JPH10194715A - Production of carbon monoxide - Google Patents

Production of carbon monoxide

Info

Publication number
JPH10194715A
JPH10194715A JP9001533A JP153397A JPH10194715A JP H10194715 A JPH10194715 A JP H10194715A JP 9001533 A JP9001533 A JP 9001533A JP 153397 A JP153397 A JP 153397A JP H10194715 A JPH10194715 A JP H10194715A
Authority
JP
Japan
Prior art keywords
methyl formate
carbon monoxide
zinc oxide
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9001533A
Other languages
Japanese (ja)
Other versions
JP3931928B2 (en
Inventor
Futoshi Ikoma
太志 生駒
Atsushi Okamoto
淳 岡本
Mikio Yoneoka
幹男 米岡
Hideji Ebata
秀司 江端
Kenji Nakamura
賢司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP00153397A priority Critical patent/JP3931928B2/en
Priority to DE69706514T priority patent/DE69706514T2/en
Priority to EP97123031A priority patent/EP0853075B1/en
Priority to US09/004,101 priority patent/US5965769A/en
Publication of JPH10194715A publication Critical patent/JPH10194715A/en
Application granted granted Critical
Publication of JP3931928B2 publication Critical patent/JP3931928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain carbon monoxide, exhibiting a high selectivity and a high activity, with easy handling and industrially advantageously by decomposing methyl formate in the presence of an alkali fluoride and zinc oxide in a liquid phase. SOLUTION: This method for producing carbon monoxide is to obtain a catalyst by mixing an alkali fluoride and zinc oxide pre-treated at 200-800 deg.C so as to attain 0.05-50 molar ratio of them, add the above catalyst to methyl formate of which water content is reduced as much as possible, so as to attain (50:1)-(500:1) molar ratio of methyl formate to the catalyst and heat the mixture at between >=100 deg.C and a critical temperature or lower (100-200 deg.C) under a pressure higher than the vapor pressure of methyl formate for decomposing methyl formate. A difference between the reaction pressure and the partial vapor pressure of methyl formate is supplemented by an inert gas such as nitrogen, argon, helium, etc., and a decomposed gas. The handling of the reaction is easy, since alkali fluoride and zinc oxide are not strong bases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ギ酸メチルから一
酸化炭素を製造する方法に関するものである。一酸化炭
素はC1化学の主原料として、またカルボニル化反応の
原料として重要な物質である。
TECHNICAL FIELD The present invention relates to a method for producing carbon monoxide from methyl formate. Carbon monoxide is an important substance as a main raw material for C1 chemistry and as a raw material for the carbonylation reaction.

【0002】[0002]

【従来の技術】ギ酸メチルを分解して一酸化炭素を得る
方法は、C1化学の主原料としてメタノールからギ酸メ
チルが安価に得られるようになり、ギ酸メチルが液体で
輸送できることから、高価な設備を用いることなしに、
低温で容易に一酸化炭素を得る方法として注目されてい
る。このようなギ酸メチルを分解して一酸化炭素を得る
方法としては、(1)担持されたアルカリ土類金属酸化
物からなる固体触媒を用いて200〜500℃の温度で
で気相熱分解する方法(米国特許第3812210
号)、(2)活性炭を触媒とし200〜550℃の温度
で気相熱分解する方法(特開昭52−36609号)、
(3)メタノールと共存するギ酸メチルをナトリウムメ
チラートを触媒として17.2MPa以下の圧力および
35〜200℃の温度で液相下熱分解する方法(米国特
許第3716619号)等が知られている。
2. Description of the Related Art In a method of decomposing methyl formate to obtain carbon monoxide, methyl formate can be obtained from methanol as a main raw material of C1 chemistry at low cost, and methyl formate can be transported in a liquid form, so that expensive equipment is required. Without using
It is attracting attention as a method for easily obtaining carbon monoxide at low temperatures. As a method for obtaining carbon monoxide by decomposing such methyl formate, (1) gas phase thermal decomposition is performed at a temperature of 200 to 500 ° C. using a solid catalyst comprising a supported alkaline earth metal oxide. Method (US Pat. No. 3,812,210)
(2) a method of performing a gas phase pyrolysis at a temperature of 200 to 550 ° C. using activated carbon as a catalyst (JP-A-52-36609);
(3) A method in which methyl formate coexisting with methanol is pyrolyzed in the liquid phase at a pressure of 17.2 MPa or less and a temperature of 35 to 200 ° C. using sodium methylate as a catalyst (US Pat. No. 3,716,619) is known. .

