JPS61291549A - Production of aromatic secondary amino compound - Google Patents

Production of aromatic secondary amino compound

Info

Publication number
JPS61291549A
JPS61291549A JP60134686A JP13468685A JPS61291549A JP S61291549 A JPS61291549 A JP S61291549A JP 60134686 A JP60134686 A JP 60134686A JP 13468685 A JP13468685 A JP 13468685A JP S61291549 A JPS61291549 A JP S61291549A
Authority
JP
Japan
Prior art keywords
catalyst
formula
kinds
expressed
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60134686A
Other languages
Japanese (ja)
Inventor
Hiroshi Okuno
浩 奥野
Hiroyoshi Kodama
児玉 浩宜
Moriharu Yamamoto
山本 守治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Nohyaku Co Ltd
Original Assignee
Nihon Nohyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Nohyaku Co Ltd filed Critical Nihon Nohyaku Co Ltd
Priority to JP60134686A priority Critical patent/JPS61291549A/en
Publication of JPS61291549A publication Critical patent/JPS61291549A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for medicines, etc., industrially and advantageously in high yield, by reacting an aniline with an alcohol in the presence of a catalyst consisting of a specific metal oxide. CONSTITUTION:An aniline expressed by formula I (X is H, halogen, lower alkyl or lower alkoxy; n is an integer 1-3) is reacted with an alcohol expressed by the formula ROH (R is alkyl or phenyl) in the presence of a catalyst consisting of two kinds of metal oxides selected from Mg, Ca, Al, Zn, Cd and Fe to afford the aimed compound expressed by formula II. The composition of the two kinds of catalysts in the above-mentioned catalyst varies with the kinds of the metals, but the molar ratio is within 0.01-1:1 range. MgO-ZnO, MgO-Al2O3, etc., may be cited as the preferred combination in the catalyst. The catalyst is readily handled, and the aimed compound is obtained in good yield at a relatively low temperature without forming by-products, e.g. high polymer tarry materials and ethers.

Description

【発明の詳細な説明】 本発明は芳香族第二級アミノ化合物の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aromatic secondary amino compounds.

すなわち本発明は、一般式(I): (式中Xは水素原子、/Sロゲン原子、低級アルキル基
又は低級アルコキシ基を表わし、nは1乃至3の整数で
ある) で表わされるアニリン類と一般式(■):几OH(II
) (式中Rはアルキル基、又はフェニル基を表わす) で表わされるアルコール類とをマグネシウム(Mg )
、カルシウム(Ca)、アルミニウム(A/)、亜鉛(
Zn)、カドミラA (Cd)、鉄(Fe)中から選ば
れた二種の金属酸化物からなる触媒の存在下で反応させ
ることを特徴とする一般弐〇〇) :(式中X%n及び
Rは前記と同じ意味を表わす)で表わされる芳香族第二
級アミノ化合物の製造方法に関する。
That is, the present invention provides anilines represented by the general formula (I): (wherein X represents a hydrogen atom, a /S rogen atom, a lower alkyl group, or a lower alkoxy group, and n is an integer of 1 to 3); General formula (■): OH(II
) (wherein R represents an alkyl group or a phenyl group) and an alcohol represented by magnesium (Mg )
, calcium (Ca), aluminum (A/), zinc (
General 2〇〇): (in the formula, X%n and R represents the same meaning as above).

一般にアニリン類とアルコール類とを種々の触媒の存在
下で反応させてN−アルキル化およびN−アリール化を
行なうことはよく知られており、たとえば硫酸触媒法(
ユニットプロセス・インオーガニックケミストリー、第
850頁。
It is generally well known that anilines and alcohols are reacted in the presence of various catalysts to perform N-alkylation and N-arylation. For example, the sulfuric acid catalytic method (
Unit Process Inorganic Chemistry, page 850.

