JP6269026B2 - Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone - Google Patents

Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone Download PDF

Info

Publication number
JP6269026B2
JP6269026B2 JP2013261287A JP2013261287A JP6269026B2 JP 6269026 B2 JP6269026 B2 JP 6269026B2 JP 2013261287 A JP2013261287 A JP 2013261287A JP 2013261287 A JP2013261287 A JP 2013261287A JP 6269026 B2 JP6269026 B2 JP 6269026B2
Authority
JP
Japan
Prior art keywords
hydrogenation
dibk
temperature
reaction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013261287A
Other languages
Japanese (ja)
Other versions
JP2015117199A (en
Inventor
一郎 高瀬
一郎 高瀬
正義 林
正義 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2013261287A priority Critical patent/JP6269026B2/en
Publication of JP2015117199A publication Critical patent/JP2015117199A/en
Application granted granted Critical
Publication of JP6269026B2 publication Critical patent/JP6269026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明はジイソブチルケトン(以下、DIBK)の水素化によるジイソブチルカルビノール(以下、DIBC)の製造法に関するものである。   The present invention relates to a process for producing diisobutyl carbinol (hereinafter referred to as DIBC) by hydrogenation of diisobutyl ketone (hereinafter referred to as DIBK).

DIBCは極性の高い高級アルコールであり、主に有機溶媒として単独または混合物で用いられる。有機溶媒としては、現在工業的に行われている、過酸化水素の主な製造方法であるアントラキノン法に好適に用いられる。   DIBC is a highly polar higher alcohol and is mainly used alone or in a mixture as an organic solvent. As an organic solvent, it is used suitably for the anthraquinone method which is the main manufacturing method of hydrogen peroxide currently performed industrially.

工業的に行われている過酸化水素の主な製造方法であるアントラキノン法とは、アントラキノン類を反応媒体とする製造法である。アントラキノン類は適当な有機溶媒に溶解して使用される。有機溶媒は単独または混合物として用いられるが、通常は極性溶媒と非極性溶媒の2種類の混合物が用いられる。アントラキノン類を有機溶媒に溶かして調製した溶液は作動溶液と呼ばれる。 The anthraquinone method, which is the main production method of hydrogen peroxide that is industrially used, is a production method using anthraquinones as a reaction medium. Anthraquinones are used after being dissolved in a suitable organic solvent. The organic solvent is used alone or as a mixture, but usually two kinds of mixtures of a polar solvent and a nonpolar solvent are used. A solution prepared by dissolving anthraquinones in an organic solvent is called a working solution.

アントラキノン法では還元工程において、上記の作動溶液中のアントラキノン類を触媒の存在下に水素化し、アントラヒドロキノン類が生成する。次いで酸化工程においてそのアントラヒドロキノン類を空気もしくは酸素を含んだ気体によって酸化することによりアントラキノン類に戻し、同時に過酸化水素を生成する。作動溶液中に生成した過酸化水素は通常水を用いて抽出され、作動溶液から分離される。過酸化水素が抽出された作動溶液は再び還元工程に戻され、循環プロセスを形成する。このプロセスは実質的に水素と空気から過酸化水素を製造するものであり、極めて効率的、且つ有効なプロセスである。既にこの循環プロセスを用いて過酸化水素が工業的に製造されている。 In the anthraquinone method, in the reduction step, the anthraquinones in the working solution are hydrogenated in the presence of a catalyst to produce anthrahydroquinones. Next, in the oxidation step, the anthrahydroquinones are converted back to anthraquinones by being oxidized with a gas containing air or oxygen, and at the same time, hydrogen peroxide is generated. The hydrogen peroxide produced in the working solution is usually extracted with water and separated from the working solution. The working solution from which hydrogen peroxide has been extracted is returned again to the reduction step, forming a circulation process. This process substantially produces hydrogen peroxide from hydrogen and air, and is a very efficient and effective process. Hydrogen peroxide has already been industrially produced using this circulation process.

作動溶液中の有機溶媒も水素化・酸化の循環を繰り返すうちに変質し、副生成物として蓄積する。この副生成物は主として作動溶液中の極性溶媒である高級アルコールが脱水素され、ケトン体となったものである。ケトン体を多く含有する作動溶液はその中に取り込める所望の水分含有量を低下させる。その結果、触媒活性の悪化を招き、安全・安定運転への障害の原因となりうる。 The organic solvent in the working solution also changes as it repeats the hydrogenation / oxidation cycle and accumulates as a by-product. This by-product is mainly obtained by dehydrogenating a higher alcohol, which is a polar solvent in the working solution, into a ketone body. A working solution containing a high amount of ketone bodies reduces the desired moisture content that can be incorporated therein. As a result, the catalyst activity is deteriorated, which may cause an obstacle to safe and stable operation.

触媒活性の悪化を防ぐためにも、過酸化水素製造初期から作動溶液中のケトン体含有量を少なく抑える必要があり、ケトン体含有量の少ないDIBCの効率的な製造法の確立が望まれる。 In order to prevent the deterioration of the catalyst activity, it is necessary to reduce the ketone body content in the working solution from the beginning of the hydrogen peroxide production, and establishment of an efficient method for producing DIBC with a low ketone body content is desired.

