JPH01301630A - Production of 1,1,1,2-tetrafluoroethane - Google Patents

Production of 1,1,1,2-tetrafluoroethane

Info

Publication number
JPH01301630A
JPH01301630A JP63132395A JP13239588A JPH01301630A JP H01301630 A JPH01301630 A JP H01301630A JP 63132395 A JP63132395 A JP 63132395A JP 13239588 A JP13239588 A JP 13239588A JP H01301630 A JPH01301630 A JP H01301630A
Authority
JP
Japan
Prior art keywords
freon
tetrafluoroethane
hydrogen
range
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63132395A
Other languages
Japanese (ja)
Other versions
JPH0629201B2 (en
Inventor
Hideki Oshio
秀樹 大塩
Sadaji Mikuma
三隈 定治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP63132395A priority Critical patent/JPH0629201B2/en
Priority to US07/357,291 priority patent/US4996379A/en
Priority to FR8907005A priority patent/FR2631959A1/en
Priority to IT8920692A priority patent/IT1230795B/en
Priority to GB8912325A priority patent/GB2219796B/en
Priority to DE3917573A priority patent/DE3917573A1/en
Publication of JPH01301630A publication Critical patent/JPH01301630A/en
Publication of JPH0629201B2 publication Critical patent/JPH0629201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the subject compound useful as a refrigerant in high selectivity and yield, by reacting HFC-114a containing CFC-114 as a starting material with hydrogen in the presence of a palladium catalyst supported on activated alumina while controlling reaction temperature. CONSTITUTION:HFC-114a, i.e. 1,1-dichloro-1,2,2,2-tetrafluoroethane containing CFC-114, i.e. 1,2-dichloro-1,1,2,2-tetrafluoroethane as a raw material is reacted with hydrogen in the presence of a palladium catalyst supported on activated alumina at a temperature within the range of 120-<200 deg.C to afford 1,1,1,2- tetrafluoroethane. The content of the CFC-114 in the raw material HFC-114a is preferably within the range of about 10-25%. The amount of the Pd in the catalyst is preferably within the range of 0.2-5%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本Q明は1,1,2,L2−テトラフルオロエタン(以
下フロン134aと記す)の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing 1,1,2,L2-tetrafluoroethane (hereinafter referred to as Freon 134a).

フロン134aは冷媒として有用な化合物である。Freon 134a is a compound useful as a refrigerant.

〔従来の技術〕[Conventional technology]

フロン134aの製造方法としては、■1−クロロー2
.2.2−  )リフルオロエタンヲ酸化クロム触媒存
在下、無水フッ化水素を用いてフッ素化する方法(米国
特許第4,129,603号等)、■1−クロロー2.
2.2−  トリフロロエタンをフッ化カリウムを用い
て液相下でフッ素化する方法(米国特許第4.31L8
63号)、■トリフルオロエチレンをオキシフッ化クロ
ム触媒存在下、無水フッ化水素と反応させる方法(特公
昭62−23728号)、■1,1−ジクロロー1、2
.2.2−テトラフルオロエタンを活性炭担持パラジウ
ム触媒の存在下、水素と反応させる方法(特公昭56−
38131号)、■1−クロローL2,2.2−テトラ
フルオロエタンを活性炭担持パラジウム触媒の存在下、
水素と反応させる方法(特公昭56−38131号)等
が知られている。
The method for producing Freon 134a is as follows: ■1-Chloro2
.. 2.2-) Method of fluorinating refluoroethane using anhydrous hydrogen fluoride in the presence of a chromium oxide catalyst (US Pat. No. 4,129,603, etc.), ■1-chloro2.
2.2 - Fluorination of trifluoroethane with potassium fluoride in liquid phase (U.S. Pat. No. 4.31L8)
63), ■ A method of reacting trifluoroethylene with anhydrous hydrogen fluoride in the presence of a chromium oxyfluoride catalyst (Japanese Patent Publication No. 62-23728), ■ 1,1-dichloro 1,2
.. 2. A method of reacting 2-tetrafluoroethane with hydrogen in the presence of a palladium catalyst supported on activated carbon (Japanese Patent Publication No. 1983-
38131), ■ 1-chloroL2,2,2-tetrafluoroethane in the presence of an activated carbon-supported palladium catalyst,
A method of reacting with hydrogen (Japanese Patent Publication No. 56-38131) is known.