【0003】[0003]

【発明が解決しようとする課題】従来技術に記載した上
記の方法において、(1)および(2)の方法は気相で
250℃以上の温度で行い蒸発潜熱を必要とするためた
め熱エネルギー的に不利であるだけでなく不純物の副生
が多く、一酸化炭素選択率は低い。(3)の方法は液相
下の反応で条件が温和な点で優れているが、ナトリウム
メチラートが強塩基性であることによる欠点を有する。
すなわち反応時には水分により水酸化ナトリウムさらに
はギ酸ナトリウム等の不純物を副生し触媒損失するだけ
でなく反応系に不溶性の塩類が析出し、装置の運転に支
障を来すことさえある。また取り扱う際、二酸化炭素や
水に触れるなどして失活すると再生は容易でない。さら
に皮膚への刺激が非常に強いためそのとり扱いには細心
の注意を要する。本発明の目的はギ酸メチルを分解して
一酸化炭素を得る方法において、低温で高活性を有する
触媒を開発し、一酸化炭素を工業的に有利に製造する方
法を提供することである。
In the above methods described in the prior art, the methods (1) and (2) are performed at a temperature of 250 ° C. or more in the gas phase and require latent heat of evaporation. Not only is it disadvantageous, but also there are many by-products of impurities, and the carbon monoxide selectivity is low. The method (3) is excellent in that the reaction is carried out in a liquid phase and the conditions are mild, but has a drawback due to the strong basicity of sodium methylate.
That is, at the time of the reaction, impurities such as sodium hydroxide and sodium formate are produced as by-products due to moisture, and not only catalyst loss, but also insoluble salts precipitate in the reaction system, which may even hinder the operation of the apparatus. Also, when handling, if it is deactivated by touching carbon dioxide or water, regeneration is not easy. Furthermore, since the skin is very irritating, careful handling is required. An object of the present invention is to develop a catalyst having a high activity at a low temperature in a method for decomposing methyl formate to obtain carbon monoxide, and to provide a method for industrially advantageously producing carbon monoxide.

【0004】[0004]

【課題を解決するための手段】発明者等は上記の如き課
題を有するギ酸メチルを分解して一酸化炭素を得る方法
について鋭意研究した結果、フッ化アルカリと酸化亜鉛
を組み合わせた新規な触媒が、液相でのギ酸メチル分解
反応による一酸化炭素の製造において高活性、高選択率
を発現し、またフッ化アルカリおよび酸化亜鉛は強塩基
でないことから取扱が容易で工業的に有利に一酸化炭素
を製造できることを見い出し、本発明に到達した。すな
わち本発明は、フッ化アルカリ及び酸化亜鉛の存在下、
ギ酸メチルを液相下で分解することを特徴とする一酸化
炭素の製造方法である。
The inventors of the present invention have conducted intensive studies on a method for obtaining carbon monoxide by decomposing methyl formate, which has the above-mentioned problems, and as a result, a novel catalyst combining alkali fluoride and zinc oxide has been found. High activity and high selectivity in the production of carbon monoxide by decomposition of methyl formate in the liquid phase. Also, alkali fluoride and zinc oxide are not strong bases, so they are easy to handle and industrially advantageous. The inventors have found that carbon can be produced, and have reached the present invention. That is, the present invention, in the presence of alkali fluoride and zinc oxide,
A method for producing carbon monoxide, comprising decomposing methyl formate in a liquid phase.

【0005】[0005]

【発明の実施の形態】本発明の方法では触媒としてフッ
化アルカリと酸化亜鉛を併用する。フッ化アルカリと酸
化亜鉛は単独で用いても活性は極めて低いが、両者を併
用することにより、驚くべきことに活性が著しく増大す
る。またフッ化アルカリおよび酸化亜鉛は、ナトリウム
メチラートほど皮膚への刺激が強くないので、工業的に
も取扱いが容易である。フッ化アルカリは周期律表Ia
族元素のフッ化物であって、フッ化ナトリウム、フッ化
カリウム、フッ化セシウムなどが挙げられる。フッ化ア
ルカリはCO2と反応しないため空気中のCO2 によっ
て失活することもなく、吸湿しても100℃以上で乾燥
して使用すればよく、空気中での取り扱いが可能であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, an alkali fluoride and zinc oxide are used in combination as a catalyst. Although the activities of alkali fluoride and zinc oxide are extremely low when used alone, surprisingly, the activity is significantly increased by using both together. In addition, alkali fluoride and zinc oxide are not so irritating to the skin as sodium methylate, and therefore are easy to handle industrially. Alkali fluoride is in the periodic table Ia
It is a fluoride of a group element, such as sodium fluoride, potassium fluoride, and cesium fluoride. Since alkali fluoride does not react with CO 2 , it does not deactivate due to CO 2 in the air. Even if it absorbs moisture, it may be dried at 100 ° C. or more and used, and can be handled in the air.