DIBCの製造方法として、例えば特許文献1では、CuO、ZnO、Al、KOの混合物からなる触媒を用いて、DIBKを水素化する方法が記載されている。 As a method for producing DIBC, for example, Patent Document 1 describes a method of hydrogenating DIBK using a catalyst composed of a mixture of CuO, ZnO, Al 2 O 3 , and K 2 O.

しかしながら、特許文献1の方法では、DIBKの水素化により生成するアルコール体がDIBCだけでなく、主鎖の炭素数は同じであるが構造異性体の、6,6−ジメチル−4−ヘプタノールも生成する。さらには、DIBKの変換効率も悪く、24.6%のケトン体が残存する。   However, in the method of Patent Document 1, not only DIBC is produced by hydrogenation of DIBK, but also 6,6-dimethyl-4-heptanol, which is a structural isomer with the same main chain carbon number, is produced. To do. Furthermore, the conversion efficiency of DIBK is also poor, and 24.6% ketone body remains.

中国特許第1325837号明細書Chinese Patent No. 1325837

以上のように、提案されている技術ではアントラキノン法の触媒活性低下に寄与するDIBKを、水素化により主鎖の炭素数が等しいアルコール体へ変換可能であるものの、アントラキノン法による過酸化水素の製造に適したケトン体含有量の少ないDIBCの製造法に関する提案はない。
本発明の目的は、DIBKの水素化による、アントラキノン法による過酸化水素の製造に適したケトン体含有量の少ないDIBCを効率的に製造するための製造法を提供するものである。
As described above, although the proposed technology can convert DIBK, which contributes to a decrease in the catalytic activity of the anthraquinone method, into an alcohol form having the same number of carbon atoms in the main chain by hydrogenation, it can produce hydrogen peroxide by the anthraquinone method. There is no proposal regarding the manufacturing method of DIBC with a low ketone body content suitable for the above.
An object of the present invention is to provide a production method for efficiently producing DIBC having a low ketone body content and suitable for production of hydrogen peroxide by an anthraquinone method by hydrogenation of DIBK.

本発明者らは鋭意検討した結果、特定の金属触媒の存在下、DIBKを、加圧下、130℃〜200℃で水素化した後に水素化圧力を保持したまま降温し、低温での水素化を追加することにより、DIBKの変換効率が向上し、ケトン体含有量の少ないDIBCが得られることを見出し、本発明に至った。   As a result of intensive studies, the inventors of the present invention dilute DIBK at 130 ° C. to 200 ° C. under pressure in the presence of a specific metal catalyst, and then lower the temperature while maintaining the hydrogenation pressure to perform hydrogenation at a low temperature. By adding, it discovered that the conversion efficiency of DIBK improved and DIBC with little ketone body content was obtained, and resulted in this invention.

即ち本発明は、以下のとおりである。[1]以下の工程1および2を有するジイソブチルカルビノールの製造法。
工程1:ジイソブチルケトンを、銅、亜鉛、クロム、パラジウム、ロジウム、ルテニウムおよび白金から選ばれる1種類以上の金属原子を含む触媒の存在下で、130℃〜200℃の温度、0.1MPa以上の圧力にて水素化する
工程2:工程1終了後、圧力を0.1MPa以上に保持したまま120℃以下まで降温する
[2]工程2において、圧力を0.1MPa以上に保持したまま70℃以下まで降温する[1]記載の製造法。
[3]前記触媒が、銅およびクロムから選ばれる1種類以上の金属原子を含む触媒である[1]又は[2]記載の製造法。
[4]前記触媒の添加量が、ジイソブチルケトンの質量に対して0.05質量%〜10質量%である[1]〜[3]のいずれか一項に記載の製造法。
[5]工程1における水素化温度が140℃〜170℃である[1]〜[4]のいずれか一項に記載の製造法。
That is, the present invention is as follows. [1] A process for producing diisobutyl carbinol having the following steps 1 and 2.
Step 1: Diisobutylketone is present in the presence of a catalyst containing one or more metal atoms selected from copper, zinc, chromium, palladium, rhodium, ruthenium and platinum, at a temperature of 130 ° C. to 200 ° C., at least 0.1 MPa. Step 2 of hydrogenating with pressure: After step 1, the temperature is lowered to 120 ° C. or lower while maintaining the pressure at 0.1 MPa or higher. [2] In Step 2, 70 ° C. or lower with the pressure maintained at 0.1 MPa or higher. [1] The production method according to [1].
[3] The production method according to [1] or [2], wherein the catalyst is a catalyst containing one or more metal atoms selected from copper and chromium.
[4] The production method according to any one of [1] to [3], wherein the addition amount of the catalyst is 0.05% by mass to 10% by mass with respect to the mass of diisobutyl ketone.
[5] The production method according to any one of [1] to [4], wherein the hydrogenation temperature in Step 1 is 140 ° C to 170 ° C.

本発明によれば、DIBKの水素化により、アントラキノン法による過酸化水素の製造に適したケトン体含有量の少ないDIBCを製造することができる。 According to the present invention, DIBC with a low ketone body content suitable for the production of hydrogen peroxide by the anthraquinone method can be produced by hydrogenating DIBK.