しかしながら、■の方法は収率が約10〜30%と低い
こと、■の方法は、高温、高圧での反応であり、また塩
化カリウムが剛性すること、■、■の方法では収率が高
い(約95〜99%)ものの原料のトリフロロエチレン
、1−クロロ−L2,2.2−テトラフルオロエタンが
高価であることから必ずしも工集的に有利な製造法とは
言えないものである。
However, method (■) has a low yield of about 10 to 30%, method (■) requires a reaction at high temperature and high pressure, and potassium chloride is rigid, and methods (■) and (■) have a high yield. (approximately 95 to 99%) Since the raw materials trifluoroethylene and 1-chloro-L2,2,2-tetrafluoroethane are expensive, it cannot necessarily be said that this is an industrially advantageous manufacturing method.

また、■については、フロン134aの収率は約72%
であるものの選択率は約78%と低く、副生物であるL
l、1−1−リフルオロエタン(フロン143aと記す
。沸点−47,6°C)、フロン134 aの前駆体で
ある1−クロロ−1,2,2,2−テトラフルオロエタ
ン(フロン124と記す。沸点−12°C)が各々約1
0%程度生成する。また、原料中に異性体である1、2
−ジクIコロー1.,1,2.2−テトラフルオロエタ
ン(フロン114と記す。)が存在すると、1,1゜2
.2−テトラフルオロエタン(フロン134と記す。
Regarding ■, the yield of Freon 134a is approximately 72%.
However, the selectivity of the by-product L is as low as about 78%.
l, 1-1-lifluoroethane (referred to as Freon 143a, boiling point -47.6°C), 1-chloro-1,2,2,2-tetrafluoroethane (referred to as Freon 124), which is a precursor of Freon 134a. Boiling point -12°C) is approximately 1
About 0% is generated. In addition, there are isomers 1 and 2 in the raw materials.
-Jiku I Coro 1. , 1,2.2-tetrafluoroethane (denoted as Freon 114), 1,1°2
.. 2-Tetrafluoroethane (referred to as Freon 134).

沸点−19,7°C)、1−クロロ−1,L2,2−テ
トラフルオロエタン(フロン124aと記ず。沸点−1
0,2’c >が副生ずる。通常フロン114aは1,
1.2−トリクロロ−1,2,2−トリフルトロエタン
(フロン113と記す。) 、1,1.1.− )ジク
ロロ−2,2,2−トリフルオロエタン(フロン113
aと記す。)と無水フッ化水素との反応により工業的に
製造されるが約10〜25%のフロン114の混入は避
けられない。
Boiling point -19.7°C), 1-chloro-1,L2,2-tetrafluoroethane (noted as Freon 124a. Boiling point -1
0,2'c> is produced as a by-product. Usually Freon 114a is 1,
1.2-Trichloro-1,2,2-triflutroethane (referred to as Freon 113), 1,1.1. -) Dichloro-2,2,2-trifluoroethane (Freon 113
It is written as a. ) and anhydrous hydrogen fluoride, but the contamination of about 10 to 25% Freon 114 is unavoidable.

また、反応生成物中に目的物であるフロン134a(沸
点−26,5°C)と沸点の近いフロン134、フロン
124、フロン124aが含まれると、分離、精製十問
題があり、フロン134aを効率よく製造することがで
きない。例えば、通常の蒸留法では、フロン134aと
フロン124との分離、精製には約40段の蒸留塔が必
要となり、この場合、フロン134aとフロン134、
フロン124とフロン124aは分離できない。このた
め、フロン134aの純度およびフロン124の反応系
への再循環という点で問題が生じる。
In addition, if the reaction product contains Freon 134, Freon 124, and Freon 124a, which have boiling points close to the target product Freon 134a (boiling point -26.5°C), there will be problems in separation and purification. cannot be manufactured efficiently. For example, in a normal distillation method, approximately 40 stages of distillation columns are required to separate and purify the Freon 134a and the Freon 124.
Freon 124 and Freon 124a cannot be separated. Therefore, problems arise in terms of the purity of the Freon 134a and the recirculation of the Freon 124 to the reaction system.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる従来技術の問題に鑑み、鋭意検討
の結果フロン114を含有するフロン114aを出発原
料として高選択率でフロン134aを製造できる方法を
見出したものである。すなわち本発明は1,2−ジクロ
ロ−1,L2,2−テトラフルオロエタンを含む111
−ジクロロ−L2.2.2−テトラフルオロエタンを活
性アルミナ担持パラジウム触媒の存在下、120℃から
200°C未満の温度範囲で水素と反応させることを特
徴とする1,1,2,L2−テトラフルオロエタンの製
造法である。
In view of the problems of the prior art, the inventors of the present invention have conducted intensive studies and discovered a method that allows the production of fluorocarbon 134a with high selectivity using fluorocarbon 114a containing fluorocarbon 114 as a starting material. That is, the present invention provides 111 containing 1,2-dichloro-1,L2,2-tetrafluoroethane.
1,1,2,L2- characterized by reacting 2-dichloro-L2.2-tetrafluoroethane with hydrogen in the presence of an activated alumina-supported palladium catalyst in the temperature range from 120°C to less than 200°C. This is a method for producing tetrafluoroethane.

