JP4738035B2 - Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof - Google Patents

Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof Download PDF

Info

Publication number
JP4738035B2
JP4738035B2 JP2005086660A JP2005086660A JP4738035B2 JP 4738035 B2 JP4738035 B2 JP 4738035B2 JP 2005086660 A JP2005086660 A JP 2005086660A JP 2005086660 A JP2005086660 A JP 2005086660A JP 4738035 B2 JP4738035 B2 JP 4738035B2
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
tetrafluoroethane
crude product
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005086660A
Other languages
Japanese (ja)
Other versions
JP2005314376A (en
Inventor
博基 大野
敏夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005086660A priority Critical patent/JP4738035B2/en
Publication of JP2005314376A publication Critical patent/JP2005314376A/en
Application granted granted Critical
Publication of JP4738035B2 publication Critical patent/JP4738035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法およびその用途に関する。   The present invention relates to a method for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof.

1,1,1,2−テトラフルオロエタン(HFC−134aまたはCF3 CH2 F)およびペンタフルオロエタン(HFC−125またはCF3 CHF2 )の製造方法として、従来から以下の方法が知られている。 Conventionally, the following methods are known as production methods of 1,1,1,2-tetrafluoroethane (HFC-134a or CF 3 CH 2 F) and pentafluoroethane (HFC-125 or CF 3 CHF 2 ). Yes.

1,1,1,2−テトラフルオロエタンの製造方法としては、例えば、トリクロロエチレンとフッ化水素とをフッ素化触媒の存在下に反応させて製造する方法が知られている。また、ペンタフルオロエタンの製造方法としては、テトラクロロエチレンとフッ化水素とをフッ素化触媒の存在下に反応させて製造する方法が知られている。これらの方法によって1,1,1,2−テトラフルオロエタンやペンタフルオロエタンを製造する場合、用いる反応条件によって様々な不純物が副生物として生成する。これらの不純物は、例えば、CF2 =CClF、CF2 =CHCl、CHF=CClF、CClF=CHCl、CHCl=CHF、CF2 =CHF、CF2 =CClF等の不飽和化合物を含み、またCCl22 、CH2 ClF、CH2 ClCClF2 、CF3 CHCl2 、CF3 CClF2 等のクロロフルオロカーボン類、CH22 、CF3 CH3 、CHF2 CHF2 等のハイドロフルオロカ−ボン類を含む。 As a method for producing 1,1,1,2-tetrafluoroethane, for example, a method is known in which trichlorethylene and hydrogen fluoride are reacted in the presence of a fluorination catalyst. As a method for producing pentafluoroethane, a method is known in which tetrachloroethylene and hydrogen fluoride are reacted in the presence of a fluorination catalyst. When 1,1,1,2-tetrafluoroethane or pentafluoroethane is produced by these methods, various impurities are generated as by-products depending on the reaction conditions used. These impurities include, for example, unsaturated compounds such as CF 2 = CClF, CF 2 = CHCl, CHF = CClF, CClF = CHCl, CHCl = CHF, CF 2 = CHF, CF 2 = CClF, and CCl 2 F 2, CH 2 ClF, CH 2 ClCClF 2, CF 3 CHCl 2, CF 3 CClF chlorofluorocarbons such as 2, CH 2 F 2, CF 3 CH 3, CHF 2 CHF 2 , etc. hydrofluoroether mosquito - including carbon such .

これらの不純物のうち、ハイドロフルオロカーボン類は少量であれば問題はないが、不飽和化合物およびクロロフルオロカ−ボン類の含有量はできるだけ減少させることが必要であり、分別蒸留等によってある程度除去することができる。しかしながら、1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンと沸点が近似している不純物を分別蒸留によって実質的に存在しない低レベルまで除去することは極めて困難であり、また共沸組成物や共沸様組成物を形成する不純物を除去することも同様に困難である。このため、この問題を解決する方法として種々のプロセスが提案されている。   Of these impurities, hydrofluorocarbons are fine as long as they are small, but the content of unsaturated compounds and chlorofluorocarbons needs to be reduced as much as possible and should be removed to some extent by fractional distillation and the like. Can do. However, it is extremely difficult to remove impurities whose boiling points are close to those of 1,1,1,2-tetrafluoroethane and pentafluoroethane to a low level that does not substantially exist by fractional distillation, and azeotropic composition It is also difficult to remove impurities that form products and azeotrope-like compositions. For this reason, various processes have been proposed as methods for solving this problem.

例えば、塩化水素をある程度除去した粗CF3 CH2 F中に不純物として含まれる不飽和化合物(主としてCF2 =CHCl)をフッ素化触媒の存在下に、CF3 CH2 Fと共沸組成分のフッ化水素と反応させて精製する方法(特開平6−184015号公報)が知られている。しかしながら、この方法は、目的物であるCF3 CH2 F中に含まれる中間体の2−クロロ−1,1,1−トリフルオロエタン(CF3 CH2 Cl)の脱ハロゲン化反応によって不飽和化合物が生成し、またフッ素化触媒の寿命が短くなる等の技術的課題を残している。
特開平6−184015号公報
For example, an unsaturated compound (mainly CF 2 = CHCl) contained as an impurity in crude CF 3 CH 2 F from which hydrogen chloride has been removed to some extent is mixed with CF 3 CH 2 F in the presence of a azeotropic component. A method of purifying by reacting with hydrogen fluoride (JP-A-6-184015) is known. However, this method is unsaturated by dehalogenation reaction of the intermediate 2-chloro-1,1,1-trifluoroethane (CF 3 CH 2 Cl) contained in the target CF 3 CH 2 F. There remain technical problems such as formation of compounds and shortening of the life of the fluorination catalyst.
JP-A-6-184015

本発明が解決しようとする課題は、前記のような従来技術の課題を解決するための新規な1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法およびその用途を提供しようとするものである。   The problem to be solved by the present invention is to provide a novel method for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof for solving the problems of the prior art as described above. It is something to try.

本発明者らは、前記の事情に鑑み、工業的に実施可能でかつ経済的な1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法を開発すべく鋭意検討した結果、トリクロロエチレンおよび/またはテトラクロロエチレンとフッ化水素とを反応させて得られる粗生成物が、1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを含む主生成物、該主生成物との共沸組成分のフッ化水素、および少なくとも不飽和化合物を含む不純物成分からなり、該粗生成物を精製する工程を行うことによって高純度の1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを製造する方法において、前記精製工程が、前記粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させて、前記粗生成物に含まれる不飽和化合物の含有量を低減させる工程と、蒸留工程とを含む方法を用いることにより前記の課題を解決できることを見出し、本発明を完成するに至った。   In light of the above circumstances, the present inventors have conducted extensive studies to develop an industrially feasible and economical production method of 1,1,1,2-tetrafluoroethane and / or pentafluoroethane. A main product containing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane, a crude product obtained by reacting trichlorethylene and / or tetrachloroethylene with hydrogen fluoride, Of high purity 1,1,1,2-tetrafluoroethane and / or an impurity component containing at least an unsaturated compound, and by purifying the crude product Alternatively, in the method for producing pentafluoroethane, the purification step may be carried out by fluorinating a mixture in which hydrogen fluoride is newly added to the crude product. The present invention has been found by using a method comprising a step of reducing the content of unsaturated compounds contained in the crude product by contacting with a gas phase and a distillation step, and completed the present invention. It came to do.

すなわち、本発明は、例えば、以下の(1)〜(13)の手段を含む。   That is, the present invention includes, for example, the following means (1) to (13).