【0006】酸化亜鉛はそのまま市販品を用いるか、ま
たはアルミナ、シリカその他の担体に担持したもの、あ
るいは共沈法その他の方法により担体成分を加えて調製
したものが用いられる。酸化亜鉛は取り扱いに際してC
2 と接触しないことが望ましく、200〜800℃で
前処理することにより容易に最高の活性を発現する。フ
ッ化アルカリと酸化亜鉛のモル比は0.05〜50であ
り、好ましくは0.1〜10である。
As the zinc oxide, a commercially available product may be used as it is, a product supported on alumina, silica or another carrier, or a product prepared by adding a carrier component by a coprecipitation method or another method. When handling zinc oxide, C
It is desirable not to come into contact with O 2, and the highest activity is easily exhibited by pretreatment at 200 to 800 ° C. The molar ratio of alkali fluoride to zinc oxide is 0.05 to 50, preferably 0.1 to 10.

【0007】本発明における原料ギ酸メチルは工業用グ
レードをそのまま使用することができるが、使用に先だ
って乾燥剤を用いるなどして、水分を極力少なくするこ
とが好ましい。ギ酸メチルと触媒のモル比は特に制限さ
れないが、50:1〜500:1が好ましい。ギ酸メチ
ル分解の反応温度は100℃からギ酸メチルの臨界温度
未満、好ましくは120℃から200℃である。反応圧
力は、反応器内で安定に液相を保つ必要から反応温度に
おけるギ酸メチルの蒸気圧以上の反応圧力を用いること
が望ましい。反応圧力とギ酸メチル蒸気分圧との差は窒
素、アルゴン、ヘリウムなどの不活性ガス及び分解ガス
で補われる。本発明に従う反応方式は、原料と触媒が接
触する方法なら特に制限はなく、回分方式、流通方式の
いずれも可能である。
As the raw material methyl formate in the present invention, an industrial grade can be used as it is, but it is preferable to reduce the water content as much as possible by using a desiccant prior to use. The molar ratio between methyl formate and the catalyst is not particularly limited, but is preferably from 50: 1 to 500: 1. The reaction temperature for methyl formate decomposition is from 100 ° C. to below the critical temperature of methyl formate, preferably from 120 ° C. to 200 ° C. As the reaction pressure, it is desirable to use a reaction pressure equal to or higher than the vapor pressure of methyl formate at the reaction temperature because it is necessary to maintain a stable liquid phase in the reactor. The difference between the reaction pressure and the methyl formate vapor partial pressure is compensated by an inert gas such as nitrogen, argon, and helium and a decomposition gas. The reaction system according to the present invention is not particularly limited as long as the raw material and the catalyst are in contact with each other, and may be any of a batch system and a distribution system.

【0008】[0008]

【実施例】以下に実施例により本発明をさらに具体的に
説明するが、本発明がこれらの実施例で制限されるもの
でない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0009】実施例1 内容積100mlのステンレス製オートクレーブにフッ
化カリウム0.32g、酸化亜鉛0.30g、ギ酸メチ
ル176mmolを充填した。オートクレーブの内部を
窒素ガスで充分に置換した後、振盪しながら180℃に
加熱し、2時間振盪反応の後、オートクレーブを水中で
冷却した。オートクレーブの内部ガスを徐々にパージ
し、ガス量を計量するとともに組成を分析した。オート
クレーブ圧力が大気圧になったら内容物を取り出し、秤
量したのち分析した。その結果、一酸化炭素の収率は3
0.1%であり、生成ガス中のCO/H2 のモル比は9
9.75/0.25であった。
Example 1 A stainless steel autoclave having an inner volume of 100 ml was charged with 0.32 g of potassium fluoride, 0.30 g of zinc oxide and 176 mmol of methyl formate. After sufficiently replacing the inside of the autoclave with nitrogen gas, the autoclave was heated to 180 ° C. with shaking, and after a shaking reaction for 2 hours, the autoclave was cooled in water. The gas inside the autoclave was gradually purged, the amount of gas was measured, and the composition was analyzed. When the autoclave pressure reached atmospheric pressure, the contents were taken out, weighed and analyzed. As a result, the yield of carbon monoxide was 3
0.1%, and the molar ratio of CO / H 2 in the product gas is 9%.
It was 9.75 / 0.25.

【0010】実施例2 内部撹拌装置を有する内容積100mlのステンレス製
槽型オートクレーブにフッ化カリウム1.2g、酸化亜
鉛1.6g、ギ酸メチル833mmolを充填した。内
部を窒素ガスで充分に置換し、窒素ガス圧力4.9MP
aとした。内部を撹拌しながら180℃に加熱した。反
応の進行とともにガスが生成するので、圧力が4.9M
Pa一定になるようにガスを抜き出しながら2時間反応
した後、オートクレーブを水中で冷却し、反応を停止し
た。オートクレーブのバルブを開いて内部ガスを徐々に
パージし、ガス量を計量するとともに組成を分析した。
オートクレーブ圧力が大気になったら内容物を取り出
し、秤量したのち分析した。その結果、一酸化炭素の収
率は88.3%であり、生成ガス中のCO/H2 のモル
比は99.95/0.05であった。
EXAMPLE 2 A stainless steel autoclave having an internal volume of 100 ml and having an internal stirring device was charged with 1.2 g of potassium fluoride, 1.6 g of zinc oxide and 833 mmol of methyl formate. The inside is sufficiently replaced with nitrogen gas, and nitrogen gas pressure is 4.9MP.
a. The inside was heated to 180 ° C. with stirring. Since gas is generated as the reaction proceeds, the pressure is 4.9M
After reacting for 2 hours while extracting gas so that Pa became constant, the autoclave was cooled in water to stop the reaction. The internal gas was gradually purged by opening the autoclave valve, the gas amount was measured, and the composition was analyzed.
When the autoclave pressure became atmospheric, the contents were taken out, weighed and analyzed. As a result, the yield of carbon monoxide was 88.3%, and the molar ratio of CO / H 2 in the produced gas was 99.95 / 0.05.

【0011】実施例3 フッ化セシウム0.86g、酸化亜鉛0.32g、ギ酸
メチル167mmolを充填し、実施例1と同様に反応
を行った。その結果、一酸化炭素の収率は90.9%で
あり、生成ガス中のCO/H2 のモル比は98.6/
1.4であった。
Example 3 0.86 g of cesium fluoride, 0.32 g of zinc oxide and 167 mmol of methyl formate were charged, and the reaction was carried out in the same manner as in Example 1. As a result, the yield of carbon monoxide was 90.9%, and the molar ratio of CO / H 2 in the product gas was 98.6 /.
1.4.

【0012】比較例1〜2 内容積100mlのステンレス製オートクレーブに、所
定量の触媒とギ酸メチルを充填した。オートクレーブの
内部を窒素ガスで充分に置換した後、振盪しながら18
0℃に加熱した。2時間振盪しながら反応の後、オート
クレーブを水中で冷却、反応を停止した。オートクレー
ブのバルブを開いて内部ガスを徐々にパージし、ガス量
を計量するとともに組成を分析した。オートクレーブ圧
力が大気になったら蓋を開けて内容物を取り出し、秤量
したのち分析した。反応条件と結果を表1に示す。
Comparative Examples 1 and 2 A predetermined amount of a catalyst and methyl formate were charged in a stainless steel autoclave having an internal volume of 100 ml. After sufficiently replacing the inside of the autoclave with nitrogen gas, the autoclave is shaken for 18 hours.
Heated to 0 ° C. After the reaction with shaking for 2 hours, the autoclave was cooled in water to stop the reaction. The internal gas was gradually purged by opening the autoclave valve, the gas amount was measured, and the composition was analyzed. When the autoclave pressure became atmospheric, the lid was opened and the contents were taken out, weighed and analyzed. Table 1 shows the reaction conditions and the results.

【0013】[0013]

【表1】比較例 1 2 触媒(触媒量) ZnO(0.31g) KF(0.32g) ギ酸メチル仕込量(mmol) 172 167 反応温度(℃) 180 180 一酸化炭素収率(mol%) 0.5 0.0 一酸化炭素選択率(%) 100 − Comparative Example 1 2 Catalyst (catalytic amount) ZnO (0.31 g) KF (0.32 g) Methyl formate charge (mmol) 172 167 Reaction temperature (° C) 180 180 Carbon monoxide yield (mol%) 0.5 0.0 Carbon monoxide selectivity (%) 100 −

【0014】[0014]

【発明の効果】以上の比較例からフッ化カリウムまたは
酸化亜鉛のみではギ酸メチルの分解活性が極めて低い
が、フッ化カリウムおよび酸化亜鉛からなる触媒を用い
る本発明の実施例ではギ酸メチル分解活性が高いことが
分かる。本発明の触媒は強塩基でないので取扱が容易で
あり、液相下ギ酸メチルを分解することにより高選択率
で工業的に有利に一酸化炭素を製造することができるこ
とから、本発明の産業上の意義は大きい。
According to the above comparative examples, the decomposition activity of methyl formate is extremely low only with potassium fluoride or zinc oxide. However, in the embodiment of the present invention using a catalyst comprising potassium fluoride and zinc oxide, the decomposition activity of methyl formate is low. It turns out that it is high. Since the catalyst of the present invention is not a strong base, it is easy to handle, and carbon monoxide can be industrially advantageously produced at a high selectivity by decomposing methyl formate in the liquid phase. Is significant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江端 秀司 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 中村 賢司 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hideji Ebata 182 Niigata-shi Niigata City Niigata Research Institute Niigata Research Institute (72) Inventor Kenji Nakamura Kenji Nakamura Niigata Niigata City Niigata City Niigata 182 Address: Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ化アルカリ及び酸化亜鉛の存在下、ギ
酸メチルを液相下で分解することを特徴とする一酸化炭
素の製造方法。
1. A method for producing carbon monoxide, comprising decomposing methyl formate in a liquid phase in the presence of alkali fluoride and zinc oxide.
JP00153397A 1997-01-08 1997-01-08 Carbon monoxide production method Expired - Fee Related JP3931928B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00153397A JP3931928B2 (en) 1997-01-08 1997-01-08 Carbon monoxide production method
DE69706514T DE69706514T2 (en) 1997-01-08 1997-12-31 Method for the recovery and use of heat by using chemical energy in the synthesis and cleavage of methyl formate
EP97123031A EP0853075B1 (en) 1997-01-08 1997-12-31 Method for heat recovery and utilization by use of chemical energy of synthesis and decomposition of methyl formate
US09/004,101 US5965769A (en) 1997-01-08 1998-01-07 Method for heat recovery and utilization by use of chemical energy of synthesis and decomposition of methyl formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00153397A JP3931928B2 (en) 1997-01-08 1997-01-08 Carbon monoxide production method

Publications (2)

Publication Number Publication Date
JPH10194715A true JPH10194715A (en) 1998-07-28
JP3931928B2 JP3931928B2 (en) 2007-06-20

Family

ID=11504167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00153397A Expired - Fee Related JP3931928B2 (en) 1997-01-08 1997-01-08 Carbon monoxide production method

Country Status (1)

Country Link
JP (1) JP3931928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114509A (en) * 2000-09-29 2002-04-16 Mitsubishi Gas Chem Co Inc Method for producing carbon monoxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114509A (en) * 2000-09-29 2002-04-16 Mitsubishi Gas Chem Co Inc Method for producing carbon monoxide
JP4609613B2 (en) * 2000-09-29 2011-01-12 三菱瓦斯化学株式会社 Carbon monoxide production method

Also Published As

Publication number Publication date
JP3931928B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4051110B2 (en) Method for producing iodinated trifluoromethane
JPS6344131B2 (en)
JPH10194715A (en) Production of carbon monoxide
EP0657384B1 (en) Process for producing hydrogen cyanide
JPH05995A (en) Production of acetic acid
NO152045B (en) PROCEDURE FOR THE PREPARATION OF METHYL FORMINATE AND METHANOL FOR THE REACTION OF CARBON MONOXIDE AND HYDROGEN
JPS58219134A (en) Preparation of ethanol
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
JP4671006B2 (en) Carbon monoxide production method
JP2002173302A (en) Method of producing gaseous mixture of carbon monoxide with hydrogen
JPS6210985B2 (en)
JP2001288137A (en) Method for producing formic acid
JPS6246482B2 (en)
JPS61291549A (en) Production of aromatic secondary amino compound
JP2001019697A (en) Production of 2,4-pentanedionatodicarbonyl rhodium (i)
JP3317614B2 (en) Method for producing monoalkenylbenzene
JP3804697B2 (en) Method for producing methyl formate
JP2002114509A (en) Method for producing carbon monoxide
JPH0717967A (en) Production of alkylene carbonate
JPS6210986B2 (en)
JPH09132539A (en) Production of methanol
JPH1180096A (en) Production of dimethyl carbonate
JPH062716B2 (en) Method for producing aromatic secondary amino compound
JPS6248645B2 (en)
JP4978051B2 (en) Method for producing ammonium cryolite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees