JP5785045B2 - Selective debenzylation method and selective hydrogenation catalyst used therefor - Google Patents

Selective debenzylation method and selective hydrogenation catalyst used therefor Download PDF

Info

Publication number
JP5785045B2
JP5785045B2 JP2011221848A JP2011221848A JP5785045B2 JP 5785045 B2 JP5785045 B2 JP 5785045B2 JP 2011221848 A JP2011221848 A JP 2011221848A JP 2011221848 A JP2011221848 A JP 2011221848A JP 5785045 B2 JP5785045 B2 JP 5785045B2
Authority
JP
Japan
Prior art keywords
type zeolite
group
formula
palladium
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011221848A
Other languages
Japanese (ja)
Other versions
JP2013082637A (en
Inventor
弘尚 佐治木
弘尚 佐治木
泰也 門口
泰也 門口
善成 澤間
善成 澤間
高橋 徹
徹 高橋
良 伊藤
良 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2011221848A priority Critical patent/JP5785045B2/en
Publication of JP2013082637A publication Critical patent/JP2013082637A/en
Application granted granted Critical
Publication of JP5785045B2 publication Critical patent/JP5785045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、選択的脱ベンジル方法およびこれに使用する選択水素化触媒に関し、更に詳細には、例えば、芳香族ハロゲンや、芳香族ケトン等の化合物中の保護基であるベンジル基を、ハロゲン原子や、ケトン基等の他の官能基に影響を与えることなく、高い効率で水素化し、除去することのできる選択脱ベンジル化方法およびこれに使用する選択的水素化触媒に関する。   The present invention relates to a selective debenzylation method and a selective hydrogenation catalyst used therefor. More specifically, for example, a benzyl group which is a protecting group in a compound such as an aromatic halogen or an aromatic ketone is converted to a halogen atom. Furthermore, the present invention relates to a selective debenzylation method and a selective hydrogenation catalyst used therefor, which can be hydrogenated and removed with high efficiency without affecting other functional groups such as ketone groups.

ある化学反応ステップにおいて、有機化合物中の官能基が反応に関与することが望ましくない場合、この官能基を保護基により保護し、反応に関与しないようにすることは良く行われていることである。例えば、有機化合物中のカルボキシル基は、反応性が高いため、ベンジル基により保護することが一般的である。そして、このベンジル基は、所定の反応が終了した後、元のカルボキシ基に戻すのであるが、その脱ベンジル化反応としては、水素雰囲気下で、Pd担持カーボン触媒を用いておこなう水素化反応が汎用さている。   In a chemical reaction step, if it is not desirable for a functional group in an organic compound to participate in the reaction, it is common practice to protect this functional group with a protecting group and not participate in the reaction. . For example, since a carboxyl group in an organic compound has high reactivity, it is generally protected by a benzyl group. The benzyl group is returned to the original carboxy group after completion of the predetermined reaction. As the debenzylation reaction, a hydrogenation reaction performed using a Pd-supported carbon catalyst in a hydrogen atmosphere is performed. It is general purpose.

しかし、従来知られている水素化反応では、例えば、有機化合物中の芳香環−ハロゲン原子の結合を切断するなど、水素化したくない他の官能基や結合に影響を与えてしまうという問題があった。そこで、脱保護反応だけを選択的に行うことのできる触媒反応が求められていた。   However, the conventionally known hydrogenation reaction has a problem that it affects other functional groups and bonds that are not desired to be hydrogenated, such as breaking the bond between an aromatic ring and a halogen atom in an organic compound. It was. Therefore, a catalytic reaction that can selectively perform only the deprotection reaction has been demanded.

本発明者らは既に、被毒物質による修飾により、Pd担持カーボン触媒の活性をコントロールするコンセプトでエチレンジアミン修飾Pd担持カーボン触媒(非特許文献1)や、ジフェニルスルフィド修飾Pd担持カーボン触媒(特許文献1)などを開発した。   The present inventors have already used ethylenediamine-modified Pd-supported carbon catalyst (Non-patent Document 1) and diphenyl sulfide-modified Pd-supported carbon catalyst (Patent Document 1) based on the concept of controlling the activity of the Pd-supported carbon catalyst by modification with a poisoning substance. ) Etc. were developed.

しかし上記の技術でも、ハロゲン原子を有する芳香族ハロゲン化合物や、ケトン基を有する芳香族ケトン化合物を含む有機化合物の水素化において、前者の触媒を用いた方法では、脱ベンジル反応は進行するが、同時に、芳香族ハロゲン化合物あるいは芳香族ケトン化合物を分解あるいは水素化してしまうという問題があった。また、後者の触媒を用いた方法では、芳香族ハロゲン化合物や、芳香族ケトン化合物のいずれの官能基も変換しないが、脱ベンジル反応も進行しないという問題があった。   However, even in the above technique, in the hydrogenation of an organic compound containing an aromatic halogen compound having a halogen atom or an aromatic ketone compound having a ketone group, the debenzylation reaction proceeds in the former method using a catalyst, At the same time, there is a problem that the aromatic halogen compound or aromatic ketone compound is decomposed or hydrogenated. In addition, the latter method using a catalyst has a problem that although no functional group of the aromatic halogen compound or the aromatic ketone compound is converted, the debenzylation reaction does not proceed.

更に、従来の選択的脱ベンジル反応として、芳香族ハロゲン存在下での脱ベンジル反応に関して下記の非特許文献2および非特許文献3の技術が知られている。このうち、非特許文献2では、硝酸セリウムアンモニウム((NH[Ce(NO])を用いた酸化よる4−クロロ安息香酸ベンジルの脱ベンジル反応であるが、その収率は、65%程度と低く、さらに有機化合物に対して4倍モル使用される硝酸セリウムアンモニウムは、反応により全量消費されてしまうという問題もある。 Further, as the conventional selective debenzylation reaction, the following technologies of Non-Patent Document 2 and Non-Patent Document 3 are known regarding the debenzylation reaction in the presence of an aromatic halogen. Among them, Non-Patent Document 2 is a debenzylation reaction of benzyl 4-chlorobenzoate by oxidation using cerium ammonium nitrate ((NH 4 ) 2 [Ce (NO 3 ) 6 ]). Furthermore, there is a problem that the cerium ammonium nitrate, which is as low as about 65% and is used in an amount of 4 times the molar amount of the organic compound, is consumed by the reaction.

一方、非特許文献3では、触媒として塩化ニッケル(NiCl)と水素化ホウ素ナトリウム(NaBH)を利用し、これを系中に添加し、生成するホウ酸ニッケルを用いて芳香族ハロゲン存在下での脱ベンジル反応を行なう方法が記載されている。そして、この方法による、芳香族ハロゲン2−クロロ安息香酸ベンジル、3−クロロ安息香酸ベンジル、4−クロロ安息香酸ベンジルの脱ベンジル反応の収率は、それぞれ収率83、89および87%となっており、相応の結果を得ているが、使用するNiClおよびNaBHは、有機化合物に対してそれぞれ3倍モル、9倍モルであり、多量の触媒を必要とする。しかも、新しく反応を行うためには、添加したこれらの試薬のうち少なくともNaBHは毎回新しく添加する必要があり、触媒の再利用が難しいという問題や、コスト面での問題があるため、実用的な手法ではなかった。 On the other hand, in Non-Patent Document 3, nickel chloride (NiCl 2 ) and sodium borohydride (NaBH 4 ) are used as catalysts, added to the system, and the produced nickel borate is used in the presence of aromatic halogen. A method for carrying out the debenzylation reaction at is described. The yields of debenzylation of aromatic halogen benzyl 2-chlorobenzoate, benzyl 3-chlorobenzoate and benzyl 4-chlorobenzoate by this method were 83, 89 and 87%, respectively. The NiCl 2 and NaBH 4 used are 3 times and 9 times the moles of the organic compound, respectively, and require a large amount of catalyst. Moreover, in order to perform a new reaction, it is necessary to add at least NaBH 4 among these added reagents every time, and there is a problem that it is difficult to reuse the catalyst and there is a problem in terms of cost. It was not a proper technique.

特開2007−152199号公報JP 2007-152199 A

J.Org. Chem., 1998, 63, 7990J. Org. Chem., 1998, 63, 7990 Ind.J. Chem., 1986, 25B, 433Ind.J.Chem., 1986, 25B, 433 Synthesis,2009, 117, 1127Synthesis, 2009, 117, 1127

上記の脱ベンジル化反応においてのみならず、目的とする基のみを水素化する選択的水素化および水素化分解反応は、有機化合物中の複数の官能基のうち、特定の官能基のみを水素化でき、合成ステップを減らすことができるため、医薬品、農薬やそれら中間体合成において非常に重要な反応である。   The selective hydrogenation and hydrocracking reaction, which hydrogenates only the target group as well as the above debenzylation reaction, hydrogenates only a specific functional group among a plurality of functional groups in an organic compound. It is a very important reaction in the synthesis of pharmaceuticals, agricultural chemicals and their intermediates because it can reduce the synthesis steps.

本発明は、上記実情に鑑みなされたものであり、芳香族ハロゲン化合物あるいは芳香族ケトン化合物中のハロゲン原子やアシル基を分解あるいは水素化することなく、また、これら化合物の有するハロゲンや、アシル基等の官能基も変換することなく、効率の良く、保護基であるベンジル基のみを水素化し、脱ベンジルする技術およびにこれに用いることのできる触媒の提供をその課題とするものである。   The present invention has been made in view of the above circumstances, and does not decompose or hydrogenate a halogen atom or an acyl group in an aromatic halogen compound or an aromatic ketone compound. It is an object of the present invention to provide a technique for efficiently hydrogenating and debenzylating only a benzyl group, which is a protective group, and a catalyst that can be used for this, without converting functional groups such as.

本発明者らは、芳香族ハロゲン化合物や、芳香族ケトン化合物での脱ベンジル反応について鋭意検討した結果、エステル系溶媒中、触媒活性種としてのパラジウムをベータゼオライト(NH 型など)に担持させた触媒を用いることにより、上記化合物の他の官能基を分解あるいは水素化することなく、効率良く脱ベンジル反応を行うことが可能であることを見出し、本発明を完成した。 As a result of intensive studies on debenzylation reactions with aromatic halogen compounds and aromatic ketone compounds, the present inventors have supported palladium as a catalytically active species on a beta zeolite (such as NH 4 + type) in an ester solvent. The present inventors have found that by using the prepared catalyst, it is possible to efficiently carry out the debenzylation reaction without decomposing or hydrogenating other functional groups of the above compound, and the present invention has been completed.

すなわち本発明は、式(I)

Figure 0005785045
(式中、Arは、1またはそれ以上の水素化される可能性のある置換基を有する芳香環式基または複素環式基を、Zは、単結合、−CHCH−または−CH=CH−を示し、Bnはベンジル基を示す)
で表されるカルボン酸ベンジルエステルに、エステル系溶媒中、パラジウム成分を担持したβ型ゼオライトの存在下で水素ガスを作用させ、式(II)
Figure 0005785045
(式中、Arは前記した意味を有し、Zは、単結合または−CHCH−を示す)
で表されるカルボン酸化合物とすることを特徴とする脱ベンジル化方法を提供するものである。 That is, the present invention relates to the formula (I)
Figure 0005785045
(In the formula, Ar represents an aromatic group or a heterocyclic group having one or more substituents that may be hydrogenated, Z 1 represents a single bond, —CH 2 CH 2 — or — CH = CH-, Bn represents a benzyl group)
Hydrogen gas is allowed to act on the carboxylic acid benzyl ester represented by the formula (II) in the presence of β-type zeolite carrying a palladium component in an ester solvent.
Figure 0005785045
(In the formula, Ar has the above-mentioned meaning, and Z 2 represents a single bond or —CH 2 CH 2 —).
The debenzylation method characterized by making it the carboxylic acid compound represented by these is provided.

また本発明は、前記式(I)で表されるカルボン酸ベンジルエステルに、エステル系溶媒中、パラジウム成分を担持したβ型ゼオライトの存在下で水素ガスを作用させることを特徴とする前記式(II)で表されるカルボン酸化合物の製造方法を提供するものである。   In the present invention, hydrogen gas is allowed to act on the carboxylic acid benzyl ester represented by the formula (I) in the presence of β-type zeolite carrying a palladium component in an ester solvent. A method for producing a carboxylic acid compound represented by II) is provided.

更に本発明は、パラジウム成分をβ型ゼオライトに担持せしめてなる選択水素化触媒を提供するものである。   Furthermore, the present invention provides a selective hydrogenation catalyst comprising a palladium component supported on a β-type zeolite.

本発明方法によれば、芳香族ハロゲン化合物のベンゼン環−ハロゲン原子結合や、芳香族ケトン化合物のアシル基を、切断あるいは水素化することなく、また、いずれの官能基も変換することなく、保護基であるベンジル基を選択的に部分水素化し、高い効率で芳香族カルボン酸(II)を製造することが可能である。   According to the method of the present invention, the benzene ring-halogen atom bond of an aromatic halogen compound and the acyl group of an aromatic ketone compound are protected without cleavage or hydrogenation, and without converting any functional group. It is possible to selectively hydrogenate a benzyl group, which is a group, to produce an aromatic carboxylic acid (II) with high efficiency.

また、本発明方法で触媒として使用するパラジウム成分(Pd成分)を担持したβ型ゼオライトは、リサイクル使用が可能であり、これを用いた反応は、廃棄物が少なく、コストが低減されたプロセスとなるという利点もある。   In addition, the β-type zeolite carrying the palladium component (Pd component) used as a catalyst in the method of the present invention can be recycled, and the reaction using this is a process with less waste and reduced cost. There is also an advantage of becoming.

本発明方法は、下式で示すように、式(I)で表されるカルボン酸ベンジルエステル(I)のベンジル基を水素ガスを用いて水素化、除去し、カルボキシル基を有するカルボン酸化合物(II)とすることにより行われる。   In the method of the present invention, as shown by the following formula, the benzyl group of the carboxylic acid benzyl ester (I) represented by the formula (I) is hydrogenated and removed using hydrogen gas, and a carboxylic acid compound having a carboxyl group ( II).

Figure 0005785045
Figure 0005785045

上記式中、Arで示される、1またはそれ以上の水素化される可能性のある置換基を有する芳香環式基または複素環式基としては、塩素、臭素、よう素等のハロゲン原子や、アセチル基、プロピオニル基、ベンゾイル基、ナフトイル基等のアシル基を有する、フェニル基、ナフチル基、ビフェニル基、アントラニル基等の芳香環式基や、ピリジル基、ピリミジル基、インドリル基、ベンズイミダゾリル基、キノリル基、ベンゾフラニル基、インダニル基、 インデニル基、ジベンゾフラニル基またはメチレンジオキシフェニル基等の複素環式基が挙げられる。   In the above formula, an aromatic group or heterocyclic group having one or more substituents which may be hydrogenated represented by Ar includes halogen atoms such as chlorine, bromine and iodine, An acyl group having an acyl group such as acetyl group, propionyl group, benzoyl group, naphthoyl group, aromatic group such as phenyl group, naphthyl group, biphenyl group, anthranyl group, pyridyl group, pyrimidyl group, indolyl group, benzimidazolyl group, Examples thereof include heterocyclic groups such as quinolyl group, benzofuranyl group, indanyl group, indenyl group, dibenzofuranyl group, and methylenedioxyphenyl group.

また、本発明方法は、基本的に選択的にベンジル基を水素化し、これを除去するが、一般の水素化反応では水素化され、分解あるいは構造変化が予想される置換基、例えば、ハロゲン原子、アセチル基、プロピオニル基、ベンゾイル基、ナフトイル基等の置換基には、何ら影響を与えない。しかし、側鎖部分に存在する二重結合(−CH=CH−)は、これも水素化する。   Further, the method of the present invention basically selectively hydrogenates and removes a benzyl group, but in a general hydrogenation reaction, it is hydrogenated and is expected to be decomposed or structurally changed, for example, a halogen atom. , Substituents such as acetyl group, propionyl group, benzoyl group and naphthoyl group are not affected at all. However, the double bond (—CH═CH—) present in the side chain moiety also hydrogenates.

本発明の脱ベンジル化反応において使用される溶媒は、エステル系溶媒であり、その例としては、低級アルコールと低級カルボン酸のエステル反応により得られる、例えば、酢酸エチルや酢酸ブチル等が挙げられる。このものは高純度のものが望ましいが、コスト低減を目的として、メタノール、エタノール、イソプロパノール等の溶媒との混合溶媒を使用してもよい。   The solvent used in the debenzylation reaction of the present invention is an ester solvent, and examples thereof include ethyl acetate and butyl acetate obtained by ester reaction of a lower alcohol and a lower carboxylic acid. This is preferably a high-purity one, but a mixed solvent with a solvent such as methanol, ethanol or isopropanol may be used for the purpose of cost reduction.

また、本発明の脱ベンジル化反応において、触媒として用いるPd成分を担持したβ型ゼオライト(Pd担持βゼオライト)は、Pd成分を活性金属とし、このPdを担持するための担体としてβ型ゼオライトを使用したものである。このPd成分としては、金属としてのPdのほか、酸化パラジウムとして担持されていても良いが、良好な水素化分解活性を示すためには金属の状態であることが好ましい。   Further, in the debenzylation reaction of the present invention, the β-type zeolite (Pd-supported β-zeolite) carrying the Pd component used as a catalyst has the Pd component as an active metal, and the β-type zeolite is used as a carrier for carrying this Pd. It is what was used. The Pd component may be supported as palladium oxide in addition to Pd as a metal, but is preferably in a metal state in order to exhibit good hydrocracking activity.

一方触媒の担体であるβ型ゼオライトは、単位胞組成Na[AlSi64−n128]・xHOで表される正方晶系の合成ゼオライトであり、c軸方向に正方形に近い12員環(0.55×0.55nm)断面のジグザグな細孔を、a軸およびb軸方向に12員環(0.76×0.64nm)で直線状の細孔を有している。このβ型ゼオライトでは、上記の細孔が交差して3次元細孔を形成し、細孔の交差点には大きな空間を有している。なお、合成ゼオライトは、通常、Na型として得られるが、本発明に使用されるβ型ゼオライトは、特に限定されるものでは無く各種遷移金属や希土類の少なくとも一つでイオン交換したβ型ゼオライトを用いても良いが、Na型をイオン交換したNH型が好ましい。Na型ゼオライトをイオン交換し、NH型のゼオライトとするには、液相中、既知の方法により実施すればよい。 On the other hand, the β-type zeolite which is a catalyst carrier is a tetragonal synthetic zeolite represented by a unit cell composition Na n [Al n Si 64 -n O 128 ] · xH 2 O and is nearly square in the c-axis direction. Zigzag pores with a 12-membered ring (0.55 × 0.55 nm) cross section and linear pores with 12-membered rings (0.76 × 0.64 nm) in the a-axis and b-axis directions . In this β-type zeolite, the above-mentioned pores intersect to form a three-dimensional pore, and there is a large space at the intersection of the pores. Synthetic zeolite is usually obtained as Na-type, but the β-type zeolite used in the present invention is not particularly limited, and β-type zeolite ion-exchanged with at least one of various transition metals and rare earths is used. Although NH 4 type obtained by ion-exchange of Na type may be used, it is preferable. In order to ion-exchange Na type zeolite to make NH 4 type zeolite, it may be carried out in a liquid phase by a known method.

本発明で触媒として用いるPd担持β型ゼオライトにおいて、β型ゼオライトあたりに担持されるPd成分量は、Pd金属換算で0.01〜20wt%であることが好ましく、1〜10wt%であることがより好ましい。このPd成分量が少なすぎると反応速度が遅くなり、反応を完結させるためには多量の触媒が必要となる。また、Pd成分量が多すぎるとPd成分の分散が悪くなり、Pd単位重量当たりの活性が下がるため、高価なPdが非効率的に使用されることになる。   In the Pd-supported β-type zeolite used as a catalyst in the present invention, the amount of the Pd component supported per β-type zeolite is preferably 0.01 to 20 wt% in terms of Pd metal, and preferably 1 to 10 wt%. More preferred. If the amount of the Pd component is too small, the reaction rate becomes slow, and a large amount of catalyst is required to complete the reaction. If the amount of the Pd component is too large, the dispersion of the Pd component is deteriorated and the activity per unit weight of Pd is lowered, so that expensive Pd is used inefficiently.

本発明に使用されるPd担持β型ゼオライトの製造方法は特に限定されないが、その製造方法の例として、次の方法を挙げることができる。すなわち、不活性ガスとしてアルゴン(Ar)を満たしたフラスコに酢酸パラジウムを量り取り、メタノールに溶解する。この溶液中にNH型ベータゼオライト(Si/Alモル比=25)を、金属パラジウムの含有量が5質量%になるように添加し、アルゴン雰囲気下に室温で、上澄みが透明になるまで攪拌を続ける。そして、得られた黒色の粉末を吸引濾過した後、メタノール及び水で洗浄し、次いでデシケータ中で減圧下、室温にて乾燥することにより得られる。 The method for producing the Pd-supported β-type zeolite used in the present invention is not particularly limited, but examples of the production method include the following methods. That is, palladium acetate is weighed into a flask filled with argon (Ar) as an inert gas and dissolved in methanol. NH 4 type beta zeolite (Si / Al molar ratio = 25) was added to this solution so that the content of metallic palladium was 5% by mass, and stirred at room temperature under an argon atmosphere until the supernatant became transparent. Continue. The obtained black powder is filtered by suction, washed with methanol and water, and then dried at room temperature under reduced pressure in a desiccator.

本発明の脱ベンジル化方法では、還元成分として水素ガスが使用される。この水素ガスは、上記したエステル系溶媒、Pd担持β型ゼオライトおよびカルボン酸ベンジルエステル(I)の混合物中に供給される。より具体的には、密閉容器内の反応液上部の空間に水素を満たすことにより、水素ガスが供給される。   In the debenzylation method of the present invention, hydrogen gas is used as a reducing component. This hydrogen gas is supplied into the mixture of the ester solvent, the Pd-supported β-type zeolite, and the carboxylic acid benzyl ester (I). More specifically, hydrogen gas is supplied by filling the space above the reaction solution in the sealed container with hydrogen.

本発明方法における、水素ガス、エステル系溶媒およびカルボン酸ベンジルエステル(I)の量は特に限定されないが、水素ガスの供給量はカルボン酸ベンジルエステル(I)のベンジル基を選択的水素化するのに必要な理論量以上であることが必要であり、理論量対し等倍〜1000倍モル程度、一般には、1倍〜10倍モル程度供給されることが好ましい。また、溶媒であるエステル系溶媒は、基質であるカルボン酸ベンジルエステル(I)に対し、その重量で0.1〜100倍添加することが好ましく、カルボン酸ベンジルエステル(I)が完全に溶解している状態となることが望ましい。   In the method of the present invention, the amounts of hydrogen gas, ester solvent and carboxylic acid benzyl ester (I) are not particularly limited, but the supply amount of hydrogen gas selectively hydrogenates the benzyl group of carboxylic acid benzyl ester (I). It is necessary that the amount be more than the theoretical amount necessary for the above, and it is preferable to supply about 1 to 1000 times mol, and generally about 1 to 10 times mol for the theoretical amount. The ester solvent as a solvent is preferably added 0.1 to 100 times by weight with respect to the carboxylic acid benzyl ester (I) as the substrate, and the carboxylic acid benzyl ester (I) is completely dissolved. It is desirable to be in the state.

本発明方法における、選択的水素化反応の条件は特に限定されないが、その反応温度は、0〜200℃であることが好ましく、10〜100℃であることがより好ましい。また、水素圧力は、0.01〜10MPaであることが好ましく、0.1〜1MPaであることがより好ましい。反応温度が低いあるいは水素分圧が低い場合には、反応の進行が遅く、原料の転化が十分に進まない。また、反応温度が高いあるいは水素分圧が高い場合には、十分な選択性が得られない。   The conditions for the selective hydrogenation reaction in the method of the present invention are not particularly limited, but the reaction temperature is preferably 0 to 200 ° C, more preferably 10 to 100 ° C. The hydrogen pressure is preferably 0.01 to 10 MPa, and more preferably 0.1 to 1 MPa. When the reaction temperature is low or the hydrogen partial pressure is low, the progress of the reaction is slow and the conversion of the raw materials does not proceed sufficiently. Further, when the reaction temperature is high or the hydrogen partial pressure is high, sufficient selectivity cannot be obtained.

以下、実施例および参考例により、本発明方法をさらに詳細に説明するが、本発明はこれら実施例に何ら制約されるものではない。   Hereinafter, the method of the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited to these Examples.

参 考 例 1
選択的接触還元反応用パラジウム触媒の製造は以下のようにして実施した。すなわち、NH型ベータゼオライト(Si/Alモル比=25、エヌ・イー ケムキャット(株)製)を用意した。そして、不活性ガスとしてアルゴンを満たしたフラスコに、酢酸パラジウムを527mg(2.35mmol)を量り取り、メタノール50mlに溶解した。この溶液中にNH型ベータゼオライトを、金属パラジウムの含有量が5質量%になるように5g添加し、アルゴン雰囲気下に室温で、上澄みが透明になるまで6日間攪拌を続けた。そして、得られた黒色の粉末を吸引濾過した後、メタノール(30mlずつ2回)及び水(30mlずつ2回)の順に洗浄し、次いでデシケーター中で減圧下、室温にて3日間乾燥した。
Reference example 1
The production of a palladium catalyst for selective catalytic reduction was carried out as follows. That is, NH 4 type beta zeolite (Si / Al molar ratio = 25, manufactured by N.E. Chemcat Co., Ltd.) was prepared. Then, 527 mg (2.35 mmol) of palladium acetate was weighed into a flask filled with argon as an inert gas and dissolved in 50 ml of methanol. To this solution, 5 g of NH 4 type beta zeolite was added so that the content of metal palladium was 5% by mass, and stirring was continued for 6 days at room temperature under an argon atmosphere until the supernatant became transparent. The resulting black powder was filtered with suction, washed with methanol (twice 30 ml each) and water (twice 30 ml each) in that order, and then dried for 3 days at room temperature under reduced pressure in a desiccator.

実 施 例 1

Figure 0005785045
Example 1
Figure 0005785045

基質としての4−クロロ安息香酸ベンジル123.3mg(0.5mmol)および還元触媒としての、参考例1で得た5%Pd/ベータゼオライト 10.6mg(基質に対して金属パラジウムとして1mol%)を試験管に取り、これに酢酸エチル1mLを加え懸濁させた後、水素ガスを満たした風船を取り付けた針を試験管上部のセプタムに刺し、セプタムに刺した別の針から系内のガスを抜く操作を3回繰り返し、系内を水素ガスで置換した後、試験管内を水素ガスで満たした。   123.3 mg (0.5 mmol) of benzyl 4-chlorobenzoate as a substrate and 10.6 mg of 5% Pd / beta zeolite obtained in Reference Example 1 (1 mol% as metal palladium with respect to the substrate) as a reduction catalyst. After taking 1 mL of ethyl acetate and suspending it in a test tube, stab a needle attached with a balloon filled with hydrogen gas into the septum at the top of the test tube, and gas inside the system from another needle stabbed in the septum. The removing operation was repeated three times, and the system was replaced with hydrogen gas, and then the test tube was filled with hydrogen gas.

基質としての4−クロロ安息香酸ベンジル123.3mg(0.5mmol)および還元触媒としての5%Pd/ベータゼオライト10.6mg(基質に対して金属パラジウムとして1mol%)を試験管に取り、これに酢酸エチル1mLを加え懸濁させた後、水素ガスを満たした風船を取り付けた針を試験管上部のセプタムに刺し、セプタムに刺した別の針から系内のガスを抜く操作を3回繰り返し、系内を水素ガスで置換した後、試験管内を水素ガスで満たした。   Take 123.3 mg (0.5 mmol) of benzyl 4-chlorobenzoate as a substrate and 10.6 mg of 5% Pd / beta zeolite (1 mol% as metal palladium with respect to the substrate) as a reduction catalyst in a test tube. After suspending by adding 1 mL of ethyl acetate, the needle attached with a balloon filled with hydrogen gas was inserted into the septum at the top of the test tube, and the operation of removing the gas from the system from another needle inserted into the septum was repeated three times. After replacing the system with hydrogen gas, the test tube was filled with hydrogen gas.

60℃で24時間激しく攪拌した後、得られた反応液をメンブランフィルター(Millipore製、Millex−LH、孔径0.45μm)を用いてろ過し、更にメンブランフィルターを酢酸エチル(15mL)で洗浄した。得られたろ液を濃縮し、得られた濃縮物をH−NMRにかけた。 After vigorously stirring at 60 ° C. for 24 hours, the obtained reaction solution was filtered using a membrane filter (Millipore, Millex-LH, pore size 0.45 μm), and the membrane filter was further washed with ethyl acetate (15 mL). The obtained filtrate was concentrated, and the obtained concentrate was subjected to 1 H-NMR.

得られたスペクトルから、原料の回収率ならびに、生成物として得られた4−クロロ安息香酸(ベンジルエステルが水素化分解された)の収率を算出したところ、原料の転化率は100%で、4−クロロ安息香酸の収率は100%(77.6mg)であった。   From the obtained spectrum, the yield of 4-chlorobenzoic acid (benzyl ester was hydrocracked) obtained as a product and the recovery rate of the raw material was calculated. The conversion rate of the raw material was 100%. The yield of 4-chlorobenzoic acid was 100% (77.6 mg).

実 施 例 2

Figure 0005785045
Example 2
Figure 0005785045

実施例1において、4−クロロ安息香酸ベンジルに代えて4−クロロけい皮酸ベンジルを136.4mg(0.5mmol)、5%Pd/ベータゼオライトを 21.2mg(基質に対して金属パラジウムとして2mol%)を使用し、40℃で1.5時間反応を行なう以外は実施例1と同様に、反応、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は100%で、3−(4−クロロフェニル)プロピオン酸が収率98%(89.5mgで得られた。   In Example 1, 136.4 mg (0.5 mmol) of benzyl 4-chlorocinnamate instead of benzyl 4-chlorobenzoate, 21.2 mg of 5% Pd / beta zeolite (2 mol as metal palladium with respect to the substrate) %) Was used, and the reaction, post-reaction treatment and product analysis were carried out in the same manner as in Example 1 except that the reaction was carried out at 40 ° C. for 1.5 hours. As a result, the conversion rate of the raw material was 100%, and 3- (4-chlorophenyl) propionic acid was obtained in a yield of 98% (89.5 mg).

実 施 例 3

Figure 0005785045
Example 3
Figure 0005785045

実施例1において、4−クロロ安息香酸ベンジルに代えて4−アセチル安息香酸ベンジルを126.6mg(0.5mmol)、5%Pd/ベータゼオライトを21.2mg(基質に対して金属パラジウムとして2mol%)を使用し、60℃で7時間反応を行う以外は実施例1と同様に、反応、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は100%であり、4−アセチル安息香酸が収率100%(81.6mg)で得られた。   In Example 1, 126.6 mg (0.5 mmol) of benzyl 4-acetylbenzoate instead of benzyl 4-chlorobenzoate, 21.2 mg of 5% Pd / beta zeolite (2 mol% as metal palladium with respect to the substrate) The reaction, the treatment after the reaction, and the analysis of the product were carried out in the same manner as in Example 1 except that the reaction was carried out at 60 ° C. for 7 hours. As a result, the conversion rate of the raw material was 100%, and 4-acetylbenzoic acid was obtained in a yield of 100% (81.6 mg).

実 施 例 4

Figure 0005785045
Example 4
Figure 0005785045

実施例1において、4−クロロ安息香酸ベンジルに代えて3−アセチル安息香酸ベンジル136.4mg(0.5mmol)を、5%Pd/ベータゼオライト42.4mg(基質に対して金属パラジウムとして4mol%)を使用し、40℃で22時間反応を行った以外は実施例1と同様に、反応、反応後の処理および生成物の分析を実施した。原料の転化率は100%であり、3−アセチル安息香酸が収率95%(77.5mg)で得られた。   In Example 1, 136.4 mg (0.5 mmol) of benzyl 3-acetylbenzoate instead of benzyl 4-chlorobenzoate was replaced with 42.4 mg of 5% Pd / beta zeolite (4 mol% as metal palladium with respect to the substrate). The reaction, the treatment after the reaction and the analysis of the product were carried out in the same manner as in Example 1 except that the reaction was carried out at 40 ° C. for 22 hours. The conversion rate of the raw material was 100%, and 3-acetylbenzoic acid was obtained with a yield of 95% (77.5 mg).

比 較 例 1
実施例1において、5%Pd/ベータゼオライトに代えて、5%Pd/ZSM−5(NH型、Si/Alモル比=30)10.6mg(基質に対して金属パラジウムとして1mol%)を使用した以外は、実施例1と同様に4−クロロ安息香酸ベンジルの水素化反応を行い、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は29%で、4−クロロ安息香酸が収率28%(22.5mg)で得られた。
Comparative Example 1
In Example 1, instead of 5% Pd / beta zeolite, 10.6 mg of 5% Pd / ZSM-5 (NH 4 type, Si / Al molar ratio = 30) (1 mol% as metallic palladium with respect to the substrate) A hydrogenation reaction of benzyl 4-chlorobenzoate was performed in the same manner as in Example 1 except that it was used, and treatment after the reaction and analysis of the product were performed. As a result, the conversion rate of the raw material was 29%, and 4-chlorobenzoic acid was obtained in a yield of 28% (22.5 mg).

比 較 例 2
実施例1において、溶媒として酢酸エチルに代えてメタノールを使用した以外は、実施例1と同様に4−クロロ安息香酸ベンジルの水素化反応を行い、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は100%で、4−クロロ安息香酸が収率68%(22.5mg)で得られた。また、この他に副生成物として、原料のベンジルがメチルに置き換わった4−クロロ安息香酸メチルが収率23%(19.6mg)で得られた。
Comparative Example 2
In Example 1, except that methanol was used instead of ethyl acetate as a solvent, a hydrogenation reaction of benzyl 4-chlorobenzoate was performed in the same manner as in Example 1, and the treatment after the reaction and the analysis of the product were performed. . As a result, the conversion rate of the raw material was 100%, and 4-chlorobenzoic acid was obtained with a yield of 68% (22.5 mg). In addition, as a by-product, methyl 4-chlorobenzoate in which the starting benzyl was replaced with methyl was obtained in a yield of 23% (19.6 mg).

比 較 例 3
実施例3において、5%Pd/ベータゼオライトに代えて、5%Pd/ZSM−5(NH型、Si/Alモル比=30)21.2mg(基質に対して金属パラジウムとして2mol%)を使用し、60℃で24時間反応を行った以外は実施例3と同様に4−アセチル安息香酸ベンジルの水素化反応を行い、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は99.9%以上であり、4−アセチル安息香酸が収率72%(58.8mg)で得られた。また、この他にアセチル基が水素化された副生成物4−(1−ヒドロキシエチル)安息香酸ベンジルおよび4−(1−ヒドロキシエチル)安息香酸が、それぞれ収率8%(10.3mg)および収率20%(16.6mg)で得られた。
Comparative Example 3
In Example 3, instead of 5% Pd / beta zeolite, 21.2 mg of 5% Pd / ZSM-5 (NH 4 type, Si / Al molar ratio = 30) (2 mol% as metallic palladium with respect to the substrate) The hydrogenation reaction of benzyl 4-acetylbenzoate was carried out in the same manner as in Example 3 except that the reaction was carried out at 60 ° C. for 24 hours, and the treatment after the reaction and the analysis of the product were carried out. As a result, the conversion rate of the raw material was 99.9% or more, and 4-acetylbenzoic acid was obtained in a yield of 72% (58.8 mg). In addition, by-products benzyl 4- (1-hydroxyethyl) benzoate and 4- (1-hydroxyethyl) benzoic acid, in which the acetyl group is hydrogenated, yielded 8% (10.3 mg) and The yield was 20% (16.6 mg).

比 較 例 4
実施例3において、溶媒として酢酸エチルに代えてメタノールを使用し、室温で12時間反応を行った以外は、実施例3と同様に4−アセチル安息香酸ベンジルの水素化反応を行い、反応後の処理および生成物の分析を実施した。この結果、原料の転化率は93%であり、4−アセチル安息香酸が収率53%(43.2mg)で得られた。また、この他にアセチル基が水素化された副生成物4−(1−ヒドロキシエチル)安息香酸ベンジルおよび4−(1−ヒドロキシエチル)安息香酸が、それぞれ収率27%(34.6mg)および収率13%(10.8mg)で得られた。
Comparative Example 4
In Example 3, instead of ethyl acetate as the solvent, methanol was used, and except that the reaction was performed at room temperature for 12 hours, a hydrogenation reaction of benzyl 4-acetylbenzoate was performed in the same manner as in Example 3, and after the reaction Processing and product analysis were performed. As a result, the conversion rate of the raw material was 93%, and 4-acetylbenzoic acid was obtained in a yield of 53% (43.2 mg). In addition, by-products benzyl 4- (1-hydroxyethyl) benzoate and 4- (1-hydroxyethyl) benzoic acid, in which the acetyl group is hydrogenated, yielded 27% (34.6 mg) and The yield was 13% (10.8 mg).

以上、実施例1〜4および比較例1〜4の結果をまとめて表1に示す。   The results of Examples 1 to 4 and Comparative Examples 1 to 4 are collectively shown in Table 1.

Figure 0005785045
Figure 0005785045

本発明方法によれば、芳香族ハロゲン化合物のベンゼン環−ハロゲン原子結合や、芳香族ケトン化合物のアシル基を、切断あるいは水素化することなく、また、いずれの官能基も変換することなく、保護基であるベンジル基を選択的に部分水素化し、高い効率で芳香族カルボン酸を製造することが可能である。   According to the method of the present invention, the benzene ring-halogen atom bond of an aromatic halogen compound and the acyl group of an aromatic ketone compound are protected without cleavage or hydrogenation, and without converting any functional group. It is possible to selectively hydrogenate the benzyl group, which is a group, to produce an aromatic carboxylic acid with high efficiency.

従って本発明方法は、カルボキシル基をベンジル基で保護する必要がある反応において、極めて有利に利用することができ、化学物質製造の際の収率向上や経済性の向上に役立つものである。   Therefore, the method of the present invention can be used very advantageously in a reaction in which the carboxyl group needs to be protected with a benzyl group, and is useful for improving the yield and economic efficiency in the production of chemical substances.

Claims (11)

式(I)
Figure 0005785045
(式中、Arは塩素およびアセチル基よりなる群から選ばれる置換基を有する芳香環式基または複素環式基を、Zは、単結合、−CHCH−または−CH=CH−を示し、Bnはベンジル基を示す)
で表されるカルボン酸ベンジルエステルに、エステル系溶媒中、パラジウム成分を担持したβ型ゼオライトの存在下で水素ガスを作用させ、式(II)
Figure 0005785045
(式中、Arは前記した意味を有し、Zは、単結合または−CHCH−を示す)
で表されるカルボン酸化合物とすることを特徴とする脱ベンジル化方法。
Formula (I)
Figure 0005785045
(In the formula, Ar represents an aromatic or heterocyclic group having a substituent selected from the group consisting of chlorine and acetyl group , Z 1 represents a single bond, —CH 2 CH 2 — or —CH═CH— And Bn represents a benzyl group)
Hydrogen gas is allowed to act on the carboxylic acid benzyl ester represented by the formula (II) in the presence of β-type zeolite carrying a palladium component in an ester solvent.
Figure 0005785045
(In the formula, Ar has the above-mentioned meaning, and Z 2 represents a single bond or —CH 2 CH 2 —).
A debenzylation method characterized by comprising a carboxylic acid compound represented by the formula:
エステル系溶媒が、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸イソブチル、γ−ブチロラクトンである請求項1記載の脱ベンジル化方法。   The debenzylation method according to claim 1, wherein the ester solvent is ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, or γ-butyrolactone. パラジウム成分を担持したβ型ゼオライトが、金属パラジウムを担持したβ型ゼオライトまたは金属パラジウムと酸化パラジウムを担持したβ型ゼオライトである請求項1または2記載の脱ベンジル化方法。   3. The debenzylation method according to claim 1, wherein the β-type zeolite carrying a palladium component is a β-type zeolite carrying metal palladium or a β-type zeolite carrying metal palladium and palladium oxide. β型ゼオライトが、NH型のβ型ゼオライトである請求項1ないし3の何れかの項記載の脱ベンジル化方法。 The debenzylation method according to any one of claims 1 to 3, wherein the β-type zeolite is NH 4 type β-type zeolite. 式(I)
Figure 0005785045
(式中、Arは塩素およびアセチル基よりなる群から選ばれる置換基を有する芳香環式基または複素環式基を、Zは、単結合、−CHCH−または−CH=CH−を示し、Bnはベンジル基を示す)
で表されるカルボン酸ベンジルエステルに、エステル系溶媒中、パラジウム成分を担持したβ型ゼオライトの存在下で水素ガスを作用させることを特徴とする式(II)
Figure 0005785045
(式中、Arは前記した意味を有し、Zは、単結合または−CHCH−を示す)
で表されるカルボン酸化合物の製造方法。
Formula (I)
Figure 0005785045
(In the formula, Ar represents an aromatic or heterocyclic group having a substituent selected from the group consisting of chlorine and acetyl group , Z 1 represents a single bond, —CH 2 CH 2 — or —CH═CH— And Bn represents a benzyl group)
A hydrogen gas is allowed to act on the carboxylic acid benzyl ester represented by the formula (II) in the presence of a β-type zeolite carrying a palladium component in an ester solvent.
Figure 0005785045
(In the formula, Ar has the above-mentioned meaning, and Z 2 represents a single bond or —CH 2 CH 2 —).
The manufacturing method of the carboxylic acid compound represented by these.
エステル系溶媒が、酢酸エチル、酢酸プロピル、酢酸n−ブチル、酢酸イソブチル、γ−ブチロラクトンである請求項5記載のカルボン酸化合物の製造方法。   The method for producing a carboxylic acid compound according to claim 5, wherein the ester solvent is ethyl acetate, propyl acetate, n-butyl acetate, isobutyl acetate, or γ-butyrolactone. パラジウム成分を担持したβ型ゼオライトが、金属パラジウムを担持したβ型ゼオライトまたは金属パラジウムと酸化パラジウムを担持したβ型ゼオライトである請求項5または6記載のカルボン酸化合物の製造方法。   The method for producing a carboxylic acid compound according to claim 5 or 6, wherein the β-type zeolite supporting a palladium component is β-type zeolite supporting metal palladium or β-type zeolite supporting metal palladium and palladium oxide. β型ゼオライトが、NH型のβ型ゼオライトである請求項5ないし7の何れかの項記載のカルボン酸化合物の製造方法。 The method for producing a carboxylic acid compound according to any one of claims 5 to 7, wherein the β-type zeolite is NH 4 -type β-type zeolite. パラジウム成分をβ型ゼオライトに担持せしめてなる選択水素化触媒であって、式(I
Figure 0005785045
式中、Arは塩素およびアセチル基よりなる群から選ばれる置換基を有する芳香環式基または複素環式基を、Z は、単結合、−CH CH −または−CH=CH−を示し、Bnはベンジル基を示す
で表されるカルボン酸ベンジルエステルに、エステル系溶媒中水素ガスを作用させ、式(II
Figure 0005785045
式中、Arは前記した意味を有し、Z は、単結合または−CH CH −を示す
で表されるカルボン酸化合物とする脱ベンジル化反応用選択水素化触媒
A selective hydrogenation catalyst comprising a palladium component supported on a β-type zeolite, comprising a compound of formula (I )
Figure 0005785045
(In the formula, Ar represents an aromatic or heterocyclic group having a substituent selected from the group consisting of chlorine and acetyl group, Z 1 represents a single bond, —CH 2 CH 2 — or —CH═CH— And Bn represents a benzyl group )
A hydrogen gas in an ester solvent is allowed to act on the carboxylic acid benzyl ester represented by formula (II )
Figure 0005785045
(In the formula, Ar has the above-mentioned meaning, and Z 2 represents a single bond or —CH 2 CH 2 ).
The selective hydrogenation catalyst for debenzylation reaction made into the carboxylic acid compound represented by these .
パラジウム成分を担持したβ型ゼオライトが、金属パラジウムを担持したβ型ゼオライトまたは金属パラジウムと酸化パラジウムを担持したβ型ゼオライトである請求項9記載の選択水素化触媒。   The selective hydrogenation catalyst according to claim 9, wherein the β-type zeolite supporting a palladium component is a β-type zeolite supporting metal palladium or a β-type zeolite supporting metal palladium and palladium oxide. β型ゼオライトが、NH型のβ型ゼオライトである請求項9または10記載の選択水素化触媒。

The selective hydrogenation catalyst according to claim 9 or 10, wherein the β-type zeolite is an NH 4 -type β-type zeolite.

JP2011221848A 2011-10-06 2011-10-06 Selective debenzylation method and selective hydrogenation catalyst used therefor Expired - Fee Related JP5785045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221848A JP5785045B2 (en) 2011-10-06 2011-10-06 Selective debenzylation method and selective hydrogenation catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221848A JP5785045B2 (en) 2011-10-06 2011-10-06 Selective debenzylation method and selective hydrogenation catalyst used therefor

Publications (2)

Publication Number Publication Date
JP2013082637A JP2013082637A (en) 2013-05-09
JP5785045B2 true JP5785045B2 (en) 2015-09-24

Family

ID=48528226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221848A Expired - Fee Related JP5785045B2 (en) 2011-10-06 2011-10-06 Selective debenzylation method and selective hydrogenation catalyst used therefor

Country Status (1)

Country Link
JP (1) JP5785045B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659445B2 (en) * 2016-04-28 2020-03-04 株式会社トクヤマ Debenzylation method
CN115591544A (en) * 2021-06-28 2023-01-13 中国科学院大连化学物理研究所(Cn) Preparation and application of hydrogenolysis catalyst

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646850A (en) * 1979-09-27 1981-04-28 Ajinomoto Co Inc Method for reductive elimination of protecting group
IT1217123B (en) * 1987-02-05 1990-03-14 Rotta Research Lab OPTICALLY ACTIVE DERIVATIVES OF ACID 5 PENTILAMINE 5 OXO PENTANOIC R WITH ANTAGONIST ACTIVITY OF THE CHOLECISTOKININ AND PROCEDURE FOR THEIR PREPARATION
FR2620700B1 (en) * 1987-09-17 1990-06-01 Adir PROCESS FOR THE SYNTHESIS OF ALPHA AMINO ACIDS N ALKYLS AND THEIR ESTERS. APPLICATION TO THE SYNTHESIS OF CARBOXYALKYL DIPEPTIDES
JPH0710803A (en) * 1993-06-28 1995-01-13 Hitachi Chem Co Ltd 2-aryl-2-difluoromethylmalonic acid, 2-aryl-3,3-difluoropropionic acid and their production
JPH07155612A (en) * 1993-12-01 1995-06-20 Nippon Oil Co Ltd Hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the same
FR2729388B1 (en) * 1995-01-13 1997-07-04 Rhone Poulenc Chimie PROCESS FOR ACYLATION OF AROMATIC ETHERS
JP3464079B2 (en) * 1995-06-28 2003-11-05 新日本石油株式会社 Method for hydroisomerization of benzene-containing hydrocarbon oil
JP2000300994A (en) * 1999-04-16 2000-10-31 Nippon Shokubai Co Ltd Catalyst for manufacturing alkylene glycol monoalkyl ether and its method of use
JP2001149758A (en) * 1999-11-22 2001-06-05 Valtion Teknillinen Tukimuskeskus Catalyst and method for catalycally recomposing nitrogen oxides
JP4171324B2 (en) * 2003-03-03 2008-10-22 エヌ・イーケムキャット株式会社 Hydrocracking catalyst and hydrocracking method using the same
WO2006028146A1 (en) * 2004-09-07 2006-03-16 Wako Pure Chemical Industries, Ltd. Ion-exchange resins carrying palladium immobilized thereon and process for reduction with the same
WO2006067171A1 (en) * 2004-12-23 2006-06-29 Shell Internationale Research Maatschappij B.V. A process for the hydrogenation of a lactone or of a carboxylic acid or an ester having a gamma-carbonyl group
CA2679985A1 (en) * 2007-03-15 2008-09-18 F. Hoffmann-La Roche Ag Malonamides as orexin antagonists

Also Published As

Publication number Publication date
JP2013082637A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP6060906B2 (en) Method for producing high-purity 1,5-pentanediol
JP2007314521A (en) Method for producing epoxy compound
JP2014514272A (en) Reduction of C—O bonds by catalytic transfer hydrogenolysis
JP2017025012A (en) Manufacturing method of aromatic compound and furan derivative having methylamino group
US20110172465A1 (en) Method for producing 3-methyl-cyclopentadecenones, method for producing (r)- and (s)- muscone, and method for producing optically active muscone
JP5785045B2 (en) Selective debenzylation method and selective hydrogenation catalyst used therefor
EP2234959B1 (en) Single-step reductive amination
CN102675271A (en) Continuous preparation method for phthalide and derivatives thereof
JP2012201662A (en) Method of producing hydrogenolysis product of glycerin
JP6005064B2 (en) Preparation of 4-acetoxy-2-methylbutanal by catalytic carbon-carbon double bond hydrogenation
KR20150063058A (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
JP4349227B2 (en) Method for producing 1,3-cyclohexanediol
JP2014019686A (en) Method for producing hydroxy compound
JP7217519B2 (en) Method for producing 2-oxazolidinones
CN102093161B (en) Method for preparing dihydroxyl dicyclohexyl propane
KR101659163B1 (en) Preparing method of alkanol
JP6269384B2 (en) Method for producing tetrahydrofuran compound
JP6318479B2 (en) Catalyst, catalyst production method, and polyol compound production method using the same
CN104844496A (en) Catalytic synthesized beta-nitropyrrole derivative and synthetic method thereof
JP3971875B2 (en) Process for producing trans-4- (4'-oxocyclohexyl) cyclohexanols
CN107445879B (en) Preparation method of Latricinib intermediate
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
JP6503959B2 (en) Polyether diol and its production method.
JP3089772B2 (en) Method for producing diol compound having cyclohexane ring
CN117603129A (en) Method for preparing 2-substituted pyridine from succinic acid diester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5785045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees