method according to any one of [1] to [15] and containing difluoromethane having a purity of 99.999 vol% or more.

[18]상기 [16]에 기재된 플루오로메탄 제품을 함유하는 것을 특징으로 하는 에칭가스 또는 클리닝가스.[18] An etching gas or cleaning gas containing the fluoromethane product according to the above [16].

[19]상기 [17]에 기재된 디플루오로메탄 제품을 함유하는 것을 특징으로 하는 에칭가스 또는 클리닝가스.[19] An etching gas or cleaning gas containing the difluoromethane product according to the above [17].

본 발명 에 의하면, 반도체 디바이스의 제조공정에서 에칭가스 혹은 클리닝가스로서 사용할 수 있고, 고순도의 하이드로플루오로카본류, 특히 플루오로메탄, 디플루오로메탄을 공업적으로 유리하게 제조할 수 있다.According to the present invention, it can be used as an etching gas or a cleaning gas in the manufacturing process of a semiconductor device, and industrially advantageously, high-purity hydrofluorocarbons, especially fluoromethane and difluoromethane, can be produced.

도 1은, 본 발명의 하이드로플루오로카본의 제조방법에 사용하는 장치의 일례를 나타내는 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the apparatus used for the manufacturing method of the hydrofluorocarbon of this invention.

이하에, 본 발명의 하이드로플루오로카본의 제조방법, 그 제품 및 그 용도에 대해서 상세하게 설명한다.EMBODIMENT OF THE INVENTION Below, the manufacturing method of the hydrofluorocarbon of this invention, its product, and its use are demonstrated in detail.

플루오로메탄의 제조방법으로서는, 상술한 바와 같이 종래부터 여러가지 방법이 알려져 있다. 이들 중, (1)메틸알콜과 불화수소를, 기상에서 불소화 촉매의 존재하에 불소화하는 방법, (2)염화메틸과 불화수소를, 불화크롬 촉매의 존재하에, 기상에서 반응시키는 방법에 대해서, (1)의 메틸알콜을 사용하는 방법은, 생성수에 의한 장치재료의 부식이나 선택율이 나쁜 등의 문제를 갖고 있고, (2)의 염화메틸을 사용하는 방법은, 반응에 평형이 존재하고, 수율이 낮은 등의 문제를 갖고 있다. 한편, 디플루오로메탄의 제조방법으로서는, (3)염화메틸렌 또는 클로로플루오로메탄과 불화수소를, 기상 또는 액상에서 반응시키는 방법이 알려져 있지만, 경제적이고 저렴한 제조법으로서는 과제를 남기고 있다.As the method for producing fluoromethane, various methods are known in the art as described above. Among them, (1) a method of fluorinating methyl alcohol and hydrogen fluoride in the presence of a fluorination catalyst in the gas phase, and (2) a method of reacting methyl chloride and hydrogen fluoride in the gas phase in the presence of a chromium fluoride catalyst, The method of using the methyl alcohol of 1) has problems such as corrosion of the device material by the generated water and poor selectivity, and the method of using the methyl chloride of (2) has an equilibrium in the reaction and yield. This has a low back problem. On the other hand, as a method for producing difluoromethane, (3) a method of reacting methylene chloride or chlorofluoromethane with hydrogen fluoride in a gaseous phase or in a liquid phase is known, but it remains a problem as an economical and inexpensive production method.

또한 2종이상의 하이드로플루오로카본의 제조방법으로서는, 상술과 같이, 1,1,1,2-테트라플루오로에탄을 2개의 반응기에서 제조하는 공정 중에, 염화메틸이나 트리클로로에틸렌을 첨가하여, 반응시키는 방법 등이 알려져 있지만, 어느 것이나 반응조건이 다른 2개의 반응대(제1반응기 및 제2반응기)를 갖고 있어, 경제적이고 저렴한 제조법으로서는 과제를 남기고 있다.Moreover, as a manufacturing method of 2 or more types of hydrofluorocarbons, methyl chloride and trichloroethylene are added and it reacts in the process of manufacturing 1,1,1,2- tetrafluoroethane in two reactors as mentioned above. Although the method of making it etc. is known, either has two reaction zones (1st reactor and 2nd reactor) different from reaction conditions, and remains a problem as an economical and inexpensive manufacturing method.

이하에, 본 발명의 하이드로플루오로카본의 제조방법의 바람직한 형태에 대해서 상세하게 설명한다.EMBODIMENT OF THE INVENTION Below, the preferable aspect of the manufacturing method of the hydrofluorocarbon of this invention is demonstrated in detail.

본 발명의 하이드로플루오로카본의 제조방법은, 원료로서 할로겐화메탄 혼합물과 불화수소를 사용하고, 이들을 기상에서 불소화 촉매의 존재하에 단일 반응대(1개의 반응기)에서 반응시켜, 생성가스를 증류탑에 안내하여 분리 정제한 후, 2종 이상의 하이드로플루오로카본을 얻는 공정을 포함하는 것을 특징으로 한다. 원료의 할로겐화메탄 혼합물은, 바람직하게는 염화메틸(CH3Cl), 염화메틸렌(CH2Cl2), 클로로포름(CHCl3), 디클로로플루오로메탄(CHCl2F), 클로로플루오로메탄(CH2ClF) 및 클로로디플루오로메탄(CHClF2)로 이루어지는 군에서 선택되는 적어도 2종의 화합물로 이루어지고, 더 바람직하게는 염화메틸과 염화메틸렌으로 이루어지는 것이 선택된다. 이들의 공급방법으로서는, 각각 단독으로 공급하여, 반응기 입구에서 혼합하는 방법이나 처음부터 혼합상태로 공급하는 방법 중 어느 쪽도 선택할 수 있다. 또한 할로겐화메탄 혼합물은, 반응기에 공급하는 전단계에서, 예를 들면, 몰레큘러시브(Molecular Sieves) 등의 탈수제를 사용해서 수분제거나 안정제의 제거 등을 실시한 것임이 바람직하다.In the method for producing a hydrofluorocarbon of the present invention, a methane halide mixture and hydrogen fluoride are used as raw materials, and these are reacted in a single reaction zone (one reactor) in the presence of a fluorination catalyst in the gas phase to guide the generated gas to the distillation column. After separation and purification, a step of obtaining two or more hydrofluorocarbons is characterized. The halogenated methane mixture of the raw material is preferably methyl chloride (CH 3 Cl), methylene chloride (CH 2 Cl 2 ), chloroform (CHCl 3 ), dichlorofluoromethane (CHCl 2 F), chlorofluoromethane (CH 2 It consists of at least two compounds selected from the group consisting of ClF) and chlorodifluoromethane (CHClF 2 ), more preferably one consisting of methyl chloride and methylene chloride. As these supply methods, either a method of supplying each independently and mixing at the inlet of the reactor or the method of supplying in a mixed state from the beginning can be selected. In addition, it is preferable that the methane halide mixture is water-repellent or stabilizer removed using a dehydrating agent such as Molecular Sieves in the previous step of feeding the reactor.

할로겐화메탄 혼합물 중에 함유되는 1종의 할로겐화메탄의 농도는, 바람직하게는 5∼95질량%, 보다 바람직하게는 10∼90질량%의 범위 내이며, 이 농도범위에 있으면, 예를 들면 필요한 생산량을 임의로 조정할 수 있다고 하는 이점을 얻을 수 있다. 출발원료인 할로겐화메탄과 불화수소는 반응기 입구에서 혼합된다. 불화수소와 할로겐화메탄의 몰비(공급비율)는 5∼30이 바람직하고, 5미만에서는 불순물의 생성비율이 많고, 선택율이 나빠지는 일이 있다. 또한 30을 넘으면, 수율이 저하하거나, 미반응 원료나 중간체의 순환량이 많아져서 장치가 커지는 일이 있어, 바람직하지 못하다. 원료의 할로겐화메탄 혼합물과 불화수소는, 반응기 입구에서 혼합되어, 예열기에서 가열된 후, 단일 반응대(반응기)에 도입된다. 반응기는 편류방지 의 관점에서 다관식인 것이 바람직하다. 반응기에 충전되는 불소화 촉매는 3가의 산화크롬을 주성분으로 해서 담지형 또는 괴상형 촉매가 바람직하다. 담지형 촉매의 담체로서는 알루미나, 불화알루미나, 활성탄 등이 바람직하다. 또한 3가의 산화크롬 이외에 소량의 첨가금속을 함유하고 있어도 되고, 첨가금속으로서는 인듐, 니켈, 아연 및/또는 코발트가 바람직하다. 이들의 불소화 촉매는, 반응의 전단계에서, 예를 들면 적어도 일부가 불화수소 등에 의해 불소화된 것임이 바람직하다. 반응의 온도범위는 150∼350℃가 바람직하고, 보다 바람직하게는 200∼300℃이다. 150℃미만에서는 반응 수율이 저하하여 바람직하지 못하고, 350℃를 넘으면 바람직하지 못한 불순물이 증가하는 일이 있다. 반응의 압력범위는, 0.05∼1.0㎫가 바람직하고, 보다 바람직하게는 0.1∼0.7㎫이다. 0.05㎫ 미만에서는 조작이 곤란하고, 1.0㎫를 초과하면 보다 내압구조로 하지 않으면 안되는 등, 경제적이지 않다. 반응기에서 반응시킨 생성(출구)가스의 적어도 일부를, 예를 들면 냉각하고, 펌프로 제1증류탑에 도입하거나, 또는 컴프레서를 이용하여 제1증류탑에 도입한다. 제1증류탑의 조작 압력은, 경제성, 조작성의 관점으로부터, 0.3∼3㎫가 바람직하다. 증류방식의 (a)에서는, 제1증류탑에 도입된 생성가스는, 탑정상으로부터 주로 염화수소, 하이드로플루오로카본이 분리되어, 제2증류탑에 안내되고, 제1증류탑의 탑밑바닥으로부터 주로 미반응 불화수소, 미반응 할로겐화메탄이 분리되어, 이것은 반응 공정인 단일 반응대에 순환 사용된다. 제2증류탑에 도입된 주로 염화수소, 하이드로플루오로카본은, 조작 압력 0.3∼3㎫의 압력범위에서 탑정상으로부터 주로 염화수소가 분리되어, 염화수소는, 예를 들면 물에 흡수시키는 등에 의하여 별도로 사 용된다. 염화수소 중에 함유되는 적어도 일부의 하이드로플루오로카본은 회수되어, 재이용된다. 제2증류탑의 탑밑바닥으로부터 주로 하이드로플루오로카본이 분리되고, 이들은 제3증류탑에 도입되어, 조작 압력 0.3∼3㎫의 압력범위에서 탑정상으로부터 저비점의, 예를 들면 플루오로메탄이 분리되고, 정제공정에서 정제되어서 제품으로서 회수된다. 또한 탑밑바닥으로부터 고비점의, 예를 들면, 디플루오로메탄이 분리되고, 정제 공정에서 정제되어서 제품으로서 회수된다. 증류방식의 (b)에서는, 제1증류탑에 도입된 생성가스는, 탑정상으로부터 주로 염화수소가 분리되어, (a)와 같이 회수, 재이용된다. 탑밑바닥으로부터 주로 미반응 불화수소, 미반응 할로겐화메탄, 하이드로플루오로카본이 분리되고, 이들은 제2증류탑에 도입되고, 제2증류탑에서는 탑정상으로부터 주로 하이드로플루오로카본이 분리되고, 이것은 제3증류탑에 도입된다. 제2증류탑의 탑밑바닥으로부터 주로 미반응 불화수소, 미반응 할로겐화메탄이 분리되고, 이들은 (a)와 같이 반응공정에 순환되어, 이용된다. 제3증류탑에 도입된 주로 하이드로플루오로카본은, 탑정상으로부터 저비점의, 예를 들면 플루오로메탄이 분리되고, 정제 공정에서 정제되어 제품으로서 회수된다. 또한 탑밑바닥보다 고비점의, 예를 들면 디플루오로메탄이 분리되고, 정제 공정에서 정제되어서 제품으로서 회수된다.The concentration of one halide methane contained in the halogenated methane mixture is preferably in the range of 5 to 95 mass%, more preferably in the range of 10 to 90 mass%, and in this concentration range, for example, The advantage of being able to adjust arbitrarily can be obtained. Starting methane halides and hydrogen fluoride are mixed at the reactor inlet. The molar ratio (supply ratio) of hydrogen fluoride and methane halide is preferably 5 to 30, and when it is less than 5, the generation ratio of impurities is large, and the selectivity may deteriorate. Moreover, when it exceeds 30, a yield may fall, or the circulation amount of an unreacted raw material or an intermediate may increase, and an apparatus may become large and it is unpreferable. The methane halide mixture and hydrogen fluoride of the raw materials are mixed at the reactor inlet, heated in a preheater, and then introduced into a single reaction zone (reactor). The reactor is preferably multi-tubular in view of anti-drift. The fluorinated catalyst charged in the reactor is preferably a supported or bulk catalyst having trivalent chromium oxide as a main component. As a carrier of the supported catalyst, alumina, alumina fluoride, activated carbon and the like are preferable. In addition to trivalent chromium oxide, a small amount of additive metal may be contained, and indium, nickel, zinc and / or cobalt are preferable as the additive metal. These fluorination catalysts are preferably those at least partially fluorinated with, for example, hydrogen fluoride at a previous stage of the reaction. 150-350 degreeC is preferable and, as for the temperature range of reaction, 200-300 degreeC is more preferable. If it is less than 150 degreeC, reaction yield falls and it is unpreferable, and when it exceeds 350 degreeC, undesirable impurity may increase. The pressure range of the reaction is preferably 0.05 to 1.0 MPa, more preferably 0.1 to 0.7 MPa. When it is less than 0.05 MPa, operation is difficult, and when it exceeds 1.0 MPa, it is not economical, for example, it must be made into a pressure resistant structure. At least a part of the product (outlet) gas reacted in the reactor is cooled, for example, introduced into the first distillation column by a pump, or introduced into the first distillation column by using a compressor. The operating pressure of the first distillation column is preferably 0.3 to 3 MPa from the viewpoint of economical efficiency and operability. In the distillation method (a), the product gas introduced into the first distillation column is mainly separated from hydrogen chloride and hydrofluorocarbon from the top of the column, guided to the second distillation column, and mainly unreacted fluoride from the bottom of the column of the first distillation column. Hydrogen and unreacted halide methane are separated and used for circulation in a single reaction zone, the reaction process. Hydrogen chloride and hydrofluorocarbon mainly introduced into the second distillation column are mainly used to separate hydrogen chloride from the top of the column in a pressure range of 0.3 to 3 MPa, and to use hydrogen chloride separately by, for example, absorbing it into water. . At least some of the hydrofluorocarbons contained in the hydrogen chloride are recovered and reused. Hydrofluorocarbons are mainly separated from the bottom of the column of the second distillation column, and these are introduced into the third distillation column to separate low boiling point, for example, fluoromethane, from the column top in the pressure range of 0.3 to 3 MPa, It is purified in the purification step and recovered as a product. In addition, a high boiling point, for example, difluoromethane is separated from the bottom of the column and purified in a purification process to be recovered as a product. In the distillation method (b), the product gas introduced into the first distillation column is mainly separated from hydrogen chloride from the top of the column, and recovered and reused as in (a). Mainly unreacted hydrogen fluoride, unreacted methane halides, and hydrofluorocarbons are separated from the bottom of the column, and these are introduced into a second distillation column, and in the second distillation column, mainly hydrofluorocarbons are separated from the top of the column. Is introduced. The unreacted hydrogen fluoride and the unreacted methane halide are mainly separated from the bottom of the column of the second distillation column, and these are circulated in the reaction process as in (a) and used. The mainly hydrofluorocarbons introduced into the third distillation column are separated from the column top with low boiling point, for example, fluoromethane, and purified in a purification step to be recovered as a product. Further, for example, difluoromethane, which has a higher boiling point than the bottom of the column, is separated and purified in a purification process and recovered as a product.

증류방식의 (a) 및 (b) 모두, 제3증류탑의 탑정상으로부터 분리된 저비점의, 예를 들면 플루오로메탄, 탑밑바닥으로부터 분리된 고비점의, 예를 들면 디플루오로메탄 모두, 정제공정에서 불활성(산소, 질소 등) 컷, 흡착제에 의한 흡착처리(몰레큘러시브 및/또는 활성탄) 등에 회부되어, 순도가 99.999vol% 이상의 고순도품을 얻을 수 있다. 순도가 99.999vol%이상의, 예를 들면 플루오로메탄 또는 디플루오로메탄은, 가스크로마토그래프(GC)의 TCD법, FID법(모두 프리컷법을 포함함), ECD법 혹은 가스크로마토그래프 질량분석계(GC-MS) 등의 분석기기를 이용하여 분석할 수 있다.Both distillation methods (a) and (b) are purified both at low boiling point separated from the top of the third distillation column, for example fluoromethane, and at higher boiling point separated from the bottom of the column, for example difluoromethane. In the process, it is submitted to an inert (oxygen, nitrogen, etc.) cut, an adsorption treatment with an adsorbent (molecular and / or activated carbon), or the like, whereby a high purity product having a purity of 99.999 vol% or more can be obtained. For example, fluoromethane or difluoromethane having a purity of 99.999 vol% or more is TCD method of gas chromatograph (GC), FID method (all including precut method), ECD method or gas chromatograph mass spectrometer ( Analysis using an analyzer such as GC-MS).

다음에 본 발명의 제조방법을 이용하여 얻어지는 하이드로플루오로카본, 특히 플루오로메탄, 디플루오로메탄의 용도에 대해서 설명한다. 고순도의 플루오로메탄, 디플루오로메탄, 혹은 He, N2, Ar 등의 불활성가스, O2, NF3 등의 가스와의 혼합가스(본 명세서에 있어서는, 아울러 「플루오로메탄 제품」, 「디플루오로메탄 제품」이라고 한다)는, 반도체 디바이스 제조공정 중의 에칭공정에 있어서의 에칭가스로서, 혹은 반도체 디바이스 제조공정에 있어서의 클리닝가스로서 사용할 수 있다. 에칭방법은, 플라즈마 에칭, 마이크로파 에칭 등의 각종 드라이에칭 조건으로 행할 수 있고, He, N2, Ar 등의 불활성가스, 혹은 HCl, O2, H2, F2, NF3 등의 가스와 적당한 비율로 혼합해서 사용해도 좋다.Next, the use of the hydrofluorocarbons obtained using the production method of the present invention, in particular fluoromethane and difluoromethane, will be described. High-purity fluoromethane, difluoromethane, or a mixed gas with an inert gas such as He, N 2 , Ar, O 2 , NF 3 or the like (in this specification, "fluoromethane product", " Difluoromethane product ”) can be used as an etching gas in an etching step in a semiconductor device manufacturing step or as a cleaning gas in a semiconductor device manufacturing step. The etching method can be carried out under various dry etching conditions such as plasma etching, microwave etching, etc., and is suitable for inert gas such as He, N 2 , Ar, or gas such as HCl, O 2 , H 2 , F 2 , NF 3 and the like. You may mix and use in ratio.

이하, 실시예에 의해 본 발명을 더욱 상세하게 설명하지만, 본 발명은 이들의 실시예에만 한정되는 것은 아니다.Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited only to these Examples.

실시예1Example 1

촉매의 조제예1Preparation of Catalysts Example 1

10L의 용기에 순수 0.6L을 넣어서 교반하고, 이 속에 순수 1.2L에 452g의 Cr(NO3)3·9H2O와 42g의 In(NO3)3·nH2O(n은 약 5)를 녹인 용액과, 0.31L의 28% 암모 니아수를, 반응액의 pH가 7.5∼8.5의 범위 내로 되도록, 2종의 수용액의 유량을 컨트롤하면서, 약 1시간에 걸쳐 적하했다. 얻어진 슬러리를 여과선별하고, 여과선별한 고형물을 순수로 잘 세정한 후, 120℃에서 12시간 건조하였다. 건조한 고형물을 분쇄한 후, 흑연과 혼합하고, 타정성형기에 의해 펠릿을 제작했다. 이 펠릿을 질소기류하, 400℃에서 4시간 소성하여, 촉매전구체로 했다. 다음에 촉매전구체를 인코넬제 반응기에 충전하고, 우선 상압하 350℃에서, 질소희석한 불화수소 기류하에 불소화 처리(촉매의 활성화)를 행했다. 이어서, 0.3㎫의 압력하에서, 더욱 질소희석한 불화수소 기류하, 이어서 100% 불화수소 기류하에서 불소화 처리(촉매의 활성화)를 행하여, 촉매를 조제했다.Into a 10 L vessel, add 0.6 L of pure water and stir, and in this, 1.2 L of pure water 452 g of Cr (NO 3 ) 3 · 9H 2 O and 42 g of In (NO 3 ) 3 · nH 2 O (n is about 5) The melted solution and 0.31 L of 28% ammonia water were dripped over about 1 hour, controlling the flow volume of 2 types of aqueous solution so that pH of a reaction liquid might be in the range of 7.5-8.5. The slurry thus obtained was filtered, and the filtered solid was washed well with pure water, followed by drying at 120 ° C for 12 hours. The dry solid was pulverized, mixed with graphite, and pellets were produced by a tablet molding machine. This pellet was baked at 400 degreeC for 4 hours under nitrogen stream, and it was set as the catalyst precursor. Next, the catalyst precursor was charged into an Inconel reactor, and first, fluorination treatment (activation of the catalyst) was performed at 350 ° C under normal pressure under a stream of nitrogen-dilute hydrogen fluoride. Subsequently, under a pressure of 0.3 MPa, a fluorination treatment (activation of a catalyst) was performed under a nitrogen-dilution hydrogen fluoride stream, followed by a 100% hydrogen fluoride stream, to prepare a catalyst.

실시예2Example 2

촉매의 조제예2Preparation of Catalyst Example 2

염화크롬(CrC13·6H2O) 191.5g을 순수 132㎖에 투입하고, 탕욕 상에서 70∼80℃로 가열해서 용해했다. 용액을 실온까지 냉각한 후, 활성 알루미나(닛키 유니버설(주) NST-7) 400g을 침지하여, 알루미나에 상기 용액을 전량 흡수시켰다.191.5 g of chromium chloride (CrC1 3 · 6H 2 O) was added to 132 ml of pure water, and the resulting mixture was heated and dissolved at 70 to 80 ° C. on a water bath. After cooling the solution to room temperature, 400 g of activated alumina (Nikiki Universal Co., Ltd. NST-7) was immersed, and the whole solution was absorbed in alumina.

이어서, 젖은 상태의 알루미나를 90℃의 탕욕상에서 건조하여 건고(乾固)하였다. 건고한 촉매를 공기순환형의 열풍건조기 내에서 110℃에서 3시간 건조했다. 건조 촉매를 SUS제 용기에 충전하고, 공기를 공간속도(SV) 540Hr-1로 흘리고, 유통하에서 소성했다. 200℃에서 촉매층의 발열이 없어질 때까지 소성한 후, 또한 400℃까지 승온하고, 3시간 소성해서 촉매를 얻었다. 이 촉매를 인코넬제 반응기에 충 전하고, 우선 상압하 250℃에서, 질소희석한 불화수소 기류하에, 또한 서서히 온도를 높여서 350℃에서 불소화 처리를 행하고, 이어서 0.3㎫의 압력하에서, 더욱 질소희석한 불화수소 기류하, 이어서 100% 불화수소 기류하에서 불소화 처리를 행하여 촉매를 조제하였다.Subsequently, the wet alumina was dried and dried on a 90 degreeC hot water bath. The dried catalyst was dried at 110 ° C. for 3 hours in an air circulation hot air dryer. The drying catalyst was filled in a container made of SUS, air was flowed at a space velocity (SV) of 540 Hr −1 , and calcined under flow. After calcining at 200 ° C until the heat generation of the catalyst layer disappeared, the temperature was further raised to 400 ° C and calcined for 3 hours to obtain a catalyst. The catalyst was charged in an Inconel reactor, first, at a normal pressure of 250 ° C., under a nitrogen-diluted hydrogen fluoride stream, and then gradually elevated in temperature to perform a fluorination treatment at 350 ° C., followed by a further nitrogen dilution fluorine at a pressure of 0.3 MPa. The catalyst was prepared by performing a fluorination treatment under a hydrogen stream and then under a 100% hydrogen fluoride stream.

실시예3Example 3

하이드로플루오로카본의 제조 Preparation of Hydrofluorocarbons

내경 1인치, 길이 1m의 인코넬 600형 반응기에, 실시예1에서 얻어진 촉매 100㎖를 충전하고, 질소가스를 흘리면서, 반응기 온도를 300℃, 압력을 0.2㎫로 유지했다.100 ml of the catalyst obtained in Example 1 was filled into an Inconel 600 reactor having an inner diameter of 1 inch and a length of 1 m, and the reactor temperature was maintained at 300 ° C. and the pressure was 0.2 MPa while flowing nitrogen gas.

다음에 불화수소를 82NL/hr의 유속으로 공급하고, 그 후 질소가스의 공급을 정지했다. 한쪽의 원료 도입구로부터, 제올라이트(몰레큘러시브:3A)로 탈수 처리한 염화메틸(CH3Cl)을 3NL/hr로 공급하고, 다른 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수 처리한 염화메틸렌(CH2Cl2)을 1NL/hr로 공급하여, 반응을 개시했다. 2시간 후, 반응기로부터의 출구가스를 수산화칼륨 수용액으로 세정해서 산분을 제거한 후, 가스의 조성을 가스크로마토그래프로 분석한 결과, 이하에 나타내는 조성(단위:vol%)을 갖고 있었다.Next, hydrogen fluoride was supplied at a flow rate of 82 NL / hr, after which the supply of nitrogen gas was stopped. From one raw material inlet, methyl chloride (CH 3 Cl) dehydrated with zeolite (molecular: 3 A) was supplied at 3 NL / hr, and the zeolite (molecular: 3 A) was supplied from the other raw material inlet. Methylene chloride (CH 2 Cl 2 ), which had been dehydrated), was fed at 1 NL / hr to initiate a reaction. After 2 hours, the outlet gas from the reactor was washed with an aqueous potassium hydroxide solution to remove acid content, and the gas composition was analyzed by gas chromatography, and the composition (unit: vol%) was shown below.

CH3F 13.3253 CH2F2 24.6108CH 3 F 13.3253 CH 2 F 2 24.6 108

CH2ClF 0.3720 CH2Cl2 0.0205CH 2 ClF 0.3720 CH 2 Cl 2 0.0205

CH3Cl 61.6557 기타 0.0157CH 3 Cl 61.6557 Other 0.0157

실시예4Example 4

하이드로플루오로카본의 제조방법Method for preparing hydrofluorocarbon

실시예3과 마찬가지로, 내경 1인치, 길이 1m의 인코넬 600형 반응기에, 실시예1에서 얻어진 촉매 100㎖를 충전하고, 질소가스를 흘리면서, 반응기 온도를 300℃, 압력을 0.2㎫로 유지했다.In the same manner as in Example 3, 100 ml of the catalyst obtained in Example 1 was packed into an Inconel 600 reactor having an internal diameter of 1 inch and a length of 1 m, and the reactor temperature was maintained at 300 ° C. and the pressure was 0.2 MPa while flowing nitrogen gas.

다음에 불화수소를 82NL/hr의 유속으로 공급하고, 그 후 질소가스의 공급을 정지했다. 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 염화메틸(CH3Cl)을 2NL/hr로 공급하고, 또 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 염화메틸렌(CH2Cl2)을 2NL/hr로 공급하여, 반응을 개시하였다. 2시간후, 반응기로부터의 출구가스를 수산화칼륨 수용액으로 세정해서 산분을 제거한 후, 가스의 조성을 가스크로마토그래프로 분석한 결과, 이하에 나타내는 조성(단위:vol%)을 갖고 있었다.Next, hydrogen fluoride was supplied at a flow rate of 82 NL / hr, after which the supply of nitrogen gas was stopped. Methyl chloride (CH 3 Cl) dehydrated with zeolite (molecular: 3 A) was supplied at 2 NL / hr from one raw material inlet, and zeolite (molecular: 3 A) was supplied from another raw material inlet. The methylene chloride (CH 2 Cl 2 ) dehydrated with was fed at 2 NL / hr to initiate a reaction. After 2 hours, the outlet gas from the reactor was washed with an aqueous potassium hydroxide solution to remove acid content, and the gas composition was analyzed by gas chromatography, and the composition (unit: vol%) was shown below.

CH3F 8.8892 CH2F2 49.1216CH 3 F 8.8892 CH 2 F 2 49.1216

CH2ClF 0.7210 CH2Cl2 0.1374CH 2 ClF 0.7210 CH 2 Cl 2 0.1374

CH3Cl 41.0983 기타 0.0325CH 3 Cl 41.0983 Other 0.0325

실시예5Example 5

하이드로플루오로카본의 제조방법Method for preparing hydrofluorocarbon

내경 1인치, 길이 1m의 인코넬 600형 반응기에, 실시예 1에서 얻어진 촉매100㎖를 충전하고, 질소가스를 흘리면서, 반응기 온도를 290℃, 압력을 0.2㎫로 유지했다.100 ml of the catalyst obtained in Example 1 was filled into an Inconel 600 reactor having an internal diameter of 1 inch and a length of 1 m, and the reactor temperature was maintained at 290 ° C and the pressure was 0.2 MPa while flowing nitrogen gas.

다음에 불화수소를 73.85NL/hr의 유속으로 공급하고, 그 후 질소가스의 공급을 정지했다. 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 염화메틸렌(CH2Cl2)을 2NL/hr로 공급하고, 또 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 클로로포름(CHCl3)을 2NL/hr로 공급하여, 반응을 개시했다. 2시간 후, 반응기로부터의 출구가스를 수산화칼륨 수용액으로 세정해서 산분을 제거한 후, 가스 조성을 가스크로마토그래프로 분석한 결과, 이하에 나타내는 조성(단위:vol%)을 갖고 있었다.Next, hydrogen fluoride was supplied at a flow rate of 73.85 NL / hr, after which the supply of nitrogen gas was stopped. Methylene chloride (CH 2 Cl 2 ) dehydrated with zeolite (molecular: 3A) was supplied from one raw material inlet at 2 NL / hr, and zeolite (molecular: 3 A) was supplied from the other raw material inlet. Chloroform (CHCl 3 ) dehydrated with) was fed at 2 NL / hr to initiate the reaction. After 2 hours, the outlet gas from the reactor was washed with an aqueous potassium hydroxide solution to remove acid content, and the gas composition was analyzed by gas chromatography, and the composition (unit: vol%) was shown below.

CH2F2 47.6317 CHF3 49.0118CH 2 F 2 47.6317 CHF 3 49.0118

CH2ClF 1.7578 CHClF2 0.8808CH 2 ClF 1.7578 CHClF 2 0.8808

CHCl2F 0.0631 CH2Cl2 0.5924CHCl 2 F 0.0631 CH 2 Cl 2 0.5924

CHCl3 0.0321 기타 0.0303CHCl 3 0.0321 Other 0.0303

실시예6Example 6

하이드로플루오로카본의 제조방법Method for preparing hydrofluorocarbon

내경 1인치, 길이 1m의 인코넬 600형 반응기에, 실시예 2에서 얻어진 촉매100㎖를 충전하고, 질소가스를 흘리면서, 반응기 온도를 315℃, 압력을 0.2㎫로 유 지했다.100 ml of the catalyst obtained in Example 2 was filled into an Inconel 600 reactor having an internal diameter of 1 inch and a length of 1 m, and the reactor temperature was maintained at 315 ° C and the pressure was 0.2 MPa while flowing nitrogen gas.

다음에 불화수소를 73.85NL/hr의 유속으로 공급하고, 그 후 질소가스의 공급을 정지했다. 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 염화메틸(CH3Cl)을 2NL/hr로 공급하고, 또 한쪽의 원료 도입구로부터 제올라이트(몰레큘러시브:3A)로 탈수처리한 클로로포름(CHCl3)을 2NL/hr로 공급하여, 반응을 개시했다. 2시간 후, 반응기로부터의 출구가스를 수산화칼륨 수용액으로 세정해서 산분을 제거한 후, 가스의 조성을 가스크로마토그래프로 분석한 결과, 이하에 나타내는 조성(단위:vol%)을 갖고 있었다.Next, hydrogen fluoride was supplied at a flow rate of 73.85 NL / hr, after which the supply of nitrogen gas was stopped. Methyl chloride (CH 3 Cl) dehydrated with zeolite (molecular: 3 A) was supplied at 2 NL / hr from one raw material inlet, and zeolite (molecular: 3 A) was supplied from another raw material inlet. Chloroform (CHCl 3 ) dehydrated with 2NL / hr was fed to initiate the reaction. After 2 hours, the outlet gas from the reactor was washed with an aqueous potassium hydroxide solution to remove acid content, and the gas composition was analyzed by gas chromatography, and the composition (unit: vol%) was shown below.

CH3F 9.4268 CHF3 49.3833CH 3 F 9.4 268 CHF 3 49.3833

CHClF2 0.4712 CHCl2F 0.1176CHClF 2 0.4712 CHCl 2 F 0.1176

CH3Cl 40.5561 CHCl3 0.0108CH 3 Cl 40.5561 CHCl 3 0.0108

기타 0.0342Other 0.0342

실시예7Example 7

고순도의 CH3F 제품High purity CH 3 F product

도 1에 나타내는 장치를 사용하여, 실시예3과 마찬가지로 반응을 행해서 얻어진 반응기 출구가스를 제1증류탑에 도입하고, 탑정상으로부터 염화수소 및 하이드로플루오로카본을 분리하고, 이어서 제2증류탑의 탑밑바닥으로부터 분리한 하이드로플루오로카본을 제3증류탑에 도입해서 분류정제를 행했다. 또, 도 1에 있어서, 1은 반응기(단일 반응대), 2는 제1증류탑, 3은 제2증류탑, 4는 제3증류탑, 5는 플루오로메탄 정제공정, 6은 디플루오로메탄 정제공정이다.Using the apparatus shown in FIG. 1, the reactor outlet gas obtained by the reaction in the same manner as in Example 3 was introduced into the first distillation column to separate hydrogen chloride and hydrofluorocarbon from the top of the column, and then from the bottom of the top of the second distillation column. The separated hydrofluorocarbon was introduced into a third distillation column to perform fractionation purification. 1, 1 is a reactor (single reaction zone), 2 is a first distillation column, 3 is a second distillation column, 4 is a third distillation column, 5 is a fluoromethane purification step, 6 is a difluoromethane purification step. to be.

도 1에 나타내는 제3증류탑(4)의 탑정상 증류성분을, 가스크로마토그래프(GC)의 TCD법, FlD법 및 가스크로마토그래프 질량분석계(GC-MS)로 분석한 결과, 이하에 나타내는 조성(단위:vol%)이었다.The column top distillation component of the 3rd distillation column 4 shown in FIG. 1 was analyzed with the TCD method, the FlD method, and the gas chromatograph mass spectrometer (GC-MS) of a gas chromatograph (GC), and the composition shown below ( Unit: vol%).

CH3F 99.9984 CH4 0.0005CH 3 F 99.9984 CH 4 0.0005

CH2=CH2 0.0005 CO2 0.0003CH 2 = CH 2 0.0005 CO 2 0.0003

기타 0.0003Other 0.0003

용적 100㎖의 스테인레스제 실린더에 제올라이트(몰레큘러시브 3A(유니온쇼와(주)제:평균 세공지름 3Å) 및 몰레큘러시브 4A(유니온쇼와(주)제:평균 세공지름 3.5Å)을 등량혼합한 것을 20g 충전하고, 진공건조 후, 실린더를 냉각하면서 상기의 탑정상 증류물을 약 50g 충전하고, 온도를 -10℃로 유지하면서 때때로 교반하고, 약 5시간 후, 액상부를 가스크로마토그래프의 TCD법, FID법 및 가스크로마토그래프 질량분석계로 분석한 결과, 이하에 나타내는 조성(단위:vol%)이었다.Zeolite (molecular 3A (manufactured by Union Showa Co., Ltd .: 3 mm average diameter) and Molecular 4A (manufactured by Union Showa Co., Ltd .: average pore diameter 3.5 mm)) in a 100 ml stainless steel cylinder 20 g of an equivalent mixture was charged, and after vacuum drying, about 50 g of the columnar distillate was charged while cooling the cylinder, and occasionally stirred while maintaining the temperature at -10 ° C. After about 5 hours, the liquid phase was gas chromatographed. As a result of analyzing by TCD method, FID method, and the gas chromatograph mass spectrometer of a graph, it was a composition (unit: vol%) shown below.

CH3F 99.9993 CH4 <0.0001CH 3 F 99.9993 CH 4 <0.0001

CH2=CH2 0.0002 CO2 0.0002CH 2 = CH 2 0.0002 CO 2 0.0002

기타 0.0002Other 0.0002

실시예8Example 8

고순도의 CH2F2 제품High purity CH 2 F 2 product

실시예7의 제3증류탑(4)의 탑밑바닥 증류성분을 가스크로마토그래프(GC)의 TCD법, FID법 및 가스크로마토그래프 질량분석계(GC-MS)로 분석한 결과, 이하에 나타내는 조성(단위:vol%)이었다.The bottom distillation component of the third distillation column 4 of Example 7 was analyzed by TCD method, FID method and gas chromatograph mass spectrometer (GC-MS) of the gas chromatograph (GC). : vol%).

CH2F2 99.9986 CH3Cl 0.0007CH 2 F 2 99.9986 CH 3 Cl 0.0007

CH2ClF 0.0005 기타 0.0002CH 2 ClF 0.0005 Other 0.0002

용적 100㎖의 스테인레스제 실린더에 제올라이트(몰레큘러시브 3A)를 15g과 탄소질흡착제(몰레큘러시빙카본, 다케다야쿠힝고교(주)제:평균 세공지름 4Å)을 5g을 혼합한 것을 충전하고, 진공건조후, 실린더를 냉각하면서 상기의 탑밑바닥 증류물을 약 50g 충전하고, 온도를 -10℃로 유지하면서 때때로 교반하고, 약 5시간후, 액상부를 가스크로마토그래프의 TCD법, FID법 및 가스크로마토그래프 질량분석계로 분석한 결과, 이하에 나타내는 조성(단위:vol%)이었다.A volume of 100 ml stainless steel cylinder was filled with 15 g of zeolite (molecular 3A) and 5 g of carbonaceous adsorbent (molecular sorbing carbon, manufactured by Takeda Yakuhing Kogyo Co., Ltd .: average pore diameter of 4 mm). After vacuum drying, the cylinder was cooled and filled with about 50 g of the above-mentioned bottom distillate, sometimes stirred while maintaining the temperature at -10 ° C, and after about 5 hours, the liquid phase was subjected to the TCD method or the FID method of the gas chromatograph. And gas chromatograph mass spectrometer, the composition (unit: vol%) shown below.

CH2F2 99.9996 CH3Cl 0.0002CH 2 F 2 99.9996 CH 3 Cl 0.0002

CH2ClF 0.0001 기타 0.0001CH 2 ClF 0.0001 Other 0.0001

본 발명은, 반도체 디바이스의 제조공정에서 에칭가스 혹은 클리닝가스로서 사용할 수 있는 고순도의 하이드로플루오로카본류, 특히 플루오로메탄, 디플루오로메탄의 공업적 제조에, 유리하게 이용할 수 있다.INDUSTRIAL APPLICABILITY The present invention can be advantageously used for industrial production of high purity hydrofluorocarbons, in particular fluoromethane and difluoromethane, which can be used as an etching gas or a cleaning gas in the manufacturing process of a semiconductor device.

Claims (19)

할로겐화메탄 혼합물과 불화수소를, 기상에서 불소화 촉매의 존재하에 단일반응대에서 반응시키고, 생성가스를 증류탑에 안내하여 분리 정제한 후, 2종이상의 하이드로플루오로카본을 얻는 공정을 포함하는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.And reacting the halogenated methane mixture and hydrogen fluoride in a single reaction zone in the presence of a fluorination catalyst in the gas phase, separating and purifying the product gas by distillation column, and then obtaining two or more hydrofluorocarbons. Method for producing a hydrofluorocarbon. 제1항에 있어서, 원료의 할로겐화메탄 혼합물이, 염화메틸, 염화메틸렌, 클로로포름, 디클로로플루오로메탄, 클로로플루오로메탄 및 클로로디플루오로메탄으로 이루어지는 군에서 선택되는 2종이상의 화합물로 이루어지는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The methane halide mixture of the raw material is composed of at least two compounds selected from the group consisting of methyl chloride, methylene chloride, chloroform, dichlorofluoromethane, chlorofluoromethane and chlorodifluoromethane. Method for producing a hydrofluorocarbon to be. 제1항 또는 제2항에 있어서, 할로겐화메탄 혼합물이, 염화메틸 및 염화메틸렌으로 이루어지는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The process for producing hydrofluorocarbons according to claim 1 or 2, wherein the halogenated methane mixture consists of methyl chloride and methylene chloride. 제1항 또는 제2항에 있어서, 얻어지는 하이드로플루오로카본이, 플루오로메탄, 디플루오로메탄 및 트리플루오로메탄으로 이루어지는 군으로부터 선택되는 2종이상의 화합물인 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The hydrofluorocarbon according to claim 1 or 2, wherein the obtained hydrofluorocarbon is at least two compounds selected from the group consisting of fluoromethane, difluoromethane and trifluoromethane. Manufacturing method. 제1항 또는 제2항에 있어서, 얻어지는 하이드로플루오로카본이, 플루오로메탄 및 디플루오로메탄인 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein the obtained hydrofluorocarbons are fluoromethane and difluoromethane. 제1항 또는 제2항에 있어서, 할로겐화메탄 혼합물 중에 함유되는 1종의 할로겐화메탄의 농도가 5∼95질량%의 범위 내에 있는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein the concentration of one halogenated methane contained in the halogenated methane mixture is in the range of 5 to 95% by mass. 제6항에 있어서, 할로겐화메탄 혼합물 중에 함유되는 1종의 할로겐화메탄의 농도가 10∼90질량%의 범위 내에 있는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 6, wherein the concentration of one halogenated methane contained in the halogenated methane mixture is in the range of 10 to 90 mass%. 제1항 또는 제2항에 있어서, 반응원료인 불화수소와 할로겐화메탄의 몰비가 5∼30의 범위 내에서 반응이 행하여지는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing hydrofluorocarbons according to claim 1 or 2, wherein the reaction is carried out within a molar ratio of hydrogen fluoride and methane halide as a reaction raw material in the range of 5 to 30. 제1항 또는 제2항에 있어서, 반응이 150∼350℃의 온도범위 내에서 행하여지는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein the reaction is performed within a temperature range of 150 to 350 ° C. 제1항 또는 제2항에 있어서, 반응이 0.05∼1㎫의 압력범위 내에서 행하여지는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein the reaction is performed within a pressure range of 0.05 to 1 MPa. 제1항 또는 제2항에 있어서, 불소화촉매가 3가의 산화크롬을 주성분으로 하는 담지형 또는 괴상형 촉매인 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein the fluorinated catalyst is a supported or bulk catalyst having a trivalent chromium oxide as a main component. 제1항 또는 제2항에 있어서, 단일 반응대에서 반응시킨 생성가스를 제1증류탑에 도입하고, 탑정상으로부터 주로 염화수소와 하이드로플루오로카본을 분리하고, 탑밑바닥으로부터 주로 불화수소와 미반응의 할로겐화메탄을 분리하는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.3. The product gas according to claim 1 or 2, wherein the product gas reacted in a single reaction zone is introduced into the first distillation column, and mainly hydrogen chloride and hydrofluorocarbon are separated from the top of the column, and mainly hydrogen fluoride and unreacted from the bottom of the column. A method for producing a hydrofluorocarbon, characterized by separating a halogenated methane. 제1항 또는 제2항에 있어서, 제1증류탑의 탑정상으로부터 분리된 주로 염화수소와 하이드로플루오로카본을 제2증류탑에 도입하고, 탑정상으로부터 주로 염화수소를 분리하고, 탑밑바닥으로부터 주로 하이드로플루오로카본을 분리하며, 하이드로플루오로카본을 분리 정제해서 제품으로서 회수하는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method according to claim 1 or 2, wherein mainly hydrogen chloride and hydrofluorocarbon separated from the top of the first distillation column are introduced into the second distillation column, and mainly hydrogen chloride is separated from the top of the column, and mainly hydrofluoro from the bottom of the column. A method for producing a hydrofluorocarbon, comprising separating carbon and separating and purifying the hydrofluorocarbon to recover as a product. 제1항 또는 제2항에 있어서, 제1증류탑의 탑밑바닥으로부터 분리된 주로 불화수소와 미반응의 할로겐화메탄을 반응공정인 단일 반응대에 순환시키는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The method for producing a hydrofluorocarbon according to claim 1 or 2, wherein mainly hydrogen fluoride and unreacted halogenated methane separated from the bottom of the column of the first distillation column are circulated in a single reaction zone as a reaction step. 제1항 또는 제2항에 있어서, 제1증류탑 및 제2증류탑의 조작 압력이 0.3∼3㎫의 범위 내에 있는 것을 특징으로 하는 하이드로플루오로카본의 제조방법.The process for producing a hydrofluorocarbon according to claim 1 or 2, wherein the operating pressures of the first distillation column and the second distillation column are in the range of 0.3 to 3 MPa. 제1항 또는 제2항에 기재된 제조방법을 이용하여 얻어지고, 순도가 99.999vol%이상인 플루오로메탄을 함유하는 것을 특징으로 하는 플루오로메탄 제품.A fluoromethane product obtained by using the production method according to claim 1 or 2, containing fluoromethane having a purity of 99.999 vol% or more. 제1항 또는 제2항에 기재된 제조방법을 이용하여 얻어지고, 순도가 99.999vol%이상인 디플루오로메탄을 함유하는 것을 특징으로 하는 디플루오로메탄 제품.A difluoromethane product obtained by using the production method according to claim 1 or 2, containing difluoromethane having a purity of 99.999 vol% or more. 제16항에 기재된 플루오로메탄 제품을 함유하는 것을 특징으로 하는 에칭가스 또는 클리닝가스.An etching gas or cleaning gas containing the fluoromethane product according to claim 16. 제17항에 기재된 디플루오로메탄 제품을 함유하는 것을 특징으로 하는 에칭가스 또는 클리닝가스.An etching gas or cleaning gas containing the difluoromethane product according to claim 17.
KR1020057008285A 2003-09-10 2004-09-09 Process for production of hydrofluorocarbons, products thereof and use of the products KR100643674B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003318556 2003-09-10
JPJP-P-2003-00318556 2003-09-10

Publications (2)

Publication Number Publication Date
KR20050086475A KR20050086475A (en) 2005-08-30
KR100643674B1 true KR100643674B1 (en) 2006-11-10

Family

ID=34308524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057008285A KR100643674B1 (en) 2003-09-10 2004-09-09 Process for production of hydrofluorocarbons, products thereof and use of the products

Country Status (5)

Country Link
JP (1) JP4785532B2 (en)
KR (1) KR100643674B1 (en)
CN (1) CN1330615C (en)
TW (1) TW200516068A (en)
WO (1) WO2005026090A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901790A1 (en) * 2006-05-30 2007-12-07 Arkema France PROCESS FOR PRODUCING HYDROFLUOROCARBONS
WO2011102268A1 (en) * 2010-02-17 2011-08-25 セントラル硝子株式会社 Method for producing semiconductor gas
JP5652179B2 (en) * 2010-12-09 2015-01-14 セントラル硝子株式会社 Method for producing semiconductor gas
CN103910600A (en) * 2013-01-06 2014-07-09 中化蓝天集团有限公司 Method for preparing ultrapure fluoromethane
JP2014221727A (en) * 2013-05-13 2014-11-27 昭和電工株式会社 Dichloromethane purification method and method of producing difluoromethane using the same
JP6261531B2 (en) * 2015-02-05 2018-01-17 ダイキン工業株式会社 Method for producing methyl fluoride
CN109748775B (en) * 2017-11-08 2021-08-17 浙江蓝天环保高科技股份有限公司 Resource utilization method of by-product trifluoromethane in HCFC-22 production

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010341A1 (en) * 1988-04-28 1989-11-02 Showa Denko Kabushiki Kaisha Process for producing organofluorine compound
CN1039118C (en) * 1992-03-23 1998-07-15 浙江省化工研究院 Improved gas-phase fluorating process for preparation of difluoromethane
GB9404703D0 (en) * 1993-03-24 1994-04-27 Ici Plc Production of difluoromethane
US5446218A (en) * 1993-04-26 1995-08-29 E. I. Du Pont De Nemours And Company Preparation of fluorinated methanes
JP3582798B2 (en) * 1993-06-18 2004-10-27 昭和電工株式会社 Fluorination catalyst and fluorination method
DE69407870T2 (en) * 1993-06-18 1998-08-27 Showa Denko Kk Fluorination catalyst and fluorination process
JPH0717882A (en) * 1993-07-05 1995-01-20 Daikin Ind Ltd Production of difluoromethane
US5849963A (en) * 1993-12-09 1998-12-15 Daikin Industries, Ltd. Method for producing difluoromethane and 1,1,1,2-tetrafluoroethane
ATE196758T1 (en) * 1994-07-01 2000-10-15 Daikin Ind Ltd METHOD FOR PRODUCING DIFLUOROMETHANE
KR0125120B1 (en) * 1994-07-04 1997-12-01 김은영 Process of fluorohydrocarbon
EP0808814B1 (en) * 1995-02-10 2001-12-05 Daikin Industries, Limited Process for producing difluoromethane and difluorochloromethane
KR0152580B1 (en) * 1995-08-23 1998-10-15 김은영 Method of preparing 1,1,1,2-tetrafluoroethane, pentafluoroethane and 1,1,1-trifluoroethane
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
EP1003699B9 (en) * 1997-08-12 2004-01-07 E.I. Du Pont De Nemours And Company Purification of difluoromethane by extractive distillation
EP1034156A2 (en) * 1997-11-21 2000-09-13 AlliedSignal Inc. Method of producing hydrofluorocarbons
US6235265B1 (en) * 1998-10-28 2001-05-22 Alliedsignal Inc. Evaporative coolant for topical anesthesia comprising hydrofluorocarbons and/or hydrochlorofluorocarbons
JP4574259B2 (en) * 2003-07-24 2010-11-04 昭和電工株式会社 Method for purifying fluoromethane

Also Published As

Publication number Publication date
WO2005026090A1 (en) 2005-03-24
JPWO2005026090A1 (en) 2006-11-16
CN1701056A (en) 2005-11-23
TW200516068A (en) 2005-05-16
JP4785532B2 (en) 2011-10-05
TWI325412B (en) 2010-06-01
CN1330615C (en) 2007-08-08
KR20050086475A (en) 2005-08-30

Similar Documents

Publication Publication Date Title
CN108368011B (en) Process for producing hydrofluoroolefin
JP5013692B2 (en) Fluoromethane production method and product
US20040015022A1 (en) Production and use of hexafluoroethane
CN108430959B (en) Process for producing hydrofluoroolefin
KR100854982B1 (en) Process for production of 1,1,1,2-tetrafluoroethane and/or pentafluoroethane and applications of the same
US20030191350A1 (en) Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
KR100643674B1 (en) Process for production of hydrofluorocarbons, products thereof and use of the products
KR100839063B1 (en) Purification method of, 1,1-difluoroethane
KR100854983B1 (en) Method for purification of 1,1-dichloroethane and process for production of 1,1-difluoroethane using this method
KR100570802B1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
US5679876A (en) Purification of pentafluoroethane
JP4738035B2 (en) Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof
US7074974B2 (en) Process for the production of fluoroethane and use of the same
KR100543253B1 (en) Production and use of hexafluoroethane
WO2006030677A1 (en) Fluoromethane production process and product
WO2001098240A2 (en) Process for producing hexafluoroethane and use thereof
JP4463385B2 (en) Method for producing hexafluoroethane and use thereof
KR100619296B1 (en) Method for purifying tetrachloroethylene
KR100265580B1 (en) Purification of 1,1,1,2-tetrafluoroethane
US20040242943A1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
JP2005336164A (en) Method for purification of 1, 1-dichloroethane and process for production of 1, 1-difluoroethane using the method
JPH01301630A (en) Production of 1,1,1,2-tetrafluoroethane

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141021

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 14