(1)トリクロロエチレンおよび/またはテトラクロロエチレンとフッ化水素とを反応させて得られる粗生成物が、1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを含む主生成物、該主生成物との共沸組成分のフッ化水素、および少なくとも不飽和化合物を含む不純物成分からなり、該粗生成物を精製する工程を行うことによって高純度の1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを製造する方法において、前記精製工程が、前記粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させて、前記粗生成物に含まれる不飽和化合物の含有量を低減させる工程と、蒸留工程とを含むことを特徴とする1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法。   (1) A main product in which a crude product obtained by reacting trichlorethylene and / or tetrachloroethylene with hydrogen fluoride contains 1,1,1,2-tetrafluoroethane and / or pentafluoroethane, the main product High-purity 1,1,1,2-tetrafluoroethane comprising the step of purifying the crude product, comprising hydrogen fluoride having an azeotropic composition with the product and an impurity component containing at least an unsaturated compound In the method for producing pentafluoroethane, the purification step is included in the crude product by bringing a mixture obtained by newly adding hydrogen fluoride into the crude product into contact with a fluorination catalyst in a gas phase. 1,1,1,2-tetrafluoroethane and / or characterized by comprising a step of reducing the content of unsaturated compounds and a distillation step Method of manufacturing a printer fluoroethane.

(2)前記粗生成物に不純物として含まれる塩化水素の含有量が2モル%以下である前記(1)に記載の製造方法。   (2) The production method according to (1), wherein the content of hydrogen chloride contained as an impurity in the crude product is 2 mol% or less.

(3)前記粗生成物に含まれる1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの濃度が70モル%以上である前記(1)または(2)に記載の製造方法。   (3) The production method according to (1) or (2), wherein the concentration of 1,1,1,2-tetrafluoroethane and / or pentafluoroethane contained in the crude product is 70 mol% or more.

(4)前記不飽和化合物が、1,1−ジフルオロ−2−クロロエチレン、1,2−ジフルオロ−1−クロロエチレン、1−クロロ−2−フルオロエチレン、1,1,2−トリフルオロエチレンおよび1−クロロ−1,2,2−トリフルオロエチレンからなる群より選ばれる少なくとも1種の化合物である前記(1)〜(3)のいずれかに記載の製造方法。   (4) the unsaturated compound is 1,1-difluoro-2-chloroethylene, 1,2-difluoro-1-chloroethylene, 1-chloro-2-fluoroethylene, 1,1,2-trifluoroethylene and The production method according to any one of (1) to (3), wherein the production method is at least one compound selected from the group consisting of 1-chloro-1,2,2-trifluoroethylene.

(5)前記フッ素化触媒が、Cu、Mg、Zn、Pb、V、Bi、Cr、In、Mn、Fe、Co、NiおよびAlからなる群より選ばれる少なくとも1種の金属元素を含む前記(1)〜(4)のいずれかに記載の製造方法。   (5) The fluorination catalyst contains at least one metal element selected from the group consisting of Cu, Mg, Zn, Pb, V, Bi, Cr, In, Mn, Fe, Co, Ni, and Al ( The manufacturing method in any one of 1)-(4).

(6)前記混合物と前記フッ素化触媒との接触温度が130〜280℃の範囲である前記(1)〜(5)のいずれかに記載の製造方法。   (6) The manufacturing method in any one of said (1)-(5) whose contact temperature of the said mixture and the said fluorination catalyst is the range of 130-280 degreeC.

(7)前記粗生成物が、1,1,1,2−テトラフルオロエタンを含む主生成物、該主生成物との共沸組成分のフッ化水素、および少なくとも不飽和化合物を含む不純物成分からなり、前記粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させて、前記粗生成物に含まれる不飽和化合物の含有量を低減させる前記(1)〜(6)のいずれかに記載の製造方法。   (7) Impurity component in which the crude product contains a main product containing 1,1,1,2-tetrafluoroethane, hydrogen fluoride in an azeotropic composition with the main product, and at least an unsaturated compound (1) to reducing the content of unsaturated compounds contained in the crude product by bringing a mixture in which hydrogen fluoride is newly added to the crude product into contact with the fluorination catalyst in a gas phase. (6) The manufacturing method in any one of.

(8)前記混合物と前記フッ素化触媒との接触温度が130〜200℃の範囲である前記(7)に記載の製造方法。   (8) The manufacturing method as described in said (7) whose contact temperature of the said mixture and the said fluorination catalyst is the range of 130-200 degreeC.

(9)前記蒸留工程においてフッ化水素を分離し、分離されたフッ化水素を前記粗生成物を得る工程に再循環する前記(1)〜(8)のいずれかに記載の製造方法。   (9) The production method according to any one of (1) to (8), wherein hydrogen fluoride is separated in the distillation step, and the separated hydrogen fluoride is recycled to the step of obtaining the crude product.

(10)前記(1)〜(9)のいずれかに記載の製造方法によって得られる1、1,1,2−テトラフルオロエタンであって、塩素含有化合物の総含有量が2volppm以下であることを特徴とする1,1,1,2−テトラフルオロエタン。   (10) 1,1,1,2-tetrafluoroethane obtained by the production method according to any one of (1) to (9), wherein the total content of chlorine-containing compounds is 2 volppm or less 1,1,1,2-tetrafluoroethane characterized by

(11)前記(10)に記載の1,1,1,2−テトラフルオロエタンとフッ素ガスとを、希釈ガスの存在下に反応させることを特徴とするペンタフルオロエタンおよび/またはヘキサフルオロエタンの製造方法。   (11) The 1,1,1,2-tetrafluoroethane described in the above (10) is reacted with fluorine gas in the presence of a diluent gas, and pentafluoroethane and / or hexafluoroethane Production method.

(12)前記(11)に記載の製造方法によって得られるペンタフルオロエタンおよび/またはヘキサフルオロエタンを含むことを特徴とするエッチングガス。   (12) An etching gas comprising pentafluoroethane and / or hexafluoroethane obtained by the production method according to (11).

(13)前記(11)に記載の製造方法によって得られるペンタフルオロエタンおよび/またはヘキサフルオロエタンを含むことを特徴とするクリーニングガス。   (13) A cleaning gas comprising pentafluoroethane and / or hexafluoroethane obtained by the production method according to (11).

本発明によれば、1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタン中に含まれる不飽和不純物の含有量を低減させて、低温用冷媒、エッチングガスやクリーニングガスとして有利に利用できる1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを得るための工業的に有利な製造方法およびその用途を提供することができる。   According to the present invention, the content of unsaturated impurities contained in 1,1,1,2-tetrafluoroethane and / or pentafluoroethane is reduced, which is advantageous as a low-temperature refrigerant, etching gas or cleaning gas. It is possible to provide an industrially advantageous production method and use thereof for obtaining available 1,1,1,2-tetrafluoroethane and / or pentafluoroethane.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

CF3 CH2 Fの製造方法としては、例えば、トリクロロエチレンとフッ化水素とをフッ素化触媒の存在下に、2段階で反応させて製造する方法が知られている。また、CF3 CHF2 の製造方法としては、例えば、テトラクロロエチレンとフッ化水素とをフッ素化触媒の存在下に、2段階で反応させて製造する方法が知られている。これらの方法を用いてCF3 CH2 FやCF3 CHF2 を製造すると、一般に行なわれている蒸留操作等の精製を行った場合であっても、目的物であるCF3 CH2 FやCF3 CHF2 と分離することが困難な不純物が含まれる。これらの不純物としては、例えば、前述の不飽和化合物類、クロロフルオロカーボン類、ハイドロフルオロカーボン類等が挙げられ、これらの不純物はできる限り除去して高純度化する必要がある。 As a method for producing CF 3 CH 2 F, for example, a method is known in which trichlorethylene and hydrogen fluoride are reacted in two stages in the presence of a fluorination catalyst. As a method for producing CF 3 CHF 2 , for example, a method is known in which tetrachloroethylene and hydrogen fluoride are reacted in two stages in the presence of a fluorination catalyst. When CF 3 CH 2 F or CF 3 CHF 2 is produced by using these methods, the target product CF 3 CH 2 F or CF 3 can be obtained even when purification such as a general distillation operation is performed. 3 Impurities that are difficult to separate from CHF 2 are included. Examples of these impurities include the aforementioned unsaturated compounds, chlorofluorocarbons, hydrofluorocarbons and the like, and it is necessary to remove these impurities as much as possible to achieve high purity.

本発明の1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法は、トリクロロエチレンおよび/またはテトラクロロエチレンとフッ化水素とを反応させて得られる粗生成物が、1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを含む主生成物、該主生成物との共沸組成分のフッ化水素、および少なくとも不飽和化合物を含む不純物成分からなり、該粗生成物を精製する工程を行うことによって高純度の1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンを製造する方法において、前記精製工程が、前記粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させて、前記粗生成物に含まれる不飽和化合物の含有量を低減させる工程と、蒸留工程とを含むことを特徴とする。   In the method for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane of the present invention, a crude product obtained by reacting trichloroethylene and / or tetrachloroethylene with hydrogen fluoride is obtained by reacting 1,1,1,2-tetrafluoroethane and / or pentafluoroethane. The crude product comprising a main product containing 1,2-tetrafluoroethane and / or pentafluoroethane, hydrogen fluoride having an azeotropic composition with the main product, and an impurity component containing at least an unsaturated compound. In the method for producing high-purity 1,1,1,2-tetrafluoroethane and / or pentafluoroethane by performing a step of purifying the crude product, the purification step newly adds hydrogen fluoride to the crude product. The step of bringing the added mixture into contact with the fluorination catalyst in a gas phase to reduce the content of unsaturated compounds contained in the crude product , Characterized in that it comprises a distillation step.

ハイドロフルオロカーボン類の多くの化合物は、フッ化水素と共沸混合物を形成することが知られている。CF3 CH2 FやCF3 CHF2 もフッ化水素と共沸混合物を形成し、例えば、CF3 CH2 Fとフッ化水素の共沸混合物のモル比は、HF/CF3 CH2 F=約0.12である。例えば、前述した特開平6−184015号公報には、この共沸混合物と、例えば、1,1−ジフルオロ−2−クロロエチレン(CF2 =CHCl)のような不飽和化合物を含む混合物を、200〜380℃の温度でクロム系触媒と接触させて不飽和化合物を低減させる方法が記載されている。しかしながら、接触温度が高くなると前記の混合物中に含まれる2−クロロ−1,1,1−トリフルオロエタン(CF3 CH2 Cl)の脱ハロゲン化反応によって1,1−ジフルオロ−2−クロロエチレンが副生物として生成し、それに伴って触媒表面のコーキングが進行して触媒寿命が短くなる等の課題を有していた。本発明では、CF3 CH2 Fおよび/またはCF3 CHF2 を含む主生成物と主生成物との共沸組成分のフッ化水素、および1種以上の不飽和化合物を含む不純物成分を含む混合物中に、新たにフッ化水素を添加し、気相状態でフッ素化触媒と接触させることにより、目的物をロスすることなく、不飽和化合物の含有量を低減し、さらに触媒寿命を長くすることができるという利点が得られる。 Many compounds of hydrofluorocarbons are known to form azeotropes with hydrogen fluoride. CF 3 CH 2 F and CF 3 CHF 2 also form an azeotrope with hydrogen fluoride. For example, the molar ratio of the azeotrope of CF 3 CH 2 F and hydrogen fluoride is HF / CF 3 CH 2 F = About 0.12. For example, in the above-mentioned JP-A-6-184015, a mixture containing this azeotrope and an unsaturated compound such as 1,1-difluoro-2-chloroethylene (CF 2 = CHCl) is disclosed in 200 A method for reducing unsaturated compounds by contacting with a chromium-based catalyst at a temperature of ˜380 ° C. is described. However, when the contact temperature is increased, 1,1-difluoro-2-chloroethylene is obtained by dehalogenation reaction of 2-chloro-1,1,1-trifluoroethane (CF 3 CH 2 Cl) contained in the mixture. Is produced as a by-product, and coking of the catalyst surface proceeds accordingly, resulting in a problem that the catalyst life is shortened. In the present invention, hydrogen fluoride corresponding to the azeotropic composition of the main product containing CF 3 CH 2 F and / or CF 3 CHF 2 and an impurity component containing one or more unsaturated compounds is included. By adding new hydrogen fluoride to the mixture and bringing it into contact with the fluorination catalyst in the gas phase, the content of unsaturated compounds is reduced and the catalyst life is extended without losing the target product. The advantage that it can be obtained.

トリクロロエチレンとフッ化水素とを反応させた後に粗精製工程を行って得られるCF3 CH2 F粗生成物には、共沸組成分のフッ化水素、1種以上の不飽和化合物、CF3 CH2 Fの製造中間体のCF3 CH2 Clが含まれる。通常、CF3 CH2 Clの濃度は約10モル%以下であり、目的物であるCF3 CH2 Fの濃度は約70モル%以上である。中間体のCF3 CH2 Clもまたフッ化水素と共沸混合物を形成し、その共沸混合物のモル比はHF/CF3 CH2 Cl=約1.0である。 A crude product of CF 3 CH 2 F obtained by reacting trichlorethylene with hydrogen fluoride and then performing a crude purification step includes hydrogen fluoride having an azeotropic composition, one or more unsaturated compounds, CF 3 CH The production intermediate of 2 F, CF 3 CH 2 Cl, is included. Usually, the concentration of CF 3 CH 2 Cl is about 10 mol% or less, and the concentration of the target CF 3 CH 2 F is about 70 mol% or more. The intermediate CF 3 CH 2 Cl also forms an azeotrope with hydrogen fluoride, the molar ratio of the azeotrope being HF / CF 3 CH 2 Cl = about 1.0.

また、不飽和化合物の総含有量は、使用する触媒や反応条件によって異なるが、一般には0.4〜0.9モル%程度であり、不飽和化合物としては1,1−ジフルオロ−2−クロロエチレン、1,2−ジフルオロ−1−クロロエチレン、1−クロロ−2−フルオロエチレン、1,1,2−トリフルオロエチレンおよび1−クロロ−1,2,2−トリフルオロエチレンが挙げられる。新たに添加するフッ化水素の量は、CF3 CH2 Fとフッ化水素の共沸混合物のモル比がHF/CF3 CH2 F=約0.12であるので、それ以上となるように添加することが好ましく、例えば、CF3 CH2 Fとのモル比でHF/CF3 CH2 F=0.3以上となるように添加することが好ましい。フッ化水素の添加量を多くすれば不飽和化合物へのフッ化水素の付加反応が進行しやすく、また反応温度を下げることができる。これは、副生物の生成を抑制し、目的物のロスを低減することや触媒の寿命を長くすることができる等の大きな利点となる。また、粗生成物がCF3 CHF2 である場合は、CF3 CHF2 とフッ化水素の共沸混合物のモル比がHF/CF3 CHF2 =約0.1であり、新たに添加するフッ化水素の量はCF3 CHF2 とのモル比がHF/CF3 CHF2 =0.2以上となるように添加することが好ましい。本発明の方法において、粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させる工程は、CF3 CH2 FおよびCF3 CHF2 を、それぞれ単独でフッ化水素と混合してフッ素化触媒と接触させてもよいし、2つの化合物が混合された状態でフッ化水素との混合物を形成してフッ素化触媒と接触させてもよいが、2つの化合物を混合した状態でフッ素化触媒と接触させ、その後蒸留して分離する方法が好ましい。また、新たに添加するフッ化水素の供給方法としては、一括供給方式と分割供給方式のどちらも選択可能である。 The total content of unsaturated compounds varies depending on the catalyst used and reaction conditions, but is generally about 0.4 to 0.9 mol%. As an unsaturated compound, 1,1-difluoro-2-chloro Mention may be made of ethylene, 1,2-difluoro-1-chloroethylene, 1-chloro-2-fluoroethylene, 1,1,2-trifluoroethylene and 1-chloro-1,2,2-trifluoroethylene. The amount of hydrogen fluoride to be newly added should be more than that because the molar ratio of the azeotropic mixture of CF 3 CH 2 F and hydrogen fluoride is HF / CF 3 CH 2 F = about 0.12. it is preferable to add, for example, is preferably added such that the HF / CF 3 CH 2 F = 0.3 or more in the molar ratio of CF 3 CH 2 F. If the addition amount of hydrogen fluoride is increased, the addition reaction of hydrogen fluoride to the unsaturated compound can easily proceed, and the reaction temperature can be lowered. This is a great advantage, such as suppressing the production of by-products, reducing the loss of the target product, and extending the life of the catalyst. When the crude product is CF 3 CHF 2 , the molar ratio of the azeotropic mixture of CF 3 CHF 2 and hydrogen fluoride is HF / CF 3 CHF 2 = about 0.1, and the newly added fluorine is added. of the amount of hydrogen it is preferably added such that the molar ratio of the CF 3 CHF 2 is HF / CF 3 CHF 2 = 0.2 or more. In the method of the present invention, the step of bringing the mixture obtained by newly adding hydrogen fluoride into the crude product into contact with the fluorination catalyst in the gas phase comprises CF 3 CH 2 F and CF 3 CHF 2 each independently of hydrogen fluoride. May be mixed with the fluorination catalyst, or may be contacted with the fluorination catalyst by forming a mixture with hydrogen fluoride in a state where the two compounds are mixed. In this state, a method of contacting with a fluorination catalyst and then separating by distillation is preferable. In addition, as a supply method of hydrogen fluoride to be newly added, either a batch supply method or a divided supply method can be selected.

本発明の方法において用いられるフッ素化触媒は、フッ素化反応に対して触媒作用を有するものであればよく、触媒としては、周期表の1B族、2A族、2B族、4B族、5A族、5B族、6A族、7A族および8族の金属化合物で、Cu、Mg、Zn、Pb、V、Bi、Cr、In、Mn、Fe、Co、NiおよびAlからなる群より選ばれる少なくとも1種の元素を含むフッ素化触媒であって、例えば、3価の酸化クロムを主成分とする塊状型触媒、あるいはアルミナ、フッ化アルミニウムまたは活性炭を担体として用いる担時型触媒のどちらをも選択することができる。フッ素化触媒の調製法としては、通常の方法が適用できるが、例えば、塩化コバルト水溶液にアルミナを含浸した後、乾燥し、空気流通下で焼成を行って製造することができる。このように調製した触媒は反応に使用する前段で、窒素および/またはフッ化水素を用いて活性化することが好ましい。   The fluorination catalyst used in the method of the present invention may be any catalyst that has a catalytic action on the fluorination reaction. Examples of the catalyst include 1B group, 2A group, 2B group, 4B group, 5A group, 5B group, 6A group, 7A group and 8 group metal compound, at least one selected from the group consisting of Cu, Mg, Zn, Pb, V, Bi, Cr, In, Mn, Fe, Co, Ni and Al A fluorination catalyst containing any of these elements, for example, a bulk catalyst mainly composed of trivalent chromium oxide, or a supported catalyst using alumina, aluminum fluoride or activated carbon as a carrier. Can do. As a method for preparing the fluorination catalyst, a normal method can be applied. For example, it can be produced by impregnating a cobalt chloride aqueous solution with alumina, then drying and firing in an air stream. The catalyst thus prepared is preferably activated using nitrogen and / or hydrogen fluoride before the reaction.

粗生成物とフッ素化触媒を接触させる温度は130〜280℃の範囲が好ましく、130〜200℃の範囲がより好ましい。130℃より低い温度では不飽和化合物の反応速度が遅くなる傾向があり、280℃より高い温度では前記のような副反応の割合が増加する傾向が見られる。   The temperature for bringing the crude product into contact with the fluorination catalyst is preferably in the range of 130 to 280 ° C, more preferably in the range of 130 to 200 ° C. When the temperature is lower than 130 ° C., the reaction rate of the unsaturated compound tends to be slow, and when the temperature is higher than 280 ° C., the side reaction rate tends to increase.

粗生成物に不純物として含まれる塩化水素の含有量は2モル%以下であることが好ましい。塩化水素の含有量が2モル%より多いと不純物が増加する傾向が見られる。   The content of hydrogen chloride contained as an impurity in the crude product is preferably 2 mol% or less. When the content of hydrogen chloride is more than 2 mol%, there is a tendency for impurities to increase.

粗生成物とフッ素化触媒を接触させた後、共沸成分のフッ化水素と新たに添加したフッ化水素の少なくとも一部は蒸留工程で分離され、分離されたフッ化水素は粗生成物を得る工程に再循環されることが好ましい。CF3 CH2 Fは蒸留によって分離精製することができるので、不飽和化合物や含塩素化合物をほとんど含まない高純度なCF3 CH2 Fを収率よく得ることができ、塩素含有化合物の総含有量を2volppm以下とすることができる。 After bringing the crude product into contact with the fluorination catalyst, at least a part of the azeotropic component hydrogen fluoride and the newly added hydrogen fluoride are separated in the distillation step, and the separated hydrogen fluoride is separated from the crude product. Preferably it is recycled to the obtaining step. Since CF 3 CH 2 F can be separated and purified by distillation, high-purity CF 3 CH 2 F containing almost no unsaturated compounds or chlorine-containing compounds can be obtained with good yield, and the total content of chlorine-containing compounds can be obtained. The amount can be 2 volppm or less.

CF3 CH2 F中に含まれる不純物の含有量の測定は、ガスクロマトグラフ(GC)法のTCD法、FID法あるいはガスクロマトグラフ−質量分析計(GC−MS)法等により行うことができる。 The content of impurities contained in CF 3 CH 2 F can be measured by a gas chromatography (GC) TCD method, an FID method, a gas chromatograph-mass spectrometer (GC-MS) method, or the like.

また、このような高純度の1,1,1,2−テトラフルオロエタンとフッ素ガスとを、希釈ガスの存在下に反応させることにより、ペンタフルオロエタンおよび/またはヘキサフルオロエタンを製造することができる。本発明の製造方法によれば、ペンタフルオロエタンおよびヘキサフルオロエタンの製造原料となる1,1,1,2−テトラフルオロエタンは不純物として含まれる塩素含有化合物の総含有量が極めて少ないので高純度のペンタフルオロエタンおよびヘキサフルオロエタンを製造することができる。例えば、ペンタフルオロエタンは99.9998vol%以上の純度とすることができる。   Also, pentafluoroethane and / or hexafluoroethane can be produced by reacting such high-purity 1,1,1,2-tetrafluoroethane with fluorine gas in the presence of a diluent gas. it can. According to the production method of the present invention, 1,1,1,2-tetrafluoroethane, which is a raw material for producing pentafluoroethane and hexafluoroethane, has a high purity because the total content of chlorine-containing compounds contained as impurities is extremely small. Of pentafluoroethane and hexafluoroethane can be produced. For example, pentafluoroethane can have a purity of 99.99998 vol% or more.

次に、上記の製造方法を用いて得られる高純度のペンタフルオロエタンおよびヘキサフルオロエタンの用途について説明する。高純度のペンタフルオロエタンは、例えば、He、N2 、Ar等の不活性ガス、およびO2 あるいはNF3 等のガスとの混合ガス(以下においては「ペンタフルオロエタン製品」ということがある)は、半導体デバイス製造工程の中のエッチング工程におけるエッチングガスとして使用することができる。また、高純度のヘキサフルオロエタンは半導体デバイス製造工程におけるクリーニングガスとして使用することができる。 Next, uses of high-purity pentafluoroethane and hexafluoroethane obtained by using the above production method will be described. High-purity pentafluoroethane is, for example, a mixed gas with an inert gas such as He, N 2 , or Ar, and a gas such as O 2 or NF 3 (hereinafter sometimes referred to as “pentafluoroethane product”). Can be used as an etching gas in an etching process in a semiconductor device manufacturing process. Moreover, high purity hexafluoroethane can be used as a cleaning gas in the semiconductor device manufacturing process.

以下、実施例および比較例により本発明をさらに説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further, this invention is not limited at all by these Examples.

粗1,1,1,2−テトラフルオロエタンの調製例(原料例1)
トリクロロエチレン(CCl2 =CHCl)を出発原料とし、クロム系フッ素化触媒の存在下に、気相でフッ化水素と反応させて主として中間体であるCF3 CH2 Clを得、これをクロム系フッ素化触媒が充填されている別の反応器に導入してさらにフッ化水素と反応させる2段階の反応を行った。粗精製工程を経て得られた粗1,1,1,2−テトラフルオロエタンを分析したところ、次のような組成を有していた。
Preparation example of crude 1,1,1,2-tetrafluoroethane (raw material example 1)
Using trichlorethylene (CCl 2 = CHCl) as a starting material, it is reacted with hydrogen fluoride in the gas phase in the presence of a chromium-based fluorination catalyst to obtain CF 3 CH 2 Cl, which is mainly an intermediate, and this is converted to chromium-based fluorine. A two-stage reaction was carried out by introducing it into another reactor filled with a fluorination catalyst and further reacting with hydrogen fluoride. When crude 1,1,1,2-tetrafluoroethane obtained through the crude purification step was analyzed, it had the following composition.

CF3 CH2 F 81.2080 CHCl=CHF 0.0020
CF3 CH2 Cl 6.2400 CF3 CH3 0.5630
CF3 CHF2 0.5320 CF3 CHClF 0.5310
CHF2 CHF2 0.1600 CF3 CClF2 0.0540
CF2 =CHCl 0.6420 HF(フッ化水素) 9.5060
HCl(塩化水素) 0.5620
単位:vol%
粗ペンタフルオロエタンの調製例(原料例2)
テトラクロロエチレン(CCl2 =CCl2 )を原料としてクロム系触媒の存在下、気相でフッ化水素と反応させて主として中間体であるCF3 CHCl2 およびCF3 CHClFを得、これをクロム系フッ素化触媒が充填されている別の反応器に導入してフッ化水素と反応させる2段階の反応を行った。粗精製工程を経て得られた粗ペンタフルオロエタンを分析したところ、次のような組成を有していた。
CF 3 CH 2 F 81.2080 CHCl═CHF 0.0020
CF 3 CH 2 Cl 6.2400 CF 3 CH 3 0.5630
CF 3 CHF 2 0.5320 CF 3 CHClF 0.5310
CHF 2 CHF 2 0.1600 CF 3 CClF 2 0.0540
CF 2 = CHCl 0.6420 HF (hydrogen fluoride) 9.5060
HCl (hydrogen chloride) 0.5620
Unit: vol%
Example of preparation of crude pentafluoroethane (raw material example 2)
Tetrachloroethylene (CCl 2 = CCl 2 ) as a raw material is reacted with hydrogen fluoride in the gas phase in the presence of a chromium-based catalyst to obtain mainly intermediates CF 3 CHCl 2 and CF 3 CHClF, which are then fluorinated with chromium A two-stage reaction was carried out by introducing it into another reactor filled with a catalyst and reacting with hydrogen fluoride. When the crude pentafluoroethane obtained through the crude purification step was analyzed, it had the following composition.

CF3 CHF2 86.9712 CF3 CHClF 3.8204
CF3 CHCl2 0.0051 CF3 CClF2 0.3121
CF3 CH3 0.0161 CH22 0.0121
CF2 =CClF 0.0241 CF2 =CHF 0.0012
HF 8.3276 HCl 0.4820
その他 0.0281
単位:vol%
触媒の調製例1(触媒例1)
10Lの容器に純水0.6Lを入れて撹拌し、この中に純水1.2Lに452gのCr(NO33 ・9H2 Oと42gのIn(NO33 ・nH2 O(nは約5)を溶かした溶液と、0.31Lの28%アンモニア水とを、反応液のpHが7.5〜8.5の範囲内になるように、2種の水溶液の流量をコントロールしながら約1時間かけて滴下した。得られたスラリーを濾別し、濾別した固形物を純水でよく洗浄した後、120℃で12時間乾燥した。乾燥した固形物を粉砕後、黒鉛と混合し、打錠成型器によってペレットを作成した。このペレットを窒素気流下に、400℃で4時間焼成して触媒前駆体とした。次に、触媒前駆体をインコネル製反応器に充填し、フッ化水素を用いて350℃でフッ素化処理(触媒の活性化)を行ない、触媒を調製した。
CF 3 CHF 2 86.9712 CF 3 CHClF 3.8204
CF 3 CHCl 2 0.0051 CF 3 CClF 2 0.3121
CF 3 CH 3 0.0161 CH 2 F 2 0.0121
CF 2 = CClF 0.0241 CF 2 = CHF 0.0012
HF 8.3276 HCl 0.4820
Other 0.0281
Unit: vol%
Catalyst Preparation Example 1 (Catalyst Example 1)
Into a 10 L container, 0.6 L of pure water was added and stirred. Into this, 1.2 L of pure water, 452 g of Cr (NO 3 ) 3 .9H 2 O and 42 g of In (NO 3 ) 3 .nH 2 O ( Control the flow rates of the two aqueous solutions so that the pH of the reaction solution is in the range of 7.5 to 8.5 with a solution in which n is about 5) and 0.31 L of 28% aqueous ammonia. The solution was added dropwise over about 1 hour. The obtained slurry was filtered off, and the solid matter separated by filtration was thoroughly washed with pure water and then dried at 120 ° C. for 12 hours. The dried solid was pulverized and then mixed with graphite, and pellets were prepared with a tableting machine. The pellet was calcined at 400 ° C. for 4 hours under a nitrogen stream to obtain a catalyst precursor. Next, the catalyst precursor was filled in an Inconel reactor, and fluorination treatment (activation of the catalyst) was performed at 350 ° C. using hydrogen fluoride to prepare a catalyst.

触媒の調製例2(触媒例2)
塩化クロム(CrCl3 ・6H2 O)191.5gを純水132mlに投入し、湯浴上で70〜80℃に加熱して溶解した。溶液を室温まで冷却後、活性アルミナ(日揮ユニバ−サル(株)NST−7)400gを浸漬して、アルミナに触媒液を全量吸収させた。次いで、触媒液で濡れた状態のアルミナを90℃の湯浴上で乾燥し、乾固した。乾固した触媒を空気循環型の熱風乾燥器で110℃で3時間乾燥し、乾燥触媒をSUS製容器に充填し、空気流通下に400℃まで昇温して、触媒前駆体を作成した。触媒のフッ素化処理(触媒の活性化)を触媒の調製例1と同様な手順、条件で実施し、触媒を調製した。
Catalyst Preparation Example 2 (Catalyst Example 2)
191.5 g of chromium chloride (CrCl 3 .6H 2 O) was put into 132 ml of pure water and dissolved by heating to 70 to 80 ° C. on a hot water bath. After cooling the solution to room temperature, 400 g of activated alumina (JGC Universal Co., Ltd. NST-7) was immersed to absorb the entire amount of the catalyst solution in the alumina. Next, the alumina wet with the catalyst solution was dried on a hot water bath at 90 ° C. and solidified. The dried catalyst was dried at 110 ° C. for 3 hours with an air circulation type hot air drier, filled with a dry catalyst in a SUS container, and heated to 400 ° C. under air flow to prepare a catalyst precursor. The catalyst was prepared by subjecting the catalyst to fluorination treatment (activation of the catalyst) in the same procedure and conditions as in Preparation Example 1 of the catalyst.

触媒の調製例3(触媒例3)
触媒例2に第2成分として塩化亜鉛(ZnCl2 )16.6gを添加した以外は、触媒の調製例2と同様な手順、操作で実施し、触媒を調製した。
Catalyst Preparation Example 3 (Catalyst Example 3)
A catalyst was prepared by performing the same procedure and operation as in Catalyst Preparation Example 2, except that 16.6 g of zinc chloride (ZnCl 2 ) was added as a second component to Catalyst Example 2.

比較例
内径1インチ、長さ1mのインコネル600型反応器に触媒の調製例1で得られた触媒(触媒例1)80mlを充填し、窒素ガスを流しながら反応器温度を180℃に保持し、粗1,1,1,2−テトラフルオロエタン(原料例1)を反応器に導入し、その後窒素ガスの供給を停止し、粗1,1,1,2−テトラフルオロエタンのみを触媒に72NL/hrで供給し、約4時間後、排出ガスをアルカリ水溶液で酸分除去後、ガス組成をガスクロマトグラフを用いて分析したところ、次のような組成を有していた。
Comparative Example An Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m was filled with 80 ml of the catalyst obtained in Catalyst Preparation Example 1 (Catalyst Example 1), and the reactor temperature was maintained at 180 ° C. while flowing nitrogen gas. Then, crude 1,1,1,2-tetrafluoroethane (raw material example 1) was introduced into the reactor, and then the supply of nitrogen gas was stopped, and only crude 1,1,1,2-tetrafluoroethane was used as a catalyst. The gas was supplied at 72 NL / hr, and after about 4 hours, the exhaust gas was acid-removed with an aqueous alkaline solution, and the gas composition was analyzed using a gas chromatograph. The gas composition had the following composition.

CF3 CH2 F 90.2993 CHCl=CHF 0.0003
CF3 CH2 Cl 7.6247 CF3 CH3 0.6260
CF3 CHF2 0.5916 CF3 CHClF 0.5904
CHF2 CHF2 0.1779 CF3 CClF2 0.0601
CF2 =CHCl 0.0278 CH2 ClCHF2 0.0019
単位:vol%
上記の分析結果から明らかなように粗1,1,1、2−テトラフルオロエタン中の不飽和化合物の転化率は約95.8%であり、完全に除去できていないことが分かる。
CF 3 CH 2 F 90.993 CHCl═CHF 0.0003
CF 3 CH 2 Cl 7.6247 CF 3 CH 3 0.6260
CF 3 CHF 2 0.5916 CF 3 CHClF 0.5904
CHF 2 CHF 2 0.1779 CF 3 CClF 2 0.0601
CF 2 = CHCl 0.0278 CH 2 ClCHF 2 0.0019
Unit: vol%
As apparent from the above analysis results, the conversion of the unsaturated compound in the crude 1,1,1,2-tetrafluoroethane is about 95.8%, and it can be seen that it has not been completely removed.

次に、上記の条件で反応を継続し、2400時間後、排出ガスの組成を分析したところ、CF2 =CHClの含有量が増加したことが認められ、不飽和化合物の転化率は約93%に低下した。この時点で反応を停止し、触媒を取り出して表面観察をおこなったところ、カーボン(黒色)の触媒表面への付着が認められた。 Next, the reaction was continued under the above conditions, and after 2400 hours, the composition of the exhaust gas was analyzed. As a result, it was found that the content of CF 2 ═CHCl was increased, and the conversion rate of the unsaturated compound was about 93%. Declined. At this point, the reaction was stopped, the catalyst was taken out and the surface was observed, and adhesion of carbon (black) to the catalyst surface was observed.

実施例1
内径1インチ、長さ1mのインコネル600型反応器に比較例と同様に、触媒の調製例1で得られた触媒(触媒例1)80mlを充填し、窒素ガスを流しながら反応器温度を180℃に保持し、反応器入り口よりフッ化水素を10NL/hr供給し、次いで粗1,1,1,2−テトラフルオロエタン(原料例1)を反応器に72NL/hrで供給し、その後窒素ガスの供給を停止し、約4時間後、排出ガスをアルカリ水溶液で酸分除去後、ガス組成をガスクロマトグラフを用いて分析したところ、次のような組成を有していた。
Example 1
As in the comparative example, an Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m was filled with 80 ml of the catalyst obtained in Catalyst Preparation Example 1 (Catalyst Example 1), and the reactor temperature was increased to 180 while flowing nitrogen gas. Then, hydrogen fluoride is supplied at 10 NL / hr from the reactor inlet, and then crude 1,1,1,2-tetrafluoroethane (raw material example 1) is supplied to the reactor at 72 NL / hr, and then nitrogen is supplied. The gas supply was stopped, and after about 4 hours, the exhaust gas was acid-removed with an alkaline aqueous solution, and the gas composition was analyzed using a gas chromatograph. The gas composition had the following composition.

CF3 CH2 F 90.2998 CHCl=CHF <0.0001
CF3 CH2 Cl 7.6524 CF3 CH3 0.6259
CF3 CHF2 0.5918 CF3 CHClF 0.5902
CHF2 CHF2 0.1777 CF3 CClF2 0.0600
CF2 =CHCl <0.0001 CH2 ClCHF2 0.0020
単位:vol%
分析結果から明らかなように、新たにフッ化水素を粗1,1,1,2−テトラフルオロエタンに添加することにより不飽和化合物の転化率は約99.9%となった。
CF 3 CH 2 F 90.2998 CHCl═CHF <0.0001
CF 3 CH 2 Cl 7.6524 CF 3 CH 3 0.6259
CF 3 CHF 2 0.5918 CF 3 CHClF 0.5902
CHF 2 CHF 2 0.1777 CF 3 CClF 2 0.0600
CF 2 ═CHCl <0.0001 CH 2 ClCHF 2 0.0020
Unit: vol%
As is apparent from the analysis results, the conversion of the unsaturated compound was about 99.9% by newly adding hydrogen fluoride to the crude 1,1,1,2-tetrafluoroethane.

次に、上記のアルカリ水溶液で酸分除去後のガスをシリンダーを冷却しながら回収し、蒸留することによって低沸カットおよび高沸カットを行い、高純度の1,1,1,2−テトラフルオロエタンを得て、純度分析をガスクロマトグラフ(TCD法、FID法)およびガスクロマトグラフ−質量分析計(GC−MS法)を用いて分析したところ、次のような組成を有していた。   Next, the gas after acid removal with the above alkaline aqueous solution is recovered while cooling the cylinder, and is distilled to perform low boiling cut and high boiling cut to obtain high purity 1,1,1,2-tetrafluoro. Ethane was obtained, and purity analysis was performed using a gas chromatograph (TCD method, FID method) and a gas chromatograph-mass spectrometer (GC-MS method). The resulting composition had the following composition.

CF3 CH2 F 99.9956 CHF2 CHF2 0.0042
含塩素化合物 <0.0002
単位:vol%
上記の結果から明らかなように、1,1,1、2−テトラフルオロエタン中には含塩素化合物は2volppm以下であり、異性体である1,1,2,2−テトラフルオロエタンを併せれば純度は約99.999vol%以上となる。
CF 3 CH 2 F 99.9956 CHF 2 CHF 2 0.0042
Chlorine-containing compound <0.0002
Unit: vol%
As is clear from the above results, the chlorine-containing compound is 2 volppm or less in 1,1,1,2-tetrafluoroethane, and the isomer 1,1,2,2-tetrafluoroethane is combined. The purity is about 99.999 vol% or more.

また、上記の粗1,1,1,2−テトラフルオロエタンの精製反応を同様な条件で継続し、2400時間後排出ガスの組成を分析したところ、比較例で見られたようなCF2 =CHClの増加は認められず、不飽和化合物の転化率も約99%以上を維持していた。 Further, the purification reaction of the crude 1,1,1,2-tetrafluoroethane was continued under the same conditions, and the composition of the exhaust gas was analyzed after 2400 hours. As a result, CF 2 = No increase in CHCl was observed, and the conversion rate of unsaturated compounds was maintained at about 99% or more.

この時点で比較例と同様に反応を停止し、触媒を取り出して表面観察を行なったところ、カ−ボンの付着は認められなかった。その後、触媒を反応器に再充填し、さらに2000時間、同様な条件で反応を継続したが、不飽和化合物の転化率は約99%以上を維持していた。   At this time, the reaction was stopped as in the comparative example, and the catalyst was taken out and the surface was observed. As a result, no adhesion of carbon was observed. Thereafter, the catalyst was recharged in the reactor, and the reaction was continued under the same conditions for 2000 hours. However, the conversion rate of the unsaturated compound was maintained at about 99% or more.

実施例2
内径20.6mmφ、長さ500mmのインコネル600製反応器(電気ヒーター加熱方式:フッ素ガスで温度500℃で不動態化処理を実施済)に窒素ガスを30NL/hr流し、280℃に昇温した。次いで、希釈ガスとしてフッ化水素を50NL/hr流し、さらに分岐した希釈ガスのガス流の一方へ実施例1で得られた1,1,1,2−テトラフルオロエタンを1.8NL/hr流した。その後、同様に分岐した希釈ガスのガス流のもう一方へフッ素ガスを2.7NL/hr流し、反応を行なった。3時間後、反応ガスを水酸化カリウム水溶液およびヨウ化カリウム水溶液でフッ化水素およびフッ素ガスを除去し、次いでガスクロマトグラフにて組成分析を行なったところ、ガス組成は次の通りであった。
Example 2
Nitrogen gas was supplied at a flow rate of 30 NL / hr to an Inconel 600 reactor having an inner diameter of 20.6 mmφ and a length of 500 mm (electric heater heating system: passivated with fluorine gas at a temperature of 500 ° C.) and heated to 280 ° C. . Next, hydrogen fluoride was flowed as a dilution gas at 50 NL / hr, and 1,1,1,2-tetrafluoroethane obtained in Example 1 was flowed at 1.8 NL / hr into one of the branched dilution gas flows. did. Thereafter, fluorine gas was allowed to flow at 2.7 NL / hr to the other of the branched diluting gas flows to carry out the reaction. Three hours later, hydrogen fluoride and fluorine gas were removed from the reaction gas with an aqueous potassium hydroxide solution and an aqueous potassium iodide solution, and then composition analysis was performed by gas chromatography. The gas composition was as follows.

CF4 0.4870 CF3 CF3 49.6001
CF3 CHF2 49.9126 CF3 CH2 F <0.0001
含塩素化合物 <0.0002
単位:vol%
次に、上記のフッ化水素およびフッ素ガスを除去した後のガスをシリンダーを冷却しながら回収し、蒸留することによってCF3 CF3 およびCF3 CHF2 を分離し、それぞれを低沸カットおよび高沸カットし、製品をガスクロマトグラフおよびGC−MSで分析したところ、CF3 CF3 の純度は99.9999vol%以上であり、またCF3 CHF2 の純度は99.9998vol%であり、高純度製品を取得することができた。
CF 4 0.4870 CF 3 CF 3 49.6001
CF 3 CHF 2 49.9126 CF 3 CH 2 F <0.0001
Chlorine-containing compound <0.0002
Unit: vol%
Next, the gas after removing the above hydrogen fluoride and fluorine gas was recovered while cooling the cylinder, and distilled to separate CF 3 CF 3 and CF 3 CHF 2 , respectively. When boiling cut and the product was analyzed by gas chromatograph and GC-MS, the purity of CF 3 CF 3 was 99.9999 vol% or more, and the purity of CF 3 CHF 2 was 99.998 vol%, which is a high purity product Was able to get.

実施例3
内径1インチ、長さ1mのインコネル600型反応器に触媒の調製例2で得られた触媒(触媒例2)80mlを充填し、窒素ガスを流しながら反応器温度を180℃に保持し、反応器入り口よりフッ化水素を10NL/hr供給し、次いで粗ペンタフルオロエタン(原料例2)を反応器に72NL/hr供給し、その後窒素ガスの供給を停止し、約4時間後、排出ガスをアルカリ水溶液で酸分除去後、ガスクロマトグラフを用いて分析したところ、次のような組成を有していた。
Example 3
An Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m is filled with 80 ml of the catalyst obtained in Catalyst Preparation Example 2 (Catalyst Example 2), and the reactor temperature is maintained at 180 ° C. while flowing nitrogen gas. Hydrogen fluoride is supplied from the inlet of the reactor at 10 NL / hr, then crude pentafluoroethane (raw material example 2) is supplied to the reactor at 72 NL / hr, and then the supply of nitrogen gas is stopped. After about 4 hours, the exhaust gas is discharged. When the acid content was removed with an alkaline aqueous solution and analyzed using a gas chromatograph, it had the following composition.

CF3 CHF2 95.3734 CF3 CHClF 4.2156
CF3 CHCl2 0.0056 CF3 CClF2 0.3422
CF3 CH3 0.0176 CH22 0.0133
CF2 =CClF <0.0002 CF2 =CHF <0.0001
CF3 CH2 F 0.0012 その他 0.0308
単位:vol%
上記の結果から明らかなように、粗ペンタフルオロエタン中の不飽和化合物は約99%を除去(転化)することができた。
CF 3 CHF 2 95.3734 CF 3 CHClF 4.2156
CF 3 CHCl 2 0.0056 CF 3 CClF 2 0.3422
CF 3 CH 3 0.0176 CH 2 F 2 0.0133
CF 2 = CClF <0.0002 CF 2 = CHF <0.0001
CF 3 CH 2 F 0.0012 Other 0.0308
Unit: vol%
As is apparent from the above results, about 99% of the unsaturated compound in the crude pentafluoroethane could be removed (converted).

実施例4
内径1インチ、長さ1mのインコネル600型反応器に触媒の調製例3で得られた触媒(触媒例3)80mlを充填し、窒素ガスを流しながら反応器温度を180℃に保持し、反応器入り口よりフッ化水素を10NL/hr供給し、次いで粗1,1,1,2−テトラフルオロエタン(原料例1)36NL/hrと粗ペンタフルオロエタン(原料例2)36NL/hrを反応器入り口で混合して反応器に供給し、その後窒素ガスの供給を停止し、約4時間後、排出ガスをアルカリ水溶液で酸分除去後、ガス組成をガスクロマトグラフで分析したところ、含有されていた不飽和化合物は約99%が除去(転化)できた。
Example 4
An Inconel 600 type reactor having an inner diameter of 1 inch and a length of 1 m was filled with 80 ml of the catalyst obtained in Catalyst Preparation Example 3 (Catalyst Example 3), and the reactor temperature was maintained at 180 ° C. while flowing nitrogen gas. Hydrogen fluoride is supplied at 10 NL / hr from the inlet of the vessel, and then crude 1,1,1,2-tetrafluoroethane (raw material example 1) 36 NL / hr and crude pentafluoroethane (raw material example 2) 36 NL / hr are reacted in the reactor. After mixing at the inlet and supplying to the reactor, the supply of nitrogen gas was stopped, and after about 4 hours, the exhaust gas was acid-removed with an alkaline aqueous solution, and the gas composition was analyzed by gas chromatography. About 99% of unsaturated compounds could be removed (converted).

本発明は、低温用冷媒、エッチングガスやクリーニングガスとして有利に利用することのできる1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンの製造に有用である。   The present invention is useful for the production of 1,1,1,2-tetrafluoroethane and pentafluoroethane that can be advantageously used as a low-temperature refrigerant, etching gas or cleaning gas.

Claims (7)

トリクロロエチレンおよびテトラクロロエチレンとフッ化水素とを反応させて得られる粗生成物が、1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンを含む主生成物、該主生成物との共沸組成分のフッ化水素、および少なくとも不飽和化合物を含む不純物成分からなり、該粗生成物を精製する工程を行うことによって高純度の1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンを製造する方法において、前記精製工程が、前記粗生成物に新たにフッ化水素を添加した混合物をフッ素化触媒と気相で接触させて、前記粗生成物に含まれる不飽和化合物の含有量を低減させる工程と、蒸留工程とを含むことを特徴とする1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンの製造方法。 The crude product obtained by reacting hydrogen fluoride and trichlorethylene and Te tiger chloroethylene is the main product containing 1,1,1,2-tetrafluoroethane and Bae printer fluoroethane, main High purity 1,1,1,2-tetrafluoro consisting of hydrogen fluoride having an azeotropic composition with the product and an impurity component containing at least an unsaturated compound, and purifying the crude product a process for preparing ethane and Bae printer fluoroethane, the purification step, said mixture prepared by adding freshly hydrogen fluoride to the crude product is contacted with a fluorinated catalyst and the gas phase, the crude product process and, beauty Bae method for producing printer fluoroethane Oyo 1,1,1,2-tetrafluoroethane which comprises a distillation step to reduce the content of the unsaturated compounds contained. 前記粗生成物に不純物として含まれる塩化水素の含有量が2モル%以下である請求項1に記載の製造方法。   The production method according to claim 1, wherein the content of hydrogen chloride contained as an impurity in the crude product is 2 mol% or less. 前記粗生成物に含まれる1,1,1,2−テトラフルオロエタンおよびペンタフルオロエタンの濃度が70モル%以上である請求項1または2に記載の製造方法。 The process according to claim 1 or 2 concentration of 1,1,1,2-tetrafluoroethane and Bae printer tetrafluoroethane contained in the crude product is 70 mol% or more. 前記不飽和化合物が、1,1−ジフルオロ−2−クロロエチレン、1,2−ジフルオロ−1−クロロエチレン、1−クロロ−2−フルオロエチレン、1,1,2−トリフルオロエチレンおよび1−クロロ−1,2,2−トリフルオロエチレンからなる群より選ばれる少なくとも1種の化合物である請求項1〜3のいずれかに記載の製造方法。   The unsaturated compound is 1,1-difluoro-2-chloroethylene, 1,2-difluoro-1-chloroethylene, 1-chloro-2-fluoroethylene, 1,1,2-trifluoroethylene and 1-chloro. The production method according to any one of claims 1 to 3, which is at least one compound selected from the group consisting of -1,2,2-trifluoroethylene. 前記フッ素化触媒が、Cu、Mg、Zn、Pb、V、Bi、Cr、In、Mn、Fe、Co、NiおよびAlからなる群より選ばれる少なくとも1種の金属元素を含む請求項1〜4のいずれかに記載の製造方法。   The said fluorination catalyst contains at least 1 sort (s) of metallic element chosen from the group which consists of Cu, Mg, Zn, Pb, V, Bi, Cr, In, Mn, Fe, Co, Ni, and Al. The manufacturing method in any one of. 前記混合物と前記フッ素化触媒との接触温度が130〜280℃の範囲である請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein a contact temperature between the mixture and the fluorination catalyst is in a range of 130 to 280 ° C. 前記蒸留工程においてフッ化水素を分離し、分離されたフッ化水素を前記粗生成物を得る工程に再循環する請求項1〜のいずれかに記載の製造方法。 The process according to any one of claims 1 to 6, wherein the distillation step to separate hydrogen fluoride, recycling the separated hydrogen fluoride to obtain the crude product.
JP2005086660A 2004-03-29 2005-03-24 Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof Active JP4738035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086660A JP4738035B2 (en) 2004-03-29 2005-03-24 Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004095012 2004-03-29
JP2004095012 2004-03-29
JP2005086660A JP4738035B2 (en) 2004-03-29 2005-03-24 Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof

Publications (2)

Publication Number Publication Date
JP2005314376A JP2005314376A (en) 2005-11-10
JP4738035B2 true JP4738035B2 (en) 2011-08-03

Family

ID=35442162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086660A Active JP4738035B2 (en) 2004-03-29 2005-03-24 Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof

Country Status (1)

Country Link
JP (1) JP4738035B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141538A (en) * 2011-05-19 2014-08-07 Asahi Glass Co Ltd Working medium and heat cycle system
EP2993213B1 (en) * 2013-04-30 2020-07-15 AGC Inc. Composition containing trifluoroethylene
CN112250540B (en) * 2020-10-14 2023-10-31 太仓中化环保化工有限公司 Method for separating R134a, R133a and R124 from rectification heavy component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184015A (en) * 1992-08-05 1994-07-05 Elf Atochem Sa Method for purifying 1,1,1,2-tetrafluoroethane
JPH1112200A (en) * 1997-06-18 1999-01-19 Showa Denko Kk Production of perfluorocarbon
JP2002003415A (en) * 2000-06-21 2002-01-09 Showa Denko Kk Method for producing hexafluoroethane and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184015A (en) * 1992-08-05 1994-07-05 Elf Atochem Sa Method for purifying 1,1,1,2-tetrafluoroethane
JPH1112200A (en) * 1997-06-18 1999-01-19 Showa Denko Kk Production of perfluorocarbon
JP2002003415A (en) * 2000-06-21 2002-01-09 Showa Denko Kk Method for producing hexafluoroethane and its use

Also Published As

Publication number Publication date
JP2005314376A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP3229311B2 (en) Improved Cr2O3 catalyst composition
JP2557936B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane by hydrofluorination in the presence of a catalyst
JPH01146832A (en) Improved production of 1, 1, 1- trifluorodichloroethane and/or 1, 1, 1, 2-tetrafluorochloro ethane
JP6107467B2 (en) Process for producing 1-chloro-3,3,3-trifluoropropene
JPH10503518A (en) Method for producing 1,1,1,3,3,3-hexafluoropropane
JP3982909B2 (en) Method for fluorination of catalytic halogenated organic compounds
KR100854982B1 (en) Process for production of 1,1,1,2-tetrafluoroethane and/or pentafluoroethane and applications of the same
JP4378779B2 (en) Method for producing fluorine-containing ethane
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
JP4738035B2 (en) Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof
JP4539793B2 (en) Octafluoropropane production method and use thereof
US20070191652A1 (en) Process for production of 1,1,1,2- tetrafluoroethane and/or pentafluorethane and applications of the same
JP2897454B2 (en) Purification method of 1,1,1,2-tetrafluoroethane
JP4785532B2 (en) Production method of hydrofluorocarbon, its product and its use
JP4484572B2 (en) Method for producing hexafluoroethane and use thereof
KR100516573B1 (en) Process for producing hexafluoroethane and use thereof
JP3862316B2 (en) Method for purifying pentafluoroethane
JP4225736B2 (en) Method for producing fluoroethane and use thereof
JP4463385B2 (en) Method for producing hexafluoroethane and use thereof
KR100543253B1 (en) Production and use of hexafluoroethane
US6489523B1 (en) Process for producing hexafluoroethane and use thereof
JP3250267B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
JP5025052B2 (en) Method for producing hexafluoroethane and use thereof
CS53291A2 (en) Method of fluorination by halogen exchange
JP2005206584A (en) Method for purifying 1,1-difluoroethane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4738035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350