以下に本発明を詳細に説明する。以下の実施の形態は本発明を説明するための例示であり、本発明をこの実施の形態にのみ限定する趣旨ではない。本発明はその要旨を逸脱しない限り種々の形態で実施をする事ができる。   The present invention is described in detail below. The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to this embodiment. The present invention can be implemented in various forms without departing from the gist thereof.

<工程1>
本発明における水素化は、反応に不活性な溶媒、例えば、アルコールや脂肪族炭化水素の存在下で行うことができるが、他成分混入の懸念や蒸留分離操作を必要とせず経済的である等の観点から原料であるDIBKを自己溶媒として行うと好ましい。この場合、DIBKの転化率が高い、実質的に無溶媒での反応とすることもできる。
<Step 1>
The hydrogenation in the present invention can be carried out in the presence of a solvent inert to the reaction, for example, an alcohol or an aliphatic hydrocarbon, but is economical because it does not require the concern of mixing with other components or a distillation separation operation. From this point of view, it is preferable to use DIBK as a raw material as an autosolvent. In this case, the reaction can be made substantially solvent-free with a high conversion rate of DIBK.

本発明は、DIBKを水素化触媒の存在下に水素化する。該触媒としては、銅、亜鉛、クロム、パラジウム、ロジウム、ルテニウムおよび白金から選ばれる1種類以上の金属原子を含む触媒が好ましく、特にDIBCを高い選択率で得る観点から、銅およびクロムから選ばれる1種類以上の金属原子を含む触媒がより好ましい。
また、該金属原子は、通常金属の状態であるが、反応条件下で容易に還元されて金属となるような酸化物の形態でもよい。また、これらの金属原子は担体に担持された形であっても良い。
The present invention hydrogenates DIBK in the presence of a hydrogenation catalyst. The catalyst is preferably a catalyst containing one or more metal atoms selected from copper, zinc, chromium, palladium, rhodium, ruthenium and platinum, and particularly selected from copper and chromium from the viewpoint of obtaining DIBC with high selectivity. More preferred are catalysts containing one or more metal atoms.
The metal atom is usually in a metal state, but may be in the form of an oxide that is easily reduced to a metal under reaction conditions. These metal atoms may be supported on a carrier.

本発明における水素化では、装置としては一般的に用いられる加圧可能な反応設備が使用でき、特に制限は無い。例えば、バッチ反応装置、連続反応装置などが挙げられるが、バッチ反応装置が好ましい。ただし、原料成分、水素化触媒と水素が十分に混合される方が水素化反応に有利である。混合手段には一般に知られる方法を用いる事ができる。例えば、撹拌、振とう、水素のバブリング及び反応液の循環などがあるが、これらに限定されるわけではなく、原料成分、水素化触媒と水素が効率よく接触できる方法であればよい。 In the hydrogenation according to the present invention, a generally pressurizable reaction facility can be used as the apparatus, and there is no particular limitation. For example, a batch reaction apparatus, a continuous reaction apparatus, etc. are mentioned, but a batch reaction apparatus is preferable. However, it is advantageous for the hydrogenation reaction that the raw material component, the hydrogenation catalyst and hydrogen are sufficiently mixed. A generally known method can be used as the mixing means. Examples include stirring, shaking, hydrogen bubbling, and reaction liquid circulation. However, the method is not limited to these, and any method can be used as long as the raw material components, the hydrogenation catalyst, and hydrogen can be efficiently contacted.

本発明において、触媒は、DIBKに対する金属原子量として0.05〜10質量%が好ましく、さらに好ましくは0.1〜8質量%であり、特に好ましくは0.2〜5質量%である。
水素化温度は130℃〜200℃が好ましく、さらに好ましくは140℃〜170℃の範囲である。水素化圧力は0.1MPa以上、好ましくは0.8MPa以上、さらに好ましくは2.1MPa以上であり、特に好ましくは3.0MPa以上である。上限圧力は水素化装置に依存するが、10MPa以下が安全上好ましい。
水素化反応が充分に進んだ時点、例えばバッチ反応において水素吸収が停止した時点(反応装置に供給される水素の流量が水素化反応時の最大水素流量の100分の1を下回った時点)で水素化反応終了(注:降温操作中も反応が進行するので厳密には反応終了ではない)とし、降温操作を行う。
In this invention, 0.05-10 mass% is preferable as a metal atomic weight with respect to DIBK in this invention, More preferably, it is 0.1-8 mass%, Most preferably, it is 0.2-5 mass%.
The hydrogenation temperature is preferably 130 ° C to 200 ° C, more preferably 140 ° C to 170 ° C. The hydrogenation pressure is 0.1 MPa or more, preferably 0.8 MPa or more, more preferably 2.1 MPa or more, and particularly preferably 3.0 MPa or more. The upper limit pressure depends on the hydrogenation apparatus, but 10 MPa or less is preferable for safety.
At the time when the hydrogenation reaction is sufficiently advanced, for example, when the hydrogen absorption is stopped in the batch reaction (when the flow rate of hydrogen supplied to the reactor falls below 1/100 of the maximum hydrogen flow rate during the hydrogenation reaction). End the hydrogenation reaction (Note: Strictly speaking, the reaction proceeds during the temperature lowering operation, so the reaction does not end).

<工程2>
本発明においては、水素化反応終了後、DIBKの変換効率向上のため圧力を水素化反応時の圧力範囲に保持したまま降温操作を行う。降温操作後の到達温度としては120℃以下が好ましく、さらに好ましくは90℃以下であり、特に好ましくは70℃以下である。水素吸収が停止した後に、落圧してから降温操作を行い反応液の抜き出しを実施した場合、または水素吸収が停止した後に降温操作を行わず、水素化温度のまま反応液の抜き出しを実施した場合、ケトン体が4%以上残存してしまう。水素吸収停止後に降温操作を行わず、前記水素化反応温度での水素化を長時間継続しても、ケトン体残存率の低下速度は極めて遅く、効率的ではない。
降温方法としては、ジャケットへの冷媒流通、反応液の熱交換器を用いた冷却、自然放冷等どの方法を用いても良いが、ジャケットへの冷媒流通が簡便かつ効率的であり好ましい。
<Process 2>
In the present invention, after the hydrogenation reaction is completed, the temperature lowering operation is performed while maintaining the pressure in the pressure range during the hydrogenation reaction in order to improve the conversion efficiency of DIBK. The ultimate temperature after the temperature lowering operation is preferably 120 ° C. or less, more preferably 90 ° C. or less, and particularly preferably 70 ° C. or less. After the hydrogen absorption has stopped, when the pressure is lowered and then the temperature is lowered and the reaction solution is withdrawn, or after the hydrogen absorption has stopped, the temperature is not lowered and the reaction solution is withdrawn at the hydrogenation temperature. 4% or more of the ketone body remains. Even if the temperature lowering operation is not performed after the hydrogen absorption is stopped and the hydrogenation at the hydrogenation reaction temperature is continued for a long time, the rate of decrease of the ketone body residual rate is extremely slow and not efficient.
As a temperature lowering method, any method such as refrigerant circulation to the jacket, cooling using a reaction solution heat exchanger, natural cooling, etc. may be used. However, refrigerant circulation to the jacket is preferable because it is simple and efficient.

本発明において、水素化反応・降温操作を終えて得られる生成物はケトン体残存率(詳細は実施例に記載)が4%未満と少なく、またDIBCの選択率も高いため、過酸化水素製造用の溶媒として好適である。得られたDIBCは反応器から取り出され、水素化触媒と分離される。分離手段には一般的に知られる方法を用いることができ、例えば、ろ紙、焼結金属フィルター、金属繊維フィルター、樹脂製フィルター、遠心分離などが挙げられるが、形状を含めてこれらに限定されるわけではなく、DIBCと水素化触媒が効率よく分離できればよい。 In the present invention, the product obtained after finishing the hydrogenation reaction and the temperature lowering operation has a ketone body residual ratio (details are described in the examples) of less than 4%, and the selectivity of DIBC is high. It is suitable as a solvent for use. The resulting DIBC is removed from the reactor and separated from the hydrogenation catalyst. A generally known method can be used as the separation means, and examples thereof include filter paper, sintered metal filter, metal fiber filter, resin filter, and centrifugal separation, but are limited to these including shape. However, it is only necessary that DIBC and the hydrogenation catalyst can be separated efficiently.

以下、実施例により本発明について更に詳しく説明するが、本発明はこれらに限定されるものではない。各有機物成分は、水素化・降温終了後に得られたDIBC適量をクロロホルムに溶解し、ガスクロマトグラフィー(GC)を用いて測定した。GC分析条件を以下に示した。
機種:HP 6890
検出器:FID
カラム:キャピラリカラムDB−1(長さ30m、内径530μm、膜圧1.5μm)
カラム温度:100℃→200℃(初期時間0min、昇温速度5℃/min、ポストラン:4min)
サンプル注入量:1μL
スプリット比:11:1
本実施例においてケトン体残存率は以下の式で表わされ、降温操作後(水素化反応後)の反応液のGC分析結果から算出される。尚、GC分析で定量された4,6−ジメチル−2−ヘプタノン(以下、MIHK)はケトン体含有量に合算し、4,6−ジメチル−2−ヘプタノール(以下、MIHC)はカルビノール体含有量に合算した。
ケトン体残存率(%)=ケトン体含有量(モル)/(ケトン体含有量(モル)+カルビノール体含有量(モル))×100
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. Each organic component was measured by gas chromatography (GC) by dissolving an appropriate amount of DIBC obtained after completion of hydrogenation and cooling in chloroform. The GC analysis conditions are shown below.
Model: HP 6890
Detector: FID
Column: Capillary column DB-1 (length 30 m, inner diameter 530 μm, membrane pressure 1.5 μm)
Column temperature: 100 ° C. → 200 ° C. (initial time 0 min, heating rate 5 ° C./min, post run: 4 min)
Sample injection volume: 1 μL
Split ratio: 11: 1
In this example, the ketone body residual ratio is represented by the following formula, and is calculated from the GC analysis result of the reaction solution after the temperature lowering operation (after the hydrogenation reaction). In addition, 4,6-dimethyl-2-heptanone (hereinafter referred to as MIHK) quantified by GC analysis is added to the ketone body content, and 4,6-dimethyl-2-heptanol (hereinafter referred to as MIHC) includes carbinol body. It was added to the quantity.
Ketone body residual ratio (%) = ketone body content (mol) / (ketone body content (mol) + carbinol body content (mol)) × 100

〔実施例1〕
撹拌機、熱電対、圧力計及びマントルヒーターを備えたオートクレーブに三井化学(株)製DIBK308gと触媒として日揮触媒化成(株)製N203SD(Cu−Cr系触媒)3.1g(DIBKに対して1質量%)を添加し、2.8時間水素化反応させた。水素化温度はマントルヒーターを用いて160℃に、水素化圧力は2.1MPaに制御した。水素化反応終了後加熱を停止し、水素化圧力を保持したまま50℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は97.3%、DIBC選択率(反応したDIBK基準、以下同じ)は99.9%以上、ケトン体残存率は2.7%であった。
[Example 1]
In an autoclave equipped with a stirrer, thermocouple, pressure gauge and mantle heater, 308 g of DIBK manufactured by Mitsui Chemicals Co., Ltd. and 3.1 g of N203SD (Cu-Cr catalyst) manufactured by JGC Catalysts & Chemicals Co., Ltd. (1 for DIBK) Mass%) was added, and the hydrogenation reaction was carried out for 2.8 hours. The hydrogenation temperature was controlled to 160 ° C. using a mantle heater, and the hydrogenation pressure was controlled to 2.1 MPa. After completion of the hydrogenation reaction, the heating was stopped, the temperature was lowered to 50 ° C. while maintaining the hydrogenation pressure, the mixture was filtered with a sintered metal filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 97.3%, the DIBC selectivity (reacted DIBK standard, the same applies hereinafter) was 99.9% or more, and the ketone body residual rate was 2.7%.

〔実施例2〕
水素化圧力を3.0MPaに制御した以外は、実施例1と同様の条件でDIBKの水素化反応を2.0時間行った。降温操作後のDIBK転化率は98.0%、DIBC選択率は99.9%以上、ケトン体残存率は2.0%であった。
[Example 2]
The DIBK hydrogenation reaction was carried out for 2.0 hours under the same conditions as in Example 1 except that the hydrogenation pressure was controlled to 3.0 MPa. The DIBK conversion after the temperature lowering operation was 98.0%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.0%.

〔実施例3〕
水素化圧力を4.0MPaに制御した以外は、実施例1と同様の条件でDIBKの水素化反応を1.7時間行った。降温操作後のDIBK転化率は98.6%、DIBC選択率は99.9%以上、ケトン体残存率は1.4%であった。
Example 3
The DIBK hydrogenation reaction was carried out for 1.7 hours under the same conditions as in Example 1 except that the hydrogenation pressure was controlled to 4.0 MPa. The DIBK conversion after the temperature lowering operation was 98.6%, the DIBC selectivity was 99.9% or more, and the residual ketone body was 1.4%.

〔実施例4〕
水素化温度を150℃に制御した以外は、実施例1と同様の条件でDIBKの水素化反応を2.5時間行った。降温操作後のDIBK転化率は97.0%、DIBC選択率は99.9%以上、ケトン体残存率は2.9%であった。
Example 4
The DIBK hydrogenation reaction was carried out for 2.5 hours under the same conditions as in Example 1 except that the hydrogenation temperature was controlled at 150 ° C. The DIBK conversion after the temperature lowering operation was 97.0%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.9%.

〔実施例5〕
水素化温度を140℃に制御した以外は、実施例1と同様の条件でDIBKの水素化反応を3.3時間行った。降温操作後のDIBK転化率は96.2%、DIBC選択率は99.9%以上、ケトン体残存率は3.8%であった。
Example 5
The DIBK hydrogenation reaction was carried out for 3.3 hours under the same conditions as in Example 1 except that the hydrogenation temperature was controlled at 140 ° C. The DIBK conversion after the temperature lowering operation was 96.2%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 3.8%.

〔実施例6〕
水素化温度を170℃に制御した以外は、実施例1と同様の条件でDIBKの水素化反応を2.0時間行った。降温操作後のDIBK転化率は96.6%、DIBC選択率は99.9%以上、ケトン体残存率は3.4%であった。
Example 6
The DIBK hydrogenation reaction was carried out for 2.0 hours under the same conditions as in Example 1 except that the hydrogenation temperature was controlled at 170 ° C. The DIBK conversion after the temperature lowering operation was 96.6%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 3.4%.

〔実施例7〕
触媒の添加量をDIBKに対して0.5質量%とし、水素化圧力を4.0MPaに制御した以外は、実施例1と同様の条件でDIBKの水素化反応を2.5時間行った。降温操作後のDIBK転化率は97.5%、DIBC選択率は99.9%以上、ケトン体残存率は2.5%であった。
Example 7
The DIBK hydrogenation reaction was carried out for 2.5 hours under the same conditions as in Example 1 except that the amount of the catalyst added was 0.5 mass% with respect to DIBK and the hydrogenation pressure was controlled to 4.0 MPa. The DIBK conversion after the temperature lowering operation was 97.5%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.5%.

〔実施例8〕
撹拌機、熱伝対、圧力計を備えたオートクレーブにDIBK308gと触媒として日揮触媒化成(株)製N203SD(Cu−Cr系触媒)3.1g(DIBKに対して1質量%)を添加し、2.8時間水素化反応させた。水素化温度はマントルヒーターを用いて150℃に、水素化圧力は2.1MPaに制御した。水素化反応終了後加熱を停止し、水素化圧力を保持したまま110℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は96.7%、DIBC選択率は99.9%以上、ケトン体残存率は3.2%であった。
Example 8
To an autoclave equipped with a stirrer, a thermocouple, and a pressure gauge, 308 g of DIBK and 3.1 g of N203SD (Cu-Cr catalyst) manufactured by JGC Catalysts & Chemicals Co., Ltd. (1% by mass with respect to DIBK) as a catalyst were added. Hydrogenated for 8 hours. The hydrogenation temperature was controlled to 150 ° C. using a mantle heater, and the hydrogenation pressure was controlled to 2.1 MPa. After completion of the hydrogenation reaction, heating was stopped, the temperature was lowered to 110 ° C. while maintaining the hydrogenation pressure, filtration was performed with a metal sintered filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 96.7%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 3.2%.

〔実施例9〕
実施例8と同様の条件でDIBKの水素化反応を2.8時間行った。水素化反応終了後加熱を停止し、水素化圧力を保持したまま90℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は97.2%、DIBC選択率は99.9%以上、ケトン体残存率は2.8%であった。
Example 9
Under the same conditions as in Example 8, DIBK hydrogenation reaction was carried out for 2.8 hours. After completion of the hydrogenation reaction, heating was stopped, the temperature was lowered to 90 ° C. while maintaining the hydrogenation pressure, filtration was performed with a metal sintered filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 97.2%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.8%.

〔実施例10〕
実施例8と同様の条件でDIBKの水素化反応を2.7時間行った。水素化反応終了後加熱を停止し、水素化圧力を保持したまま70℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は97.35%、DIBC選択率は99.9%以上、ケトン体残存率は2.58%であった。
Example 10
The hydrogenation reaction of DIBK was performed for 2.7 hours under the same conditions as in Example 8. After completion of the hydrogenation reaction, the heating was stopped, the temperature was lowered to 70 ° C. while maintaining the hydrogenation pressure, the mixture was filtered with a sintered metal filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 97.35%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.58%.

〔実施例11〕
実施例8と同様の条件でDIBKの水素化反応を2.8時間行った。水素化反応終了後加熱を停止し、水素化圧力を保持したまま50℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は97.44%、DIBC選択率は99.9%以上、ケトン体残存率は2.49%であった。
Example 11
Under the same conditions as in Example 8, DIBK hydrogenation reaction was carried out for 2.8 hours. After completion of the hydrogenation reaction, the heating was stopped, the temperature was lowered to 50 ° C. while maintaining the hydrogenation pressure, the mixture was filtered with a sintered metal filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 97.44%, the DIBC selectivity was 99.9% or more, and the ketone body residual ratio was 2.49%.

〔比較例1〕
水素化温度を140℃に制御した以外は、実施例1と同様の条件でDIBKの水素化反応を3.3時間行った。水素化反応終了後、水素化圧力を保持したままの降温操作を行わずに反応液をサンプリングしGC分析を実施したところ、DIBK転化率は95.6%、ケトン体残存率は4.3%であった。
[Comparative Example 1]
The DIBK hydrogenation reaction was carried out for 3.3 hours under the same conditions as in Example 1 except that the hydrogenation temperature was controlled at 140 ° C. After completion of the hydrogenation reaction, the reaction solution was sampled without performing the temperature lowering operation while maintaining the hydrogenation pressure, and GC analysis was performed. As a result, the DIBK conversion was 95.6% and the ketone body residual rate was 4.3%. Met.

〔比較例2〕
水素化温度を170℃に制御した以外は、実施例1と同様の条件でDIBKの水素化反応を2.0時間行った。水素化反応終了後、水素化圧力を保持したままの降温操作を行わずに反応液をサンプリングしGC分析を実施したところ、DIBK転化率は93.4%、ケトン体残存率は6.4%であった。
[Comparative Example 2]
The DIBK hydrogenation reaction was carried out for 2.0 hours under the same conditions as in Example 1 except that the hydrogenation temperature was controlled at 170 ° C. After completion of the hydrogenation reaction, the reaction solution was sampled without performing the temperature lowering operation while maintaining the hydrogenation pressure, and GC analysis was performed. As a result, the DIBK conversion was 93.4% and the ketone body residual rate was 6.4%. Met.

〔比較例3〕
触媒種に日揮触媒化成(株)製SN−750(Ni系触媒)を用い、反応温度を150℃に制御した以外は、実施例1と同様の条件で水素化反応を2.0時間行った。水素の吸収量は少なく、水素化反応終了時のDIBK転化率は1.2%、ケトン体残存率は97.2%であった。降温操作後の変換効率の向上は見られなかった。
[Comparative Example 3]
The hydrogenation reaction was carried out for 2.0 hours under the same conditions as in Example 1 except that SN-750 (Ni-based catalyst) manufactured by JGC Catalysts & Chemicals Co., Ltd. was used as the catalyst type and the reaction temperature was controlled at 150 ° C. . The amount of hydrogen absorbed was small, the DIBK conversion rate at the end of the hydrogenation reaction was 1.2%, and the ketone body residual rate was 97.2%. There was no improvement in conversion efficiency after the cooling operation.

〔比較例4〕
実施例8と同様の条件でDIBKの水素化反応を2.5時間行った。水素化反応終了後加熱を停止し、水素化圧力を保持したまま125℃になるまで降温し、金属焼結フィルターにて濾過を行い、得られた反応液のGC分析をした。その結果、降温操作後のDIBK転化率は96.2%、ケトン体残存率は3.7%であった。
[Comparative Example 4]
Under the same conditions as in Example 8, the hydrogenation reaction of DIBK was performed for 2.5 hours. After completion of the hydrogenation reaction, heating was stopped, the temperature was lowered to 125 ° C. while maintaining the hydrogenation pressure, filtration was performed with a metal sintered filter, and the obtained reaction solution was subjected to GC analysis. As a result, the DIBK conversion after the temperature lowering operation was 96.2%, and the ketone body residual ratio was 3.7%.

〔比較例5〕
水素化温度を160℃に制御した以外は、実施例8と同様の条件でDIBKの水素化反応を1.7時間行った。水素化反応終了後、装置に具備した金属焼結フィルターにて反応液の一部を濾過し、GC分析に供した。水素化反応終了後も加熱を停止せず160℃制御を継続し、降温操作を行わず、水素化圧力を保持した。水素化反応終了から53分後、78分後にもサンプリングを行い、GC分析を実施した。その結果、各サンプリング時点でのDIBK転化率は、水素化反応終了時(0分)で95.0%、53分後は95.3%、78分後は95.5%、各サンプリング時点でのケトン体残存率は水素化反応終了時(0分)で4.9%、53分後は4.6%、78分後は4.4%であった。
[Comparative Example 5]
The DIBK hydrogenation reaction was carried out for 1.7 hours under the same conditions as in Example 8 except that the hydrogenation temperature was controlled at 160 ° C. After completion of the hydrogenation reaction, a part of the reaction solution was filtered with a sintered metal filter provided in the apparatus and subjected to GC analysis. Even after completion of the hydrogenation reaction, the heating was not stopped, the control at 160 ° C. was continued, the temperature lowering operation was not performed, and the hydrogenation pressure was maintained. Sampling was performed 53 minutes and 78 minutes after the completion of the hydrogenation reaction, and GC analysis was performed. As a result, the DIBK conversion rate at each sampling time was 95.0% at the end of the hydrogenation reaction (0 minutes), 95.3% after 53 minutes, 95.5% after 78 minutes, and at each sampling time. The residual ratio of the ketone body was 4.9% at the end of the hydrogenation reaction (0 minutes), 4.6% after 53 minutes, and 4.4% after 78 minutes.

〔比較例6〕
水素化温度を170℃に制御した以外は、実施例8と同様の条件でDIBKの水素化反応を2.0時間行った。水素化反応終了後、装置に具備した金属焼結フィルターにて反応液の一部を濾過し、GC分析に供した。水素化反応終了後も加熱を停止せず170℃制御を継続し、降温操作を行わず、水素化圧力を保持した。水素化反応終了から20分後、40分後、60分後にもサンプリングを行い、GC分析を実施した。その結果、各サンプリング時点でのDIBK転化率はすべて93.4%、ケトン体残存率はすべて6.4%であった。
[Comparative Example 6]
The DIBK hydrogenation reaction was carried out for 2.0 hours under the same conditions as in Example 8 except that the hydrogenation temperature was controlled at 170 ° C. After completion of the hydrogenation reaction, a part of the reaction solution was filtered with a sintered metal filter provided in the apparatus and subjected to GC analysis. Even after completion of the hydrogenation reaction, the heating was not stopped, the control at 170 ° C. was continued, the temperature lowering operation was not performed, and the hydrogenation pressure was maintained. Sampling was performed 20 minutes, 40 minutes, and 60 minutes after the completion of the hydrogenation reaction, and GC analysis was performed. As a result, the DIBK conversion rate at each sampling point was 93.4%, and the ketone body residual rate was 6.4%.

Claims (4)

以下の工程1および2を有するジイソブチルカルビノールの製造法。
工程1:ジイソブチルケトンを、銅及びクロムから選ばれる1種類以上の金属原子を含む触媒の存在下で、130℃〜200℃の温度、0.1MPa以上の圧力にて水素化する
工程2:工程1終了後、圧力を0.1MPa以上に保持したまま120℃以下まで降温す
The manufacturing method of the diisobutyl carbinol which has the following processes 1 and 2.
Step 1: Hydrogenating diisobutyl ketone at a temperature of 130 ° C. to 200 ° C. and a pressure of 0.1 MPa or more in the presence of a catalyst containing one or more metal atoms selected from copper and chromium After 1 is completed, the temperature is lowered to 120 ° C. or less while maintaining the pressure at 0.1 MPa or more.
工程2において、圧力を0.1MPa以上に保持したまま70℃以下まで降温する請求項
1記載の製造法。
The process according to claim 1, wherein in step 2, the temperature is lowered to 70 ° C or lower while the pressure is maintained at 0.1 MPa or higher.
前記触媒の添加量が、ジイソブチルケトンの質量に対して0.05質量%〜10質量%で
ある請求項1又は2に記載の製造法。
The production method according to claim 1 or 2 , wherein the addition amount of the catalyst is 0.05% by mass to 10% by mass with respect to the mass of diisobutyl ketone.
工程1における水素化温度が140℃〜170℃である請求項1〜のいずれか一項に記
載の製造法。
The process according to any one of claims 1 to 3 , wherein the hydrogenation temperature in step 1 is 140C to 170C.
JP2013261287A 2013-12-18 2013-12-18 Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone Active JP6269026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261287A JP6269026B2 (en) 2013-12-18 2013-12-18 Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261287A JP6269026B2 (en) 2013-12-18 2013-12-18 Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone

Publications (2)

Publication Number Publication Date
JP2015117199A JP2015117199A (en) 2015-06-25
JP6269026B2 true JP6269026B2 (en) 2018-01-31

Family

ID=53530264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261287A Active JP6269026B2 (en) 2013-12-18 2013-12-18 Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone

Country Status (1)

Country Link
JP (1) JP6269026B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101884928B1 (en) * 2017-03-28 2018-08-30 금호석유화학 주식회사 Metal oxide catalyst, method of preparing the catalyst, and method of alcohol using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530839A1 (en) * 1985-08-29 1987-03-05 Ruhrchemie Ag METHOD FOR PRODUCING 2-ETHYLHEXANOL
JPS62129231A (en) * 1985-11-21 1987-06-11 Chisso Corp Production of diisopropyl carbinol
JPS62167738A (en) * 1986-01-20 1987-07-24 Kao Corp 2,2,7,7-tetramethylcycloheptan-1-ol and perfume composition containing the same
JP2573687B2 (en) * 1989-04-18 1997-01-22 三菱化学株式会社 Method for producing isopropyl alcohol
JP2762591B2 (en) * 1989-07-25 1998-06-04 三菱化学株式会社 Method for producing isopropyl alcohol
JPH11335311A (en) * 1998-05-25 1999-12-07 Asahi Chem Ind Co Ltd Production of 1,4-cyclohexanedimethanol
CN1117052C (en) * 2000-05-26 2003-08-06 中国石油化工集团公司 Process for preparing alcohol by hydrogenating relative ketone
JP2002105010A (en) * 2000-09-25 2002-04-10 Kuraray Co Ltd Method for producing methallyl alcohol
DE10220799A1 (en) * 2002-05-10 2003-12-11 Oxeno Olefinchemie Gmbh Process for the preparation of C13 alcohol mixtures

Also Published As

Publication number Publication date
JP2015117199A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP0986526B1 (en) Method for oxidizing an organic compound containing at least on c-c double bond
US9663426B2 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
CN101965325B (en) Method for isomerizing olefinically unsaturated alcohols
CN100467432C (en) Synthesis method of substituted cyclohexanone and/or substituted cyclohexanol
Wang et al. Hydrogenation of phenol in scCO2 over carbon nanofiber supported Rh catalyst
EP3628653A1 (en) Circular economy methods of preparing unsaturated compounds
EP3429982B1 (en) Methods for preparing prenol and prenal from isoprenol
CN104974016B (en) The method that hydrogenation on cinnamic aldehyde prepares cinnamyl alcohol
JP2018021011A (en) Method for producing Guerbet alcohol
JP6269026B2 (en) Production of diisobutyl carbinol by hydrogenation of diisobutyl ketone
TW201500349A (en) Method for producing tetrahydrofuran
WO2016184328A1 (en) Metal complex catalyst, preparation method thereof, and use thereof in preparing d,l-menthol
EP3015446B1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
US20180057438A1 (en) Process for producing 2-ethylhexanal helping to improve yield
CN102671659B (en) Catalyst for catalyzing benzene to synthesize cyclohexene and preparation method thereof
WO2019042520A1 (en) Method for producing terpene aldehydes and terpene ketones
JP4574017B2 (en) Adjustment of norlabdane oxide
JP5785045B2 (en) Selective debenzylation method and selective hydrogenation catalyst used therefor
CN111004091A (en) Method for preparing 4,4,5,5, 5-penta-fluoropentanol
EP1440963B1 (en) Production method of ketone compound
JP7284692B2 (en) Method for producing aromatic alcohol
JP5822191B2 (en) Method for producing cyclohexanone
CN101209967A (en) Method for preparing linalyl acetate from dehydrolinalool
CN105669440B (en) Synthetic method of australora and australoric acid
JP4359679B2 (en) Method for producing 3,3,5-trimethylcyclohexanone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151