本発明において使用するフロン114a中のフロン11
4の含有量は約10〜25%の範囲が好ましい。25%
以上になるとフロン134aの収率が低くなる。また、
10%以下のものは工業的に製造することが困難である
。本発明はフロン114を含有した原料を用いてフロン
114aの転化率を大きくするとともに、フロン114
が反応してフロン124aおよびさらに水素化されたフ
ロン134を生成することを防いで、目的のフロン13
4aの収率を可及的に大きくするために、特定の温度範
囲すなわち120℃から200℃未満の温度範囲をとる
ものである。また、水素化触媒としてはパラジウム触媒
が好ましく、特に活性アルミナに担持して使用する。活
性炭担持触媒も活性は十分であるが、目的のフロン13
4aの選択率を高くすることができない。パラジウムの
担持量は特に限定されないが0.2〜5%の範囲が好ま
しい。また、原料であるフロン1.14a、フロン11
4で前処理し活性アルミナを部分的にフッ素化すること
により過水素化されたフロン143aの生成量を低く抑
えることができるものである。前処理の条件は200℃
以上で20時間程度が好ましい。ちなみに反応条件にも
よるが、前処理をおこなった触媒を用いた場合と未処理
の触媒を用いた場合では反応生成物中のフロン143a
の量は前者が4〜6%であるのに対して後者では10%
程度と約2倍である。水素の量は原料のフロン114a
とフロン114の混合物に対してモル比で2〜4倍の範
囲が好ましく、2倍以下では反応率が低くなり、フロン
134aの収率は低下する。また、4倍以上では反応率
は変わらないが水素の回収を考えると好ましくない。反
応温度は、120℃から200℃未満が好ましく120
°C以下では反応率が低くフロン134aの収量が低く
好ましくない。また、200°C以上ではフロン124
a、さらにはフロン134の生成量が増大し、フロン1
34aの選択率が低くなり好ましくない。
Freon 11 in Freon 114a used in the present invention
The content of 4 is preferably in the range of about 10 to 25%. 25%
If the amount exceeds that amount, the yield of Freon 134a will decrease. Also,
If it is less than 10%, it is difficult to produce it industrially. The present invention uses a raw material containing Freon 114 to increase the conversion rate of Freon 114a, and also increases the conversion rate of Freon 114a.
The target fluorocarbon 13 is prevented from reacting to produce fluorocarbon 124a and further hydrogenated fluorocarbon 134.
In order to maximize the yield of 4a, a specific temperature range, ie, a temperature range from 120°C to less than 200°C, is adopted. Further, as the hydrogenation catalyst, a palladium catalyst is preferable, and in particular, it is used supported on activated alumina. Activated carbon-supported catalyst also has sufficient activity, but the target CFC 13
It is not possible to increase the selectivity of 4a. The amount of palladium supported is not particularly limited, but is preferably in the range of 0.2 to 5%. In addition, the raw materials Freon 1.14a and Freon 11
By pre-treating with Step 4 and partially fluorinating activated alumina, the amount of perhydrogenated Freon 143a produced can be suppressed to a low level. Pretreatment conditions are 200℃
The above time period is preferably about 20 hours. By the way, although it depends on the reaction conditions, CFC 143a in the reaction product is different when a pretreated catalyst is used and when an untreated catalyst is used.
The amount of is 4-6% in the former, but 10% in the latter.
It is about twice as large as the average. The amount of hydrogen is the raw material Freon 114a
The molar ratio is preferably in the range of 2 to 4 times that of the mixture of fluorocarbon 134a and chlorofluorocarbon 114. If the molar ratio is less than 2 times, the reaction rate becomes low and the yield of fluorocarbon 134a decreases. In addition, if it is 4 times or more, the reaction rate will not change, but this is not preferable in terms of hydrogen recovery. The reaction temperature is preferably from 120°C to less than 200°C.
If the temperature is below 0.degree. C., the reaction rate is low and the yield of Freon 134a is low, which is not preferable. In addition, at temperatures above 200°C, Freon 124
a, and the amount of fluorocarbon 134 generated increases, resulting in fluorocarbon 1
The selectivity of 34a becomes low, which is not preferable.

接触時間は5〜30秒の範囲が好ましく、5秒以下では
反応率が低く、フロン134aの収率は低下する。また
、30秒以上では触媒単位当たりのフロン134aの収
率が低下する。このようにして得られたフロン134a
は通常、公知の方法、例えば蒸留等により分離、精製す
ることができ、前駆体のフロン124は反応系に再循環
される。
The contact time is preferably in the range of 5 to 30 seconds; if the contact time is 5 seconds or less, the reaction rate is low and the yield of Freon 134a is decreased. Further, if the heating time is longer than 30 seconds, the yield of Freon 134a per catalyst unit decreases. Freon 134a obtained in this way
can be usually separated and purified by a known method such as distillation, and the precursor Freon 124 is recycled to the reaction system.

以下、本発明を実施例によりさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜4 長さ30cm、内径2.5 cmの耐熱ガラス反応管内
に3mmφの球状γ−アルミナ上に担持されたパラジウ
ム触媒(担持量0.5または5重量%) 100 cc
を充填し、電気炉内に設置した。
Examples 1 to 4 Palladium catalyst (supported amount: 0.5 or 5% by weight) 100 cc supported on 3 mmφ spherical γ-alumina in a heat-resistant glass reaction tube with a length of 30 cm and an inner diameter of 2.5 cm.
was filled and placed in an electric furnace.

約1時間、300〜350°Cの温度で水素を100 
cc/minの流量で送入した後、フロン114aとフ
ロン114の混合ガスで200°Cl2O時間前処理し
た。次いで所定反応温度とし、水素とジクロロテトラフ
ルオロエタン(フロン114a/フロン]、 14. 
=75 /25重量%)を各々198 cc/min 
、 66cc/min の流量で導入した(H2/ジク
ロロテトラフルオロエタン−3/1モル比)。
100% hydrogen at a temperature of 300-350°C for about 1 hour.
After feeding at a flow rate of cc/min, pretreatment was carried out for 200°CCl2O hours with a mixed gas of Freon 114a and Freon 114. Next, the reaction temperature is set to a predetermined temperature, and hydrogen and dichlorotetrafluoroethane (Freon 114a/Freon) are added.14.
=75/25% by weight) at 198 cc/min each
, at a flow rate of 66 cc/min (H2/dichlorotetrafluoroethane - 3/1 molar ratio).

反応生成物は水洗浄後、排ガス中の有機物質をガスクロ
マトグラフィーにより分析した。反応条件、結果を第1
表に示した。
After washing the reaction product with water, organic substances in the exhaust gas were analyzed by gas chromatography. First, check the reaction conditions and results.
Shown in the table.

比較例1 触媒を活性炭(2mmφX5mmH1円柱状)上に担持
されたパラジウム触媒(担持量0.5重量%)とするほ
かは実施例3と同様にして反応をおこなった。この結果
を第1表に示した。
Comparative Example 1 A reaction was carried out in the same manner as in Example 3, except that the catalyst was a palladium catalyst (carrying amount: 0.5% by weight) supported on activated carbon (2 mm φ x 5 mm H 1 cylindrical). The results are shown in Table 1.

比較例2.3 反応温度200°C1接触時間28秒(比較例2)、反
応温度250℃、接触時間26秒(比較例3)とするほ
かは実施例1と同様にして反応をおこなった。
Comparative Example 2.3 A reaction was carried out in the same manner as in Example 1, except that the reaction temperature was 200° C. and the contact time was 28 seconds (Comparative Example 2), and the reaction temperature was 250° C. and the contact time was 26 seconds (Comparative Example 3).

この結果を第1表に示した。The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明においては工業的に容易に得られるフロン114
を含有するフロン114aを原料とし、反応温度を制御
することにより収率よく目的のフロン134aを得るこ
とができるものである。
In the present invention, Freon 114, which is easily obtained industrially,
By using Freon 114a containing chlorofluorocarbons as a raw material and controlling the reaction temperature, the desired Freon 134a can be obtained in good yield.

Claims (1)

【特許請求の範囲】[Claims]  1,2−ジクロロ−1,1,2,2−テトラフルオロ
エタンを含む1,1−ジクロロ−1,2,2,2−テト
ラフルオロエタンを活性アルミナ担持パラジウム触媒の
存在下、120℃から200℃未満の温度範囲で水素と
反応させることを特徴とする1,1,1,2−テトラフ
ルオロエタンの製造法。
1,1-dichloro-1,2,2,2-tetrafluoroethane containing 1,2-dichloro-1,1,2,2-tetrafluoroethane was heated from 120°C to 200°C in the presence of an activated alumina-supported palladium catalyst. 1. A method for producing 1,1,1,2-tetrafluoroethane, which comprises reacting with hydrogen in a temperature range below °C.
JP63132395A 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane Expired - Lifetime JPH0629201B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63132395A JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane
US07/357,291 US4996379A (en) 1988-05-30 1989-05-26 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
FR8907005A FR2631959A1 (en) 1988-05-30 1989-05-29 PROCESS FOR THE PREPARATION OF 1,1,1,2-TETRAFLUOROETHANE FROM 1,1-DICHLORO-1,2,2,2-TETRAFLUOROETHANE
IT8920692A IT1230795B (en) 1988-05-30 1989-05-30 PROCEDURE FOR PREPARING 1,1,1,2 TETRAFLUOROETHANE FROM 1,1 DICHLOR 1,2,2,2 TETRAFLUOROETHANE.
GB8912325A GB2219796B (en) 1988-05-30 1989-05-30 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
DE3917573A DE3917573A1 (en) 1988-05-30 1989-05-30 METHOD FOR PRODUCING 1,1,1,2-TETRAFLUORETHANE FROM 1,1-DICHLOR-1,2,2,2-TETRAFLUORETHANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132395A JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH01301630A true JPH01301630A (en) 1989-12-05
JPH0629201B2 JPH0629201B2 (en) 1994-04-20

Family

ID=15080388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132395A Expired - Lifetime JPH0629201B2 (en) 1988-05-30 1988-05-30 Method for producing 1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH0629201B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638131A (en) * 1979-09-06 1981-04-13 Kawasaki Heavy Ind Ltd Contact method betweeen solid and liquid
US4319060A (en) * 1980-12-08 1982-03-09 Allied Chemical Corporation Process for producing 1,2-dichloro-1,1,2,2-tetrafluoroethane substantially free of 1,1-dichloro-1,2,2,2-tetrafluoroethane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638131A (en) * 1979-09-06 1981-04-13 Kawasaki Heavy Ind Ltd Contact method betweeen solid and liquid
US4319060A (en) * 1980-12-08 1982-03-09 Allied Chemical Corporation Process for producing 1,2-dichloro-1,1,2,2-tetrafluoroethane substantially free of 1,1-dichloro-1,2,2,2-tetrafluoroethane

Also Published As

Publication number Publication date
JPH0629201B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US5986151A (en) Fluorinated propenes from pentafluoropropane
JP2015501800A (en) Process for producing hydrofluoroolefins
JPH01287044A (en) Production of 1, 2-difluoroethane and 1, 1, 2-trifluoroethane
US7084316B2 (en) Process for purifying pentafluoroethane, process for producing the same, and use thereof
JP2840929B2 (en) Method for producing difluoromethane
US6291729B1 (en) Halofluorocarbon hydrogenolysis
US4996379A (en) Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
WO1994002439A1 (en) Purification of pentafluoroethane
JP4785532B2 (en) Production method of hydrofluorocarbon, its product and its use
US5679876A (en) Purification of pentafluoroethane
JP3794859B2 (en) Method for producing perhalogenated cyclopentane
JP4225736B2 (en) Method for producing fluoroethane and use thereof
JPH01301630A (en) Production of 1,1,1,2-tetrafluoroethane
EP0687659B1 (en) Process for producing 1,1,1,3,3-pentafluoropropane
US7074974B2 (en) Process for the production of fluoroethane and use of the same
US5030372A (en) Catalytic equilibration to improve the relative yield of selected halocarbons
US5773671A (en) Process for purifying 1,1-dichloro-2,2,2-trifluoroethane and 1-chloro-1,2,2,2-tetrafluoroethane
EP2062866B1 (en) Gas phase synthesis of 2,3,3,3-tetrafluoro-1-propene from 2-chloro-3,3,3-trifluoro-1-propene
JP4458784B2 (en) Method for producing pentafluoroethane and use thereof
KR100265580B1 (en) Purification of 1,1,1,2-tetrafluoroethane
EP0881946B1 (en) Process using a hydrogenation catalyst
US20040242943A1 (en) Process for the production of fluoroethane and use of the produced fluoroethane
KR100283711B1 (en) Method for preparing hexafluoroethane
US5990364A (en) Purification of pentafluoroethane
JPH05255141A (en) Continuous production of 1,1,1-trichloro-2,2,2-trifluoroethane