JP2573687B2 - Method for producing isopropyl alcohol - Google Patents

Method for producing isopropyl alcohol

Info

Publication number
JP2573687B2
JP2573687B2 JP1098567A JP9856789A JP2573687B2 JP 2573687 B2 JP2573687 B2 JP 2573687B2 JP 1098567 A JP1098567 A JP 1098567A JP 9856789 A JP9856789 A JP 9856789A JP 2573687 B2 JP2573687 B2 JP 2573687B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
ipa
acetone
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1098567A
Other languages
Japanese (ja)
Other versions
JPH02279643A (en
Inventor
正志 稲葉
良三 浜名
清貴 下村
達郎 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1098567A priority Critical patent/JP2573687B2/en
Publication of JPH02279643A publication Critical patent/JPH02279643A/en
Application granted granted Critical
Publication of JP2573687B2 publication Critical patent/JP2573687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイソプロピルアルコール(IPAと略すことが
ある)の製造方法に関する。詳しくは、アセトンを水素
還元して溶剤・各種有機薬品の原料等として有用なイソ
プロピルアルコールを製造する方法に関するものであ
る。
The present invention relates to a method for producing isopropyl alcohol (may be abbreviated as IPA). More specifically, the present invention relates to a method for producing isopropyl alcohol which is useful as a solvent, a raw material of various organic chemicals, and the like by reducing acetone with hydrogen.

〔従来の技術〕[Conventional technology]

従来、IPAはプロピレンの水和反応で製造されてい
た。この水和反応には(1)タングステン系の触媒を用
い240〜270℃、150〜200気圧の条件下、大過剰の水と共
に反応させる直接水和法と(2)70〜75%の硫酸を用い
21〜28気圧で硫酸化を行い、その後加水分解によりIPA
を得る間接水和法があるが、工業的製法としては大変厳
しい条件であり、間接法においては装置の腐蝕という問
題もある。また反応に過剰の水を使用するので、反応混
合物からIPAを分離する場合IPAと水が供沸混合物を形成
するために分離プロセスなど装置が煩雑になるという欠
点がある。
Traditionally, IPA has been produced by the hydration of propylene. This hydration reaction involves (1) a direct hydration method in which a tungsten-based catalyst is reacted with a large excess of water under the conditions of 240 to 270 ° C. and 150 to 200 atm, and (2) 70-75% sulfuric acid. Use
Sulfation at 21-28 atm, then IPA by hydrolysis
Although there is an indirect hydration method for obtaining the above, it is a very severe condition as an industrial production method, and the indirect method has a problem of corrosion of the apparatus. Further, since excess water is used in the reaction, when IPA is separated from the reaction mixture, there is a disadvantage that the apparatus such as a separation process becomes complicated because IPA and water form a boiling mixture.

そこで、反応に水を使用しないでIPAを製造する方法
として、アセトンを水素還元する方法も提案されてい
る。
Therefore, as a method of producing IPA without using water for the reaction, a method of reducing acetone with hydrogen has been proposed.

アセトンのカルボニル基を金属触媒により還元するこ
とは公知であり、例えば特公昭46−9136号公報および有
機合成化学誌第27巻第1号69ページ(1969年)には担体
にパラジウム塩とモリブデン化合物を付着させ、カ焼
し、またはカ焼することなしに水素で還元することによ
りカルボニル基の還元に使用しうるパラジウム触媒の製
造法が記されている。
It is known that the carbonyl group of acetone is reduced with a metal catalyst. For example, Japanese Patent Publication No. 46-9136 and the Journal of Synthetic Organic Chemistry, Vol. 27, No. 1, p. A process for the preparation of a palladium catalyst which can be used for the reduction of carbonyl groups by attaching and reducing with hydrogen without or with calcination is described.

また、特開昭62−12729号公報にはラネーニッケル触
媒を用いてアセトンを水素還元してIPAを得るための改
良方法として、該触媒に存在するアルカリの量が触媒を
浸漬した水溶液のpH値で表わして7.0ないし8.2の範囲に
ある触媒を用いて、反応系の水分含有率が5重量%以
下、反応温度100ないし160℃の範囲で、アセトンの未反
応量が0.5重量%以上になるようにして該反応を行うこ
とが提案されている。
JP-A-62-12729 discloses an improved method for obtaining IPA by reducing acetone with hydrogen using a Raney nickel catalyst.The amount of alkali present in the catalyst is determined by the pH value of an aqueous solution in which the catalyst is immersed. Using a catalyst in the range of 7.0 to 8.2, the water content of the reaction system is 5% by weight or less, the reaction temperature is 100 to 160 ° C, and the unreacted amount of acetone is 0.5% by weight or more. It has been proposed to carry out the reaction.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前記公報および文献に記載された水素
還元方法では、懸濁床式の反応態様を用いているので、
生成するアルコールと触媒とを分離するために設備が煩
雑となるという問題点を有する。また、バラジウム触媒
を用いる方法では、モリブデンの添加により活性の向上
は認められるもののIPAの収率については記載がなく、
不明であるし、ラネーニッケル触媒を用いる方法ではア
セトンの未反応量が0.5重量%以上になるようにして反
応を行うためIPAの収率が99.5%を越えることはなくま
た未反応のアセトンと生成物のIPAを分離するために過
剰の設備が必要となるなどかかる方法はアセトンを水素
還元してIPAを製造することができても工業的に大量生
産するには有利に実施できる方法ではないという問題点
がある。
However, the hydrogen reduction methods described in the above-mentioned publications and literatures use a suspension bed type reaction mode,
There is a problem that the equipment is complicated to separate the generated alcohol and the catalyst. In addition, in the method using a palladium catalyst, although the activity is improved by the addition of molybdenum, the yield of IPA is not described,
It is unknown, and in the method using Raney nickel catalyst, the reaction is carried out so that the unreacted amount of acetone becomes 0.5% by weight or more, so that the yield of IPA does not exceed 99.5%, The problem is that such a method requires excess equipment to separate the IPA, but it is not a method that can be advantageously implemented for industrial mass production even if IPA can be produced by hydrogen reduction of acetone. There is a point.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、アセトンを水素還元してイソプロピルアル
コールを製造する方法において、触媒として担持ルテニ
ウム触媒を用い、反応系のイソプロピルアルコール濃度
を50重量%以上として反応させることを特徴とする、従
来法よりもはるかに温和の反応条件下にもかかわらず、
高い反応率でかつ高選択的にアセトンからIPAが長期
間、安定して得られるイソプロピルアルコールの製造方
法を提供するものである。
The present invention relates to a method for producing isopropyl alcohol by hydrogen reduction of acetone, wherein a supported ruthenium catalyst is used as a catalyst, and the reaction is carried out at an isopropyl alcohol concentration of 50% by weight or more. Despite the much milder reaction conditions,
An object of the present invention is to provide a method for producing isopropyl alcohol in which IPA can be obtained stably for a long period of time from acetone at a high reaction rate and with high selectivity.

本発明の方法で使用する担持ルテニウム触媒は、ルテ
ニウムが適当な担体に担持されており、その担持率は通
常0.01〜5重量%、好ましくは0.02〜3重量%である。
またその担体として耐熱性の無機化合物担体、例えばア
ルミナ、シリカ、などの合成ゲル担体、あるいはケイソ
ウ土、多孔性粘土、カーボンなどの天然無機物担体等が
あげられる。
In the supported ruthenium catalyst used in the method of the present invention, ruthenium is supported on a suitable carrier, and the supporting rate is usually 0.01 to 5% by weight, preferably 0.02 to 3% by weight.
Examples of the carrier include a heat-resistant inorganic compound carrier such as a synthetic gel carrier such as alumina and silica, and a natural inorganic carrier such as diatomaceous earth, porous clay and carbon.

本発明の方法における反応態様としては回分式、連続
式その他任意の態様で実施することができるが、触媒を
懸濁床とすると触媒の分離工程が必要となるので、固定
床が好ましい。また、固定床においては、上向き流れで
あると担持ルテニウム触媒が流動化して活性低下をおこ
すおそれがあるので、下向きの流れの方が好ましい。
The reaction in the method of the present invention can be carried out in a batch system, a continuous system, or any other embodiment. However, a fixed bed is preferable because a catalyst suspension step requires a catalyst separation step. In a fixed bed, a downward flow is preferable because an upward flow may cause the supported ruthenium catalyst to fluidize and cause a decrease in activity.

原料アセトンを希釈する溶媒としては、製品であるIP
Aを使用するのが好ましい。その他、アセトンおよび製
品であるIPAを溶かしてアセトンと反応性のないものな
ら溶媒として使用できるが、水を溶媒としたりあるいは
混入させるのは、製品IPAとの分離が非常に困難である
ので、好ましくない。また、IPA以外のものであるとや
はり製品IPAとの分離のために多大な設備を必要とする
ので好ましくない。
The solvent used to dilute the raw material acetone is IP
It is preferred to use A. In addition, any solvent that does not react with acetone by dissolving acetone and the product IPA can be used as a solvent.However, using or mixing water with water is very difficult because separation from product IPA is very difficult. Absent. Further, it is not preferable to use a device other than the IPA because a large amount of equipment is required for separation from the product IPA.

本発明の方法における担持Ru触媒存在下のアセトンの
水素還元反応では反応器内のIPA濃度を50重量%以上と
して反応させることが必要である。濃度が50重量%未満
であると、反応熱による発熱が大きく反応温度が安定し
ない。高い活性や、選択性が得られない、などの問題が
生じる。
In the hydrogen reduction reaction of acetone in the presence of a supported Ru catalyst in the method of the present invention, the reaction needs to be performed with the IPA concentration in the reactor being 50% by weight or more. If the concentration is less than 50% by weight, the heat generated by the reaction heat is large and the reaction temperature is not stable. Problems such as high activity and inability to obtain selectivity occur.

水素還元反応系への水素供給量は、当該水素還元反応
に理論上必要な水素量の1〜50倍、好ましくは1〜30
倍、最も好ましくは1〜20倍程度である。供給する水素
量が多すぎるのはロスとなり水素の回収系・循環系など
の付属設備が膨大となり無駄である。
The amount of hydrogen supplied to the hydrogen reduction reaction system is 1 to 50 times, preferably 1 to 30 times the amount of hydrogen theoretically necessary for the hydrogen reduction reaction.
Times, most preferably about 1 to 20 times. If the amount of supplied hydrogen is too large, it will be a loss, and ancillary equipment such as a hydrogen recovery system and a circulation system will be enormous and useless.

水素還元反応は、通常0〜200℃、好ましくは10〜170
℃、最も好ましくは20〜150℃の範囲で行われる。反応
温度が高すぎると化学平衡上高い転化率が得られない
し、副反応も起こるなど好ましくない。また、反応温度
が低すぎると、反応速度が遅くなるなどの問題点が生じ
る。
The hydrogen reduction reaction is usually performed at 0 to 200 ° C., preferably 10 to 170 ° C.
C., most preferably in the range of 20 to 150.degree. If the reaction temperature is too high, a high conversion cannot be obtained due to chemical equilibrium, and undesired side reactions occur. On the other hand, when the reaction temperature is too low, problems such as a slow reaction rate occur.

水素還元反応の全圧は、通常、常圧〜加圧下、好まし
くは常圧〜50kg/cm2G、最も好ましくは常圧〜30kg/cm2G
である。アセトンの水素還元反応は上記の圧力で容易に
進行するので反応圧力を必要以上に高くしても装置の建
設コストが大となるのみで無駄である。
The total pressure of the hydrogen reduction reaction is usually from normal pressure to pressurized, preferably normal pressure to 50 kg / cm 2 G, most preferably normal pressure to 30 kg / cm 2 G
It is. Since the hydrogen reduction reaction of acetone easily proceeds at the above-mentioned pressure, even if the reaction pressure is increased more than necessary, the construction cost of the apparatus is increased and it is useless.

〔実施例〕〔Example〕

以下に実施例を挙げて、本発明をさらに具体的に説明
する。これらの例に記載の%は特に記載しない限り重量
基準による。
Hereinafter, the present invention will be described more specifically with reference to examples. The percentages given in these examples are by weight unless otherwise indicated.

触媒製造例−1 3mmφ×3mmの円柱型に成形したγ−アルミナに濃度0.
8%の塩化ルテニウム(1水和物)の塩酸酸性溶液を含
浸させ、110℃で1昼夜乾燥させた。
Catalyst production example-1 Concentration of 0.2 in γ-alumina molded into a 3 mmφ × 3 mm cylindrical shape.
It was impregnated with an 8% aqueous solution of ruthenium chloride (monohydrate) in hydrochloric acid and dried at 110 ° C. for one day.

次いで、その乾燥物を水素気流下で400℃の温度で16
時間還元処理して、組成がRu(0.5%)/γ−Al2O3の担
持ルテニウム触媒を得た。
Next, the dried product is heated at a temperature of 400 ° C. under a stream of hydrogen at 16 ° C.
After a time reduction treatment, a supported ruthenium catalyst having a composition of Ru (0.5%) / γ-Al 2 O 3 was obtained.

触媒製造例−2 担体に4〜8メッシュに破砕したヤシガラ活性炭を使
用したこと以外は触媒製造例−1と同様の操作を行な
い、組成がRu(0.5%)/活性炭の担持ルテニウム触媒
を得た。
Catalyst Production Example-2 The same operation as in Catalyst Production Example-1 was carried out except that coconut shell activated carbon crushed to 4 to 8 mesh was used as a carrier, to obtain a ruthenium catalyst having a composition of Ru (0.5%) / activated carbon. .

実施例−1 触媒製造例−1に従って調製したRu(0.5%)/γ−
アルミナ触媒5gを充填したカゴ型撹拌機、水素供給管、
生成液抜出し管を備えた内容積200mlのステンレス製オ
ートクレーブに、アセトン10%、IPA90%の組成をもつ
原料を125ml仕込み、反応温度60℃、反応圧力90kg/cm2
−G、および撹拌速度750rpmで3時間反応を行なった。
オートクレーブを冷却後生成液を抜き出しガスクロマト
グラフで分析した。その結果を表−1に示す。
Example-1 Ru (0.5%) / γ- prepared according to Catalyst Production Example-1
Basket-type stirrer filled with 5 g of alumina catalyst, hydrogen supply pipe,
125 ml of a raw material having a composition of 10% acetone and 90% IPA was charged into a 200 ml stainless steel autoclave equipped with a product liquid discharge tube at a reaction temperature of 60 ° C. and a reaction pressure of 90 kg / cm 2.
-G, and the reaction was carried out at a stirring speed of 750 rpm for 3 hours.
After cooling the autoclave, the product liquid was extracted and analyzed by gas chromatography. Table 1 shows the results.

実施例−2 触媒製造例−2に従って調製したRu(0.5%)/活性
炭触媒を使用し、反応時間を1時間としたこと以外は実
施例−1と同様の操作を行ない、表−1に示す結果を得
た。
Example 2 The same operation as in Example 1 was carried out except that the reaction time was set to 1 hour using a Ru (0.5%) / activated carbon catalyst prepared according to Catalyst Production Example 2, and shown in Table 1. The result was obtained.

実施例−3 アセトン40%、IPA60%の組成をもつ原料を使用し、
反応時間を12時間としたこと以外は実施例−1と同様の
操作を行ない、表−1に示す結果を得た。
Example 3 Using a raw material having a composition of 40% acetone and 60% IPA,
The same operation as in Example 1 was performed except that the reaction time was 12 hours, and the results shown in Table 1 were obtained.

比較例−1 アセトン100%、IPA0%の原料を使用し反応時間を24
時間としたこと以外は実施例−1と同様の操作を行なっ
た。水素の吸収は8時間で停止したが、理論値の約16%
しか吸収していないので反応は24時間まで継続したがそ
の後新たな水素の吸収は認められず、表−1に示す結果
を得た。
Comparative Example-1 A reaction time of 24% using a raw material of 100% acetone and 0% IPA.
The same operation as in Example 1 was performed except that the time was changed. Hydrogen absorption stopped in 8 hours, but about 16% of the theoretical value
The reaction continued for up to 24 hours, but no new hydrogen was absorbed thereafter, and the results shown in Table 1 were obtained.

実施例−4 触媒製造例−2に従って調製したRu(0.5%)/活性
炭触媒500mlを外径10mmの温度計保護管を備えた内径30.
1mmのステンレス製反応管に充填した。
Example-4 500 ml of Ru (0.5%) / activated carbon catalyst prepared according to Catalyst Production Example-2 was used.
A 1 mm stainless steel reaction tube was filled.

触媒層入口温度を50℃として、これにアセトン10%、
IPA90%の組成を液を2/時、水素を93/時の速
度、反応圧力9kg/cm2−Gで反応管の上部から連続的に
供給した。供給後8時間目、100時間目の結果を表−1
に示す。
Assuming that the catalyst layer inlet temperature is 50 ° C, acetone 10%
A composition of 90% IPA was continuously fed from the top of the reaction tube at a rate of 2 / hour of liquid and 93 / hour of hydrogen at a reaction pressure of 9 kg / cm 2 -G. Table 1 shows the results at 8 hours and 100 hours after supply.
Shown in

比較例−2 アセトン60%、IPA40%の組成の液を使用し、水素を4
08/時としたこと以外は、実施例−4と同様の操作を
行なったが、発熱が大きく安定した運転は不可能であっ
た。また供給後8時間目のアセトン転化率は94%と低い
値を示し、ジイソプロピルエーテル、ジアセトンアルコ
ールの大量の副生が認められた。
Comparative Example 2 Using a liquid having a composition of 60% acetone and 40% IPA,
Except that the time was set to 08 / hour, the same operation as in Example-4 was performed, but stable operation was not possible due to large heat generation. Eight hours after the supply, the conversion of acetone was as low as 94%, and a large amount of by-products of diisopropyl ether and diacetone alcohol was observed.

〔発明の効果〕 本発明の製造方法によれば、アセトンを高い転化率で
安定して水素還元することができ、しかも高い選択率で
イソプロピルアルコールを製造することができる。
[Effects of the Invention] According to the production method of the present invention, acetone can be stably hydrogen-reduced at a high conversion rate, and isopropyl alcohol can be produced at a high selectivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芦沢 達郎 茨城県鹿島郡神栖町東和田17番地1 三 菱油化株式会社鹿島事業所内 (56)参考文献 特開 平2−174737(JP,A) 特開 平2−270829(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tatsuro Ashizawa 17-1 Higashiwada, Kamisu-cho, Kashima-gun, Ibaraki Pref. Kaihei 2-270829 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アセトを水素還元してイソプロピルアルコ
ールを製造する方法において、触媒として担持ルテニウ
ム触媒を用い、反応系のイソプロピルアルコール濃度を
50重量%以上として反応させることを特徴とするイソプ
ロピルアルコールの製造方法。
In a method for producing isopropyl alcohol by reducing aceto with hydrogen, a supported ruthenium catalyst is used as a catalyst and the concentration of isopropyl alcohol in the reaction system is reduced.
A method for producing isopropyl alcohol, wherein the reaction is carried out at 50% by weight or more.
JP1098567A 1989-04-18 1989-04-18 Method for producing isopropyl alcohol Expired - Fee Related JP2573687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098567A JP2573687B2 (en) 1989-04-18 1989-04-18 Method for producing isopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098567A JP2573687B2 (en) 1989-04-18 1989-04-18 Method for producing isopropyl alcohol

Publications (2)

Publication Number Publication Date
JPH02279643A JPH02279643A (en) 1990-11-15
JP2573687B2 true JP2573687B2 (en) 1997-01-22

Family

ID=14223257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098567A Expired - Fee Related JP2573687B2 (en) 1989-04-18 1989-04-18 Method for producing isopropyl alcohol

Country Status (1)

Country Link
JP (1) JP2573687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030525A (en) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 Method for preparing isopropanol by liquid-phase hydrogenation of acetone
CN103030527A (en) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 Method for producing isopropanol through acetone solution hydrogenation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844325A1 (en) * 1998-09-28 2000-03-30 Degussa Process for the preparation of alcohols by catalytic hydrogenation of aldehydes or ketones
JP4754058B2 (en) * 2000-10-16 2011-08-24 三井化学株式会社 Method for producing isopropyl alcohol
JP2011084550A (en) * 2009-09-17 2011-04-28 Sumitomo Chemical Co Ltd Method for producing compound having double bond
JP6269026B2 (en) * 2013-12-18 2018-01-31 三菱瓦斯化学株式会社 Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030525A (en) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 Method for preparing isopropanol by liquid-phase hydrogenation of acetone
CN103030527A (en) * 2011-09-29 2013-04-10 中国石油化工股份有限公司 Method for producing isopropanol through acetone solution hydrogenation
CN103030525B (en) * 2011-09-29 2015-01-07 中国石油化工股份有限公司 Method for preparing isopropanol by liquid-phase hydrogenation of acetone
CN103030527B (en) * 2011-09-29 2015-08-12 中国石油化工股份有限公司 The method of Virahol is produced in acetone liquid-phase hydrogenatin

Also Published As

Publication number Publication date
JPH02279643A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
JP2573687B2 (en) Method for producing isopropyl alcohol
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
JPH1072401A (en) Production of 3-hydroxyproptonic acid or its salt
US4885389A (en) Process for manufacturing p-aminophenol
JPH035374B2 (en)
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
US2749217A (en) Production of hydroxylamine and semicarbazide salts
JP2762591B2 (en) Method for producing isopropyl alcohol
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
US4051187A (en) Method of producing aminophenol using a rhodium/carbon catalyst with synergistic quantities of rhodium, trichloride or rhodium tribromide
JP2976032B1 (en) Method for producing hydrogen from 2-propanol
KR100710559B1 (en) Method for the effective preparation of 1-cyclohexyl-1-ethanol
JPS62258335A (en) Production of methyl isobutyl ketone
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JP2001288137A (en) Method for producing formic acid
JP2729219B2 (en) Method for producing 2,2,6,6-tetramethyl-4-oxopiperidine
JP3058512B2 (en) Acetic acid production method
JPH08151346A (en) Production of ketomalonic acid
JP2737295B2 (en) Method for producing methyl isobutyl ketone
JPH0597778A (en) Production of 2-aminoindane and its salts
KR820000822B1 (en) Process for producing salts of pyruvic acid
JPH02121946A (en) Continuous production of succinic acid
JPS6249265B2 (en)
EP0387612B1 (en) Process for the preparation of beta-hydroxyketones
JPH11100348A (en) Production of halogenated phenylpropionic acid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960910

LAPS Cancellation because of no payment of annual fees