1958年)、濃燐酸触媒法(米国特許第299131
1号)、アルミナ触媒法(ヘミッシェス・テエントラル
プラット、第2579頁、 1955年)等が挙げられ
る。しかしながらこれらの方法は、いづれも高分子ター
ル様物質が副生ずるため目的物の収量の低下を招くのみ
ならず、特に硫酸および濃燐酸触媒法においては、触媒
の取シ扱い、生成物の分離および精製が困難であって工
業的規模の製造においては、非常に複雑な工程となって
諸設備が高価となり、またアルミナ触媒法においても特
にエーテル類が副生しその結果アルコールの回収分離工
程における設備費が更に高価になる。また他の方法とし
てマグネシア触媒法(米国特許第3558706号)が
あるが、この場合、反応温度が高い上転化率が低く、工
業的に不利である。
(1958), concentrated phosphoric acid catalyst method (U.S. Pat. No. 299,131)
1), the alumina catalyst method (Hemisches Teentralplatt, p. 2579, 1955), and the like. However, all of these methods not only result in a decrease in the yield of the target product due to the production of polymeric tar-like substances as by-products, but also, in particular, in the sulfuric acid and concentrated phosphoric acid catalyst methods, handling of the catalyst, separation of the product, and Purification is difficult and production on an industrial scale is a very complicated process that requires expensive equipment.Also, in the alumina catalyst method, ethers in particular are produced as by-products, resulting in the need for equipment in the alcohol recovery and separation process. costs become even more expensive. Another method is the magnesia catalyst method (US Pat. No. 3,558,706), but in this case, the reaction temperature is high and the upper conversion rate is low, which is industrially disadvantageous.

本発明者らは触媒の取扱いが容易で高分子タール様物質
およびエーテル類の副生がなく比較的低温において好収
率で選択的にアニリン類をN−モノアルキル化及びN−
モノアリール化する方法を検討した結果、 Mg%Ca
、 A/、 Zn、 Cd。
The present inventors have demonstrated the ability to selectively N-monoalkylate anilines and N-
As a result of examining the method of monoarylation, Mg%Ca
, A/, Zn, Cd.

Fe中から選ばれた二種の金属酸化物を触媒として用い
る方法が触媒の活性も優れ、触媒の調製および取扱いが
容易であり、経済的で工業的に有利で優れたものである
ことを見出し本発明の方法を完成した。
It was discovered that a method using two metal oxides selected from Fe as catalysts has excellent catalytic activity, is easy to prepare and handle, and is economical and industrially advantageous. The method of the present invention has been completed.

本発明の方法で使用する金属酸化物触媒はMg、 Ca
、 A4 Zn、 Cd%re中から選ばれた二種の金
属酸化物を含有する。この場合の触媒中の二種の酸化物
の組成比は金属の種類によって変動するがモル比でα0
1〜1:1の範囲から選ばれる。
The metal oxide catalyst used in the method of the present invention is Mg, Ca
, A4 Zn, and Cd%re. In this case, the composition ratio of the two oxides in the catalyst varies depending on the type of metal, but the molar ratio is α0
selected from the range of 1 to 1:1.

これらの触媒中好ましい組合せの例としてはMgO−Z
nO1Mg0−Zn0l@ 、 MgO−Cd0. C
aO−Fe2O3。
Examples of preferred combinations of these catalysts include MgO-Z
nO1Mg0-Zn0l@, MgO-Cd0. C
aO-Fe2O3.

Zn0−F ego@ 、Cd0−F e203 % 
CdOA/101  が挙げられる。
Zn0-F ego@, Cd0-F e203%
CdOA/101 is mentioned.

これらの触媒の調整法はいろいろあるが代表的なものと
してアルコキシド加水分解法とアルカリ共沈法が挙げら
れる。
Although there are various methods for preparing these catalysts, typical examples include alkoxide hydrolysis method and alkali coprecipitation method.

例えば、アルコキシド加水分解法では、成分元素のアル
コキシド(例えばMg 0−Alx Os 系ではマグ
ネシウムメトキシド、アルミニウムイソグロボ中りド°
等)t−エチルアルコールに溶解し。
For example, in the alkoxide hydrolysis method, the alkoxide of the component element (for example, magnesium methoxide in the Mg 0-Alx Os system, dehydration in aluminum isoglobo
etc.) dissolved in t-ethyl alcohol.

水を加えて還流し、加水分解を完結させた後、水及びア
ルコールを留去し、空気中300〜800℃で2〜5時
間焼成する。
After adding water and refluxing to complete hydrolysis, water and alcohol are distilled off and calcined in air at 300-800°C for 2-5 hours.

又共沈法では所要の成分元素の可溶性塩(例えば、硝酸
塩、硝酸カルシウム、硝酸亜鉛、硝酸アルミニウム等)
の水溶液を混合し、アルカリを加えて沈殿を得る。得ら
れた沈殿を充分に水洗して乾燥し、空気中で500〜8
00℃で2〜5時間焼成する。
In addition, in the coprecipitation method, soluble salts of required component elements (e.g., nitrate, calcium nitrate, zinc nitrate, aluminum nitrate, etc.)
Mix the aqueous solutions of and add alkali to obtain a precipitate. The obtained precipitate was thoroughly washed with water, dried, and heated to 500 to 8
Bake at 00°C for 2-5 hours.

このようにして焼成して得られた焼成物を破砕ないし、
打錠により触媒を調製する。また、この場合、触媒を担
体に担持させてもよいし、させなくても良い。
The fired product obtained by firing in this way is not crushed,
Prepare the catalyst by tabletting. Further, in this case, the catalyst may or may not be supported on the carrier.

反応の様式としては加圧接触法又は気相接触法のどちら
でも、その目標を達成できるが、気相接触法は反応が連
続的に実施できる点でよシ好ましい。
Although the desired reaction method can be achieved using either a pressure contact method or a gas phase contact method, the gas phase contact method is more preferred since the reaction can be carried out continuously.

又、アニリン類に対するアルコール類のモル比はα1倍
モル以上あればよいが好ましくは15〜10倍モルであ
る。
Further, the molar ratio of the alcohol to the aniline may be at least 1 times α by mole, but is preferably 15 to 10 times by mole.

又、反応温度は150〜450℃の範囲が好ましく、反
応は水素ガス、炭酸ガス、アルゴンガス、ヘリウムガス
、窒素ガスの存在下又は不存在下で行なわれる。
Further, the reaction temperature is preferably in the range of 150 to 450°C, and the reaction is carried out in the presence or absence of hydrogen gas, carbon dioxide gas, argon gas, helium gas, or nitrogen gas.

反応によシ活性の低下した触媒は熱した空気を送ること
によシ再生できる。
Catalysts whose activity has decreased due to reaction can be regenerated by supplying heated air.

反応終了後は副生じた水層を分液し、油層を分留すると
目的物が得られるが、必要によっては再結晶法、カラム
クロマトグラフィ法等の方法によってさらに精製するこ
とも可能である。
After the completion of the reaction, the aqueous layer produced as a by-product is separated and the oil layer is fractionated to obtain the desired product, but if necessary, it is also possible to further purify it by methods such as recrystallization and column chromatography.

このようにして得られる芳香族第二級アミノ化合物は、
一般化学工業における中間体、特に医薬、農薬等の中間
体として有用である。
The aromatic secondary amino compound obtained in this way is
It is useful as an intermediate in the general chemical industry, especially in pharmaceuticals, agricultural chemicals, etc.

次に実施例によりて本発明を更に詳細に説明するが、こ
れに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1: 硝酸マグネシウム5重量部と硝酸亜鉛6重量部からなる
水溶液に攪拌下で理論量の1〜t1倍のアンモニア水を
滴下し沈殿を得た。この沈殿を充分水洗後乾燥し、55
6℃で5時間焼成した後破砕し篩分して粒径60〜80
メツシユの触媒を得た。直径5wg、長さ5G傷のガラ
ス製気相接触用反応管の一部にこの触媒α5gを充填し
350℃に加熱した6次に反応管に窒素ガスを20d/
分の速度で通じながら蒸発器にアニリン1重量部とメチ
ルアルコール5重量部よシなる混合液を10μ! 注入
した。発生した混合蒸気は反応管中の触媒と接触して反
応し留出する。留出する反応物をジオキサンで捕集しそ
の生成物をガスクロマトグラフィーで分析したところ、
N−メチルアニリンのみが検出され、転化率はアニリン
基準で24.5−であり九。
Example 1: To an aqueous solution consisting of 5 parts by weight of magnesium nitrate and 6 parts by weight of zinc nitrate, 1 to 1 times the theoretical amount of aqueous ammonia was dropped under stirring to obtain a precipitate. This precipitate was thoroughly washed with water and dried.
After baking at 6℃ for 5 hours, crush and sieve to obtain particles with a particle size of 60 to 80.
Obtained Metsuyu Catalyst. A part of a glass reaction tube for gas phase contact with a diameter of 5 wg and a length of 5 G scratches was filled with 5 g of this catalyst α and heated to 350°C.Next, nitrogen gas was introduced into the reaction tube for 20 d/day.
10μ of a mixture of 1 part by weight of aniline and 5 parts by weight of methyl alcohol is poured into the evaporator at a speed of 10 minutes. Injected. The generated mixed vapor comes into contact with the catalyst in the reaction tube, reacts, and is distilled out. The distilled reactants were collected with dioxane and the products were analyzed using gas chromatography.
Only N-methylaniline was detected, and the conversion rate was 24.5-9 based on aniline.

実施例2: 硝酸マグネシウム95重量部と硝酸アルミニウム5重量
部からなる水溶液から実施例1と同様の方法で触媒を調
製し、同様の条件下で反応を行なった。同様にして他の
触媒についても反応を行なった。併せて結果を表1に示
す。
Example 2: A catalyst was prepared in the same manner as in Example 1 from an aqueous solution consisting of 95 parts by weight of magnesium nitrate and 5 parts by weight of aluminum nitrate, and the reaction was carried out under the same conditions. Reactions were also carried out using other catalysts in the same manner. The results are also shown in Table 1.

実施例3: 硝酸カドミウム4重量部と硝酸アルミニウム1重量部か
らなる水溶液から実施例1と同様の方法で触媒を調製し
、実施例1と同一の条件下でアニリン類とアルコール類
を表2に示したものに変えて反応を行なりた。結果を表
2に示す。
Example 3: A catalyst was prepared in the same manner as in Example 1 from an aqueous solution consisting of 4 parts by weight of cadmium nitrate and 1 part by weight of aluminum nitrate, and anilines and alcohols were added to Table 2 under the same conditions as in Example 1. The reaction was performed by changing it to the one shown. The results are shown in Table 2.

実施例4: アルコール類としてフェノールを用いる以外は実施例1
と同様の方法で反応を行ったところ、高収率でN−7エ
ニルアニリンが得られた。
Example 4: Example 1 except that phenol is used as the alcohol
When the reaction was carried out in the same manner as above, N-7 enylaniline was obtained in high yield.

特許出願人  日本農薬株式会社 (ほか1名)Patent applicant: Nihon Nohyaku Co., Ltd. (1 other person)

Claims (1)

【特許請求の範囲】 一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中Xは水素原子、ハロゲン原子、低級アルキル基又
は低級アルコキシ基を表わし、nは1乃至3の整数であ
る) で表わされるアニリン類と一般式(II): ROH(II) (式中Rはアルキル基、又はフェニル基を表わす) で表わされるアルコール類とをマグネシウム(Mg)、
カルシウム(Ca)、アルミニウム(Al)、亜鉛(Z
n)、カドミウム(Cd)、鉄(Fe)中から選ばれた
二種の金属酸化物からなる触媒の存在下で反応させるこ
とを特徴とする一般式(III):▲数式、化学式、表等
があります▼(III) (式中X、n及びRは前記と同じ意味を表わす)で表わ
される芳香族第二級アミノ化合物の製造方法。
[Claims] General formula (I): ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, X represents a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and n is 1 to An integer of 3) and an alcohol represented by general formula (II): ROH (II) (wherein R represents an alkyl group or a phenyl group) are combined with magnesium (Mg),
Calcium (Ca), aluminum (Al), zinc (Z
General formula (III) characterized in that the reaction is carried out in the presence of a catalyst consisting of two metal oxides selected from n), cadmium (Cd), and iron (Fe): ▲Mathematical formula, chemical formula, table, etc. ▼(III) A method for producing an aromatic secondary amino compound represented by the formula (wherein X, n and R have the same meanings as above).
JP60134686A 1985-06-20 1985-06-20 Production of aromatic secondary amino compound Pending JPS61291549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134686A JPS61291549A (en) 1985-06-20 1985-06-20 Production of aromatic secondary amino compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134686A JPS61291549A (en) 1985-06-20 1985-06-20 Production of aromatic secondary amino compound

Publications (1)

Publication Number Publication Date
JPS61291549A true JPS61291549A (en) 1986-12-22

Family

ID=15134200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134686A Pending JPS61291549A (en) 1985-06-20 1985-06-20 Production of aromatic secondary amino compound

Country Status (1)

Country Link
JP (1) JPS61291549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973754A (en) * 1989-05-15 1990-11-27 Shell Oil Company Preparation of bis(p-aminocumyl)benzenes
EP1405669A2 (en) * 2002-08-29 2004-04-07 Kao Corporation Production process for glycidyl ether adduct and catalyst used for the process
RU2508288C1 (en) * 2012-07-31 2014-02-27 Закрытое Акционерное Общество "Ифохим" Method for selective production of n-methyl-para-anisidine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973754A (en) * 1989-05-15 1990-11-27 Shell Oil Company Preparation of bis(p-aminocumyl)benzenes
EP1405669A2 (en) * 2002-08-29 2004-04-07 Kao Corporation Production process for glycidyl ether adduct and catalyst used for the process
EP1405669A3 (en) * 2002-08-29 2004-11-24 Kao Corporation Production process for glycidyl ether adduct and catalyst used for the process
RU2508288C1 (en) * 2012-07-31 2014-02-27 Закрытое Акционерное Общество "Ифохим" Method for selective production of n-methyl-para-anisidine

Similar Documents

Publication Publication Date Title
US4254293A (en) Dehydrocoupling of toluene
EP0581131B1 (en) A process for producing alkylene carbonates
JPS61291549A (en) Production of aromatic secondary amino compound
EP0030837B1 (en) Dehydrocoupling of toluene
EP0117882B1 (en) Novel aminopropylpivalamides and a method of preparation
US4268703A (en) Dehydrocoupling of toluene
US4278825A (en) Dehydrocoupling of toluene
JPS61120643A (en) Gaseous nitration catalyst and its production and use
JPH062716B2 (en) Method for producing aromatic secondary amino compound
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
US4255603A (en) Dehydrocoupling of toluene
EP0854128B1 (en) Process for the preparation of chloro-benzoyl chlorides
JPS6217980B2 (en)
EP0031654B1 (en) Dehydrocoupling of toluene
JP3446760B2 (en) Method for producing ethylene carbonate
JPH0717967A (en) Production of alkylene carbonate
JP2613515B2 (en) Method for producing sodioformylacetone
JPS6334137B2 (en)
JPS58121238A (en) Preparation of anthraquinone
JPS6332771B2 (en)
SU595300A1 (en) Method of preparing cyanbenzoic acids
JPS6150938A (en) Production of cinnamic acid or cinnamic ester
JPS6154024B2 (en)
JP2608715B2 (en) Method for producing 4-methyl-1-pentene
JPH06128248A (en) Production of alkylene carbonate