JP2005246261A - Catalyst for synthesizing formate and methanol and method for producing formate and methanol - Google Patents

Catalyst for synthesizing formate and methanol and method for producing formate and methanol Download PDF

Info

Publication number
JP2005246261A
JP2005246261A JP2004060824A JP2004060824A JP2005246261A JP 2005246261 A JP2005246261 A JP 2005246261A JP 2004060824 A JP2004060824 A JP 2004060824A JP 2004060824 A JP2004060824 A JP 2004060824A JP 2005246261 A JP2005246261 A JP 2005246261A
Authority
JP
Japan
Prior art keywords
methanol
catalyst
formate
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004060824A
Other languages
Japanese (ja)
Inventor
Noritatsu Tsubaki
範立 椿
Noriyuki Yamane
典之 山根
Kenichiro Fujimoto
健一郎 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004060824A priority Critical patent/JP2005246261A/en
Publication of JP2005246261A publication Critical patent/JP2005246261A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst of which the decline in activity caused by water and carbon dioxide is little and which can synthesize a formate and methanol at a low temperature under a low pressure; and a production method using the catalyst. <P>SOLUTION: The catalyst synthesizes a formate and methanol via the formate from a raw material gas containing hydrogen and at least either of carbon monoxide and carbon dioxide in the presence of an alcohol as a solvent. The catalyst contains both Cu and Zn as the main components and at least one component selected from among elements of group IV, group VI, group VII, group XIII, and lanthanoids as a promotor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ギ酸エステル及びメタノールの製造方法に関する。さらに詳しくは、一酸化炭素又は二酸化炭素の一方又は双方の炭素源と水素からギ酸エステルを経由してメタノールを製造する際に、水、二酸化炭素等による活性低下に対する耐性の高い触媒及びこれを用いて、高効率で生成物を得る方法に関する。   The present invention relates to a method for producing formate and methanol. More specifically, when producing methanol from one or both of carbon monoxide and carbon dioxide and hydrogen via formate, a catalyst having high resistance to a decrease in activity due to water, carbon dioxide and the like is used. The present invention relates to a method for obtaining a product with high efficiency.

一般的に、工業的にメタノールを合成する際には、メタンを主成分とする天然ガスを水蒸気改質して得られる一酸化炭素と水素(合成ガス)を原料とし、銅・亜鉛系等の触媒を用いて固定床気相法にて、200〜300℃、5〜25MPaという厳しい条件で合成される(非特許文献1)。反応機構は以下のように考えられている。   Generally, when industrially synthesizing methanol, carbon monoxide and hydrogen (synthetic gas) obtained by steam reforming natural gas mainly composed of methane are used as raw materials, and copper, zinc-based, etc. The catalyst is synthesized using a fixed bed gas phase method under severe conditions of 200 to 300 ° C. and 5 to 25 MPa (Non-patent Document 1). The reaction mechanism is considered as follows.

CO2+3H2→CH3OH+H2O
H2O+CO→CO2+H2
本反応は発熱反応であるが、気相法では熱伝導が悪いために、効率的な抜熱が困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスをリサイクルするという効率に難点のあるプロセスとなっている。しかし、合成ガス中に含まれる、水、二酸化炭素による反応阻害は受け難いという長所を活かして、様々なプラントが稼働中である。
CO 2 + 3H 2 → CH 3 OH + H 2 O
H 2 O + CO → CO 2 + H 2
Although this reaction is an exothermic reaction, it is difficult to remove heat efficiently due to poor heat conduction in the gas phase method, so the conversion rate when passing through the reactor is kept low, and unreacted high-pressure raw material gas Recycling is a difficult process in terms of efficiency. However, taking advantage of the fact that the reaction inhibition by water and carbon dioxide contained in the synthesis gas is difficult to receive, various plants are in operation.

一方、液相でメタノールを合成して、抜熱速度を向上させる様々の方法が検討されている。中でも、低温(100〜180℃程度)で活性の高い均一系触媒を用いる方法は、熱力学的にも生成系に有利であり、注目を集めている(非特許文献2等)。反応機構は、以下のように考えられている。   On the other hand, various methods for improving the heat removal rate by synthesizing methanol in the liquid phase have been studied. Among them, a method using a homogeneous catalyst having a high activity at low temperatures (about 100 to 180 ° C.) is advantageous to the production system thermodynamically and attracts attention (Non-patent Document 2 etc.). The reaction mechanism is considered as follows.

CH3OH+CO→HCOOCH3
HCOOCH3+2H2→2CH3OH
しかし、ギ酸エステルを経由するこれらの方法では、合成ガス中に含まれることが多い水、二酸化炭素による活性低下が報告され、何れも実用化には至っていない(非特許文献3)。
CH 3 OH + CO → HCOOCH 3
HCOOCH 3 + 2H 2 → 2CH 3 OH
However, in these methods via formic acid esters, water and carbon dioxide, which are often contained in synthesis gas, have been reported to decrease in activity, and none of them has been put into practical use (Non-patent Document 3).

本発明者らはこれまでに、水、二酸化炭素による活性低下が小さく、活性の高い低温液相メタノール合成触媒として、共沈法により調製したCu/ZnOを開発している(非特許文献4)。   The present inventors have so far developed Cu / ZnO prepared by a coprecipitation method as a low-temperature liquid-phase methanol synthesis catalyst with small activity reduction due to water and carbon dioxide (Non-patent Document 4). .

J. C. J. Bart et al., Catal. Today, 2, 1 (1987)J. C. J. Bart et al., Catal. Today, 2, 1 (1987) 大山聖一, PETROTECH, 18(1), 27 (1995)Seiichi Oyama, PETROTECH, 18 (1), 27 (1995) S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)S. Ohyama, Applied Catalysis A: General, 180, 217 (1999) N. Tsubaki et al, Journal of Catalysis, 197, 224 (2001)N. Tsubaki et al, Journal of Catalysis, 197, 224 (2001)

本発明は、上記の水、二酸化炭素による活性低下が小さく、比較的活性の高いギ酸エステル経由低温液相メタノール合成触媒の活性向上を目的とするものであり、低温、低圧でギ酸エステル及びメタノールを合成することが可能な触媒及びこの触媒を用いた製造方法を提供するものである。   The purpose of the present invention is to improve the activity of the low-temperature liquid phase methanol synthesis catalyst via formate ester, which has a small activity decrease due to water and carbon dioxide, and is relatively high in activity. The present invention provides a catalyst that can be synthesized and a production method using the catalyst.

本発明の特徴とするところは、以下に記す通りである。
(1) 溶媒としてのアルコールの存在下、一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスからギ酸エステル及びギ酸エステルを経由してメタノールを合成するギ酸エステル及びメタノール合成用触媒であって、主成分としてCuとZnを同時に含有し助触媒として周期律表第4族、第6族、第7族、第13族及びランタノイドから選ばれる一種類以上の成分を含有することを特徴とするギ酸エステル及びメタノール合成用触媒。
(2) 助触媒がZrである(1)に記載の触媒。
(3) 前記ギ酸エステル及びメタノール合成用触媒が多孔質無機化合物に担持されてなることを特徴とする(1)に記載のギ酸エステル及びメタノール合成用触媒。
(4) 前記多孔質無機化合物が多孔質シリカである(3)に記載の触媒。
(5) 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてギ酸エステル及びメタノールを製造する方法であって、(1)〜(4)のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことを特徴とするギ酸エステル及びメタノールの製造方法。
(6) 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてメタノールを製造する方法であって、(1)〜(4)のいずれかに記載の触媒、水素化分解触媒と溶媒としてのアルコール類の存在下で反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。
(7) 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを、(1)〜(4)のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。
(8) 前記アルコール類が第二級アルコールである(5)〜(7)のいずれかに記載の製造方法。
The features of the present invention are as described below.
(1) A formate ester and methanol synthesis catalyst for synthesizing methanol from a source gas containing one or both of carbon monoxide and carbon dioxide and hydrogen in the presence of alcohol as a solvent via formate ester and formate ester. Characterized in that it contains Cu and Zn as main components at the same time and contains one or more components selected from Group 4, Group 6, Group 7, Group 13 and lanthanoids as a promoter in the periodic table. Formate and methanol synthesis catalyst.
(2) The catalyst according to (1), wherein the promoter is Zr.
(3) The formate ester and methanol synthesis catalyst according to (1), wherein the formate ester and methanol synthesis catalyst are supported on a porous inorganic compound.
(4) The catalyst according to (3), wherein the porous inorganic compound is porous silica.
(5) A method for producing formate and methanol by reacting one or both of carbon monoxide and carbon dioxide with a raw material gas containing hydrogen, the catalyst according to any one of (1) to (4) A method for producing formic acid ester and methanol, wherein the reaction is carried out in the presence of an alcohol as a solvent.
(6) A method for producing methanol by reacting one or both of carbon monoxide and carbon dioxide with a raw material gas containing hydrogen, the catalyst according to any one of (1) to (4), hydrocracking A method for producing methanol, comprising reacting in the presence of a catalyst and an alcohol as a solvent to produce a formate ester and methanol, and producing the methanol by hydrogenating the produced formate ester.
(7) By reacting one or both of carbon monoxide and carbon dioxide and a raw material gas containing hydrogen in the presence of the catalyst according to any one of (1) to (4) and an alcohol as a solvent. A method for producing methanol, comprising separating a product obtained from a reaction system and then hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol.
(8) The production method according to any one of (5) to (7), wherein the alcohol is a secondary alcohol.

本発明の触媒は、従来法に比べ低温・低圧の条件で反応を行うギ酸エステル経由低温液相メタノール合成において、原料ガス中に二酸化炭素、水等が混在しても触媒活性の低下度合いが低い触媒として公開されているCu/ZnO触媒と比較して、高活性のため高収率で合成できるので、設備コストも低減でき、安価にギ酸エステル及びメタノールを供給することが可能になった。   The catalyst of the present invention has a low degree of decrease in catalytic activity even when carbon dioxide, water, etc. are mixed in the raw material gas in the synthesis of low-temperature liquid phase methanol via formate ester, which reacts under conditions of low temperature and low pressure, compared with the conventional method. Compared with the Cu / ZnO catalyst published as a catalyst, it can be synthesized in a high yield because of its high activity, so that the equipment cost can be reduced and formate ester and methanol can be supplied at low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、鋭意検討した結果、CuとZnが主成分であり、助触媒として周期律表第4族、第6族、第7族、第13族及びランタノイドから選ばれる一種類以上の成分を含有する触媒、又は、CuとZnが主成分であり、助触媒として周期律表第4族、第6族、第7族、第13族及びランタノイドから選ばれる一種類以上の成分が多孔質無機化合物に担持されてなる触媒を用いると、水又は二酸化炭素の一方又は双方が混在しても、一酸化炭素又は二酸化炭素の一方又は双方と水素からなる原料ガスから、溶媒としてアルコール類を使用するギ酸エステル及びギ酸エステルを経由するメタノールの製造において、助触媒を含有しないCu/ZnO触媒と比較して活性が向上することを見出し、本発明に至った。   As a result of intensive studies, the present inventors have Cu and Zn as main components, and one or more kinds selected from Group 4, Group 6, Group 7, Group 13 and lanthanoids of the periodic table as promoters. A catalyst containing components, or Cu and Zn as main components, and one or more kinds of components selected from Group 4, Group 6, Group 7, Group 13 and lanthanoid as porous catalyst are porous When a catalyst supported on a porous inorganic compound is used, even if one or both of water and carbon dioxide are mixed, an alcohol is used as a solvent from a source gas composed of one or both of carbon monoxide or carbon dioxide and hydrogen. In the production of formic acid ester to be used and methanol via the formic acid ester, it was found that the activity was improved as compared with a Cu / ZnO catalyst not containing a promoter, and the present invention was achieved.

本発明の触媒はCu、Znと助触媒成分を同時に含有するものであり、具体的にはCu/ZnOX/MOY(X、Yは化学的に許容し得る値、Mは周期律表第4族、第6族、第7族、第13族及びランタノイドから選ばれる成分)である。CuとZnの組成比は、酸化物質量でCu:Zn=0.1:1〜10:1であれば良いが、0.5:1〜2:1が好適である。助触媒成分は、酸化物質量で触媒質量に対して0.1〜70%であれば良いが、0.5〜20%で好結果が得られ易い。助触媒成分としては、周期律表第4族ではTi、Zr、第6族ではCr、第7族ではMn、第13族ではAl、Ga、ランタノイドではLa、Ceが好適である。上記触媒を多孔質無機化合物上に担持させて使用することも可能であり、多孔質無機化合物としては、具体的にはシリカが好適である。上記触媒成分とシリカの比は、Cu/ZnOX/MOY:SiO2=0.01:1〜10:1であれば良いが、0.1:1〜2:1で好結果が得られ易い。多孔質無機化合物上への担持の目的は、活性成分のCu/ZnOX/MOYを高分散させ、比表面積を増加させることにより、反応効率を向上させ、使用するCu/ZnOX/MOYの量を低減することにある。シリカ上にCu/ZnOX/MOYを分散させた触媒では、Cu/ZnOX/MOY単体と比較して、原料の転化率は減少し、ギ酸エステル選択率が著しく増加する。Cu/ZnOX/MOYの調製は、含浸法、沈殿法、ゾルゲル法、共沈法、イオン交換法、混練法、蒸発乾固法等の通常の方法によれば良く、特に限定されるものではないが、共沈法によると好結果が得られ易い。多孔質無機化合物上への分散も通常の方法によれば良い。反応に用いる溶媒としてのアルコール類としては、鎖状又は脂環式炭化水素類に水酸基が付いたものの他、フェノール及びその置換体、更には、チオール及びその置換体でも良い。これらアルコール類は、第1級、第2級及び第3級のいずれでもよいが、反応効率等の点からは第2級アルコールが好ましく、2-プロパノール、2-ブタノール等の低級アルコールが最も一般的である。反応は、液相、気相のいずれでも行うことができるが、温和な条件を選定し得る系を採用することができる。具体的には、温度70〜250℃、圧力3〜70気圧が好適な条件であるが、これらに限定されない。アルコール類は、反応が進行する程度の量があればよいが、それ以上の量を溶媒として用いることもできる。また、上記反応に際してアルコール類の他に、適宜有機溶媒を併せて用いることができる。 The catalyst of the present invention contains Cu, Zn and a promoter component at the same time. Specifically, Cu / ZnO X / MO Y (where X and Y are chemically acceptable values, M is a periodic table). A component selected from Group 4, Group 6, Group 7, Group 13 and a lanthanoid). The composition ratio of Cu and Zn may be Cu: Zn = 0.1: 1 to 10: 1 in terms of oxide mass, but is preferably 0.5: 1 to 2: 1. The cocatalyst component may be 0.1 to 70% in terms of oxide mass with respect to the catalyst mass, but good results are easily obtained with 0.5 to 20%. As the promoter component, Ti and Zr are suitable for Group 4 of the periodic table, Cr for Group 6, Mn for Group 7, Al and Ga for Group 13, and La and Ce for lanthanoids. It is also possible to use the catalyst supported on a porous inorganic compound, and specifically, silica is suitable as the porous inorganic compound. The ratio of the catalyst component to silica may be Cu / ZnO X / MO Y : SiO 2 = 0.01: 1 to 10: 1, but good results are easily obtained at 0.1: 1 to 2: 1. The purpose of loading onto the porous inorganic compound is to increase the reaction efficiency by highly dispersing the active ingredient Cu / ZnO X / MO Y and increasing the specific surface area, and to use Cu / ZnO X / MO Y to be used. Is to reduce the amount of. In the catalyst in which Cu / ZnO X / MO Y is dispersed on silica, the conversion of the raw material is decreased and the formate selectivity is remarkably increased as compared with Cu / ZnO X / MO Y alone. The preparation of Cu / ZnO X / MO Y may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, evaporation to dryness method, and is particularly limited. However, good results are likely to be obtained by the coprecipitation method. The dispersion onto the porous inorganic compound may be performed by a usual method. As the alcohol used as a solvent for the reaction, in addition to those having a hydroxyl group attached to a chain or alicyclic hydrocarbon, phenol and a substituted product thereof, and further a thiol and a substituted product thereof may be used. These alcohols may be any of primary, secondary and tertiary, but secondary alcohols are preferred from the viewpoint of reaction efficiency, etc., and lower alcohols such as 2-propanol and 2-butanol are most common. Is. The reaction can be carried out in either the liquid phase or the gas phase, but a system that can select mild conditions can be employed. Specifically, a temperature of 70 to 250 ° C. and a pressure of 3 to 70 atmospheres are preferable conditions, but not limited thereto. Alcohols only need to have such an amount that the reaction proceeds, but more than that can be used as a solvent. In the above reaction, in addition to alcohols, an organic solvent can be used as appropriate.

生成物として得られるギ酸エステルとメタノールの混合物は、精製してギ酸エステルとメタノールに分離することができ、ギ酸エステルはそのままメタノールの製造に供することもできる。すなわち、ギ酸エステルを水素化分解して、メタノールを製造し得る。水素化分解には水素化分解触媒が用いられ、例えば、Cu,Pt,Ni,Co,Ru,Pd系の一般的な水素化分解触媒を用いることができる。本発明においては、原料ガスとアルコール類からギ酸エステルとメタノールを生成させる前記反応系に、これらの水素化分解触媒を共存させておくことにより、メタノール選択率を増加させ、効率良くメタノールを製造することができる。   The mixture of formic acid ester and methanol obtained as a product can be purified and separated into formic acid ester and methanol, and the formic acid ester can be directly used for the production of methanol. That is, methanol can be produced by hydrogenolysis of formate. For hydrocracking, a hydrocracking catalyst is used. For example, a general hydrocracking catalyst of Cu, Pt, Ni, Co, Ru, Pd can be used. In the present invention, by making these hydrocracking catalysts coexist in the reaction system for producing formate ester and methanol from raw material gas and alcohols, methanol selectivity is increased and methanol is efficiently produced. be able to.

また、前記方法でメタノールを製造することが困難な場合は、生成したギ酸エステルを分離した後に、水素化分解触媒及び水素を共存させて、分離したギ酸エステルを水素化分解して、メタノールを得ることも可能である。また、ギ酸エステルとメタノールの混合物を分離せず、水素化分解触媒及び水素を共存させて、混合物中のギ酸エステルを水素化分解して、メタノールを得ることもできる。   In addition, when it is difficult to produce methanol by the above method, methanol is obtained by separating the produced formate ester and then hydrocracking the separated formate ester in the presence of a hydrocracking catalyst and hydrogen. It is also possible. Alternatively, methanol can be obtained by hydrocracking the formate ester in the mixture in the presence of a hydrocracking catalyst and hydrogen without separating the mixture of formate ester and methanol.

本発明におけるギ酸エステル、そしてメタノールの製造方法は、次に示す反応式に基づくものと推定される(アルコール類が鎖状又は脂環式炭化水素類に水酸基が付いたものである場合を例にとって示す)。   The method for producing formate and methanol in the present invention is presumed to be based on the following reaction formula (in the case where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto as an example. Show).

R-OH+CO →HCOOR (1)
HCOOR+2H2 →CH3OH+R-OH (2)
(ここでRはアルキル基を示す)
ただし、反応系に水が存在する場合は、次に示す反応式に基づくと考えられ、前記反応式と並行して、ギ酸エステル又はメタノールが生成するものと推定される。
R-OH + CO → HCOOR (1)
HCOOR + 2H 2 → CH 3 OH + R-OH (2)
(Where R represents an alkyl group)
However, when water is present in the reaction system, it is considered to be based on the following reaction formula, and it is estimated that formate or methanol is generated in parallel with the reaction formula.

CO+H2O →CO2+H2 (1)
CO2+H2+R-OH →HCOOR+H2O (2)
HCOOR+2H2 →CH3OH+R-OH (3)
したがって、メタノールの製造原料は、一酸化炭素と水素であり、アルコール類は回収、再利用し得る。本発明方法によれば、原料ガス中に、水、二酸化炭素が、かなりの量で存在していても、触媒の活性が失われることはない。
CO + H 2 O → CO 2 + H 2 (1)
CO 2 + H 2 + R-OH → HCOOR + H 2 O (2)
HCOOR + 2H 2 → CH 3 OH + R-OH (3)
Therefore, the raw materials for producing methanol are carbon monoxide and hydrogen, and alcohols can be recovered and reused. According to the method of the present invention, even if water and carbon dioxide are present in a considerable amount in the raw material gas, the activity of the catalyst is not lost.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

以下の実施例に記載した、CO転化率、CO2転化率、C転化率、ギ酸エステル選択率、メタノール選択率、メタノール収率は、それぞれ次に示す式により算出した。 The CO conversion rate, CO 2 conversion rate, C conversion rate, formate ester selectivity, methanol selectivity, and methanol yield described in the following examples were calculated by the following formulas.

CO転化率:
CO転化率(%) = [1-(反応後に回収されたCOモル数)/(仕込んだCOモル数)]×100
CO2転化率:
CO2転化率(%) = [1-(反応後に回収されたCO2モル数)/(仕込んだCO2モル数)]×100
C転化率:
C転化率(%) = CO転化率(%)×[(仕込んだCOモル数)/(仕込んだCO+CO2モル数)] + CO2
化率(%)×[(仕込んだCO2モル数)/(仕込んだCO+CO2モル数)]
ギ酸エステル選択率:
ギ酸エステル選択率(%) = [(反応後に回収されたギ酸エステルモル数)/{(C転化率(%))
×(仕込んだCO+CO2モル数)}]×100
メタノール選択率:
メタノール選択率(%) = [(反応後に回収されたメタノールモル数)/{(C転化率(%))×(
仕込んだCO+CO2モル数)}]×100
メタノール収率:
メタノール収率(%) = (生成したメタノールモル数)/(仕込んだCO+CO2モル数)×100
(実施例1)
半回分式反応器を用い、溶媒として水1質量%を含む2-ブタノール40mlに、Cu(NO3)2・3H2O、Zn(NO3)2・6H2O、ZrO(NO3)2・2H2Oを原料として共沈法で調製したCu/ZnO/ZrO2(45/45/10)触媒3gを添加し、合成ガス(CO:31.5%、CO2:5.05%、Ar:2.98%、H2:Balance)を5.0MPa充填して、170℃、合成ガス流速20ml/min、20時間の反応を行った。反応生成物は、反応器後段に設置したコールドトラップにて回収した。未反応ガス、反応生成物は、ガスクロマトグラフで分析した。CO転化率48.5%、CO2転化率8.4%、C転化率43.0%、ギ酸メチル選択率0.3%、ギ酸ブチル選択率0.2%、メタノール選択率99.5%、メタノール収率42.7%であった。
CO conversion rate:
CO conversion (%) = [1- (number of moles of CO recovered after reaction) / (number of moles of charged CO)] × 100
CO 2 conversion rate:
CO 2 conversion rate (%) = [1- (number of moles of CO 2 recovered after reaction) / (number of moles of charged CO 2 )] × 100
C conversion rate:
C conversion rate (%) = CO conversion rate (%) x [(number of charged CO moles) / (number of charged CO + CO 2 moles)] + CO 2 conversion rate (%) x [(charged CO 2 Number of moles) / (charged CO + CO 2 moles)]
Formate selectivity:
Formate ester selectivity (%) = [(number of moles of formate ester recovered after reaction) / {(C conversion (%))
X (CO + CO 2 moles charged)}] x 100
Methanol selectivity:
Methanol selectivity (%) = [(molar number of methanol recovered after reaction) / {(C conversion (%)) × (
CO + CO 2 moles charged)}] x 100
Methanol yield:
Methanol yield (%) = (number of moles of methanol produced) / (number of moles of charged CO + CO 2 ) x 100
(Example 1)
Using a semi-batch reactor, Cu (NO 3 ) 2 · 3H 2 O, Zn (NO 3 ) 2 · 6H 2 O, ZrO (NO 3 ) 2 was added to 40 ml of 2-butanol containing 1% by mass of water as a solvent. Add 3 g of Cu / ZnO / ZrO 2 (45/45/10) catalyst prepared by coprecipitation method using 2H 2 O as a raw material, synthesis gas (CO: 31.5%, CO 2 : 5.05%, Ar: 2.98%) , H 2 : Balance) was charged at 5.0 MPa, and the reaction was performed at 170 ° C. and a synthesis gas flow rate of 20 ml / min for 20 hours. The reaction product was collected by a cold trap installed at the rear stage of the reactor. Unreacted gas and reaction products were analyzed by gas chromatography. CO conversion 48.5%, CO 2 conversion 8.4%, C conversion 43.0%, methyl formate selectivity 0.3%, butyl formate selectivity 0.2%, methanol selectivity 99.5%, methanol yield 42.7%.

(実施例2)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、Cu/ZnO/TiO2(45/45/10)触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率45.6%、CO2転化率-0.2%、C転化率39.3%、ギ酸メチル選択率10.2%、ギ酸ブチル選択率1.4%、メタノール選択率88.4%、メタノール収率34.7%であった。
(Example 2)
The reaction was carried out by the method described in Example 1 except that a Cu / ZnO / TiO 2 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. . CO conversion 45.6% CO 2 conversion was -0.2% C conversion 39.3%, methyl formate selectivity of 10.2%, formic acid butyl selectivity of 1.4%, methanol selectivity 88.4% and 34.7% methanol yield.

(実施例3)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、Cu/ZnO/Cr2O3(45/45/10)触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率43.7%、CO2転化率12.3%、C転化率39.4%、ギ酸メチル選択率0.8%、ギ酸ブチル選択率0.6%、メタノール選択率98.6%、メタノール収率38.8%であった。
(Example 3)
The reaction was carried out by the method described in Example 1 except that a Cu / ZnO / Cr 2 O 3 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. went. The CO conversion was 43.7%, the CO 2 conversion was 12.3%, the C conversion was 39.4%, the methyl formate selectivity was 0.8%, the butyl formate selectivity was 0.6%, the methanol selectivity was 98.6%, and the methanol yield was 38.8%.

(実施例4)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、Cu/ZnO/MnO2(45/45/10)触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率42.6%、CO2転化率2.4%、C転化率37.0%、ギ酸メチル選択率13.1%、ギ酸ブチル選択率1.3%、メタノール選択率85.6%、メタノール収率31.7%であった。
(Example 4)
The reaction was carried out by the method described in Example 1 except that a Cu / ZnO / MnO 2 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. . The CO conversion was 42.6%, the CO 2 conversion was 2.4%, the C conversion was 37.0%, the methyl formate selectivity was 13.1%, the butyl formate selectivity was 1.3%, the methanol selectivity was 85.6%, and the methanol yield was 31.7%.

(実施例5)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、Cu/ZnO/Al2O3(45/45/10)触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率48.3%、CO2転化率4.5%、C転化率44.0%、ギ酸メチル選択率0.3%、ギ酸ブチル選択率0.1%、メタノール選択率99.6%、メタノール収率42.2%であった。
(Example 5)
The reaction was carried out by the method described in Example 1 except that a Cu / ZnO / Al 2 O 3 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. went. The CO conversion was 48.3%, the CO 2 conversion was 4.5%, the C conversion was 44.0%, the methyl formate selectivity was 0.3%, the butyl formate selectivity was 0.1%, the methanol selectivity was 99.6%, and the methanol yield was 42.2%.

(実施例6)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、Cu/ZnO/Ce2O3(45/45/10)触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率42.6%、CO2転化率-8.6%、C転化率35.5%、ギ酸メチル選択率0.1%、ギ酸ブチル選択率0.8%、メタノール選択率99.1%、メタノール収率35.2%であった。
(Example 6)
The reaction was carried out by the method described in Example 1 except that a Cu / ZnO / Ce 2 O 3 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. went. CO conversion 42.6% CO 2 conversion was -8.6% C conversion 35.5%, methyl selectivity of 0.1% formic acid, formic acid butyl selectivity of 0.8%, methanol selectivity 99.1% and a 35.2% yield of methanol.

(実施例7)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、SiO2(富士シリシア化学(株)製、Q-10)スラリーにCu(NO3)2・3H2O、Zn(NO3)2・6H2O、ZrO(NO3)2・2H2Oの水溶液を、沈殿剤と同時に滴下する共沈法で調製したCu/ZnO/ZrO2(45/45/10)-SiO2触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率32.6%、CO2転化率24.5%、C転化率31.5%、ギ酸メチル選択率0%、ギ酸ブチル選択率100%、メタノール選択率0%、メタノール収率0%であった。SiO2への担持によってギ酸ブチル選択率が著しく増加した。
(Example 7)
Instead of Cu / ZnO / ZrO 2 (45/45/10) catalyst, Cu (NO 3 ) 2 3H 2 O, Zn (NO 3 ) in SiO 2 (Fuji Silysia Chemical Co., Ltd., Q-10) slurry ) Cu / ZnO / ZrO 2 (45/45/10) -SiO 2 catalyst prepared by co-precipitation method in which an aqueous solution of 2 · 6H 2 O and ZrO (NO 3 ) 2 · 2H 2 O is dropped simultaneously with the precipitant The reaction was carried out by the method described in Example 1 except that was added. The CO conversion was 32.6%, the CO 2 conversion was 24.5%, the C conversion was 31.5%, the methyl formate selectivity was 0%, the butyl formate selectivity was 100%, the methanol selectivity was 0%, and the methanol yield was 0%. The butyl formate selectivity was significantly increased by loading onto SiO 2 .

(実施例8)
水素化分解触媒として、Cu/SiO2触媒(ENGELHARD製Cu-0860 E 1/8)0.5gを、さらに添加する他は、実施例2と同様の条件で反応を行った。CO転化率43.6%、CO2転化率-1.2%、C転化率37.4%、ギ酸メチル選択率2.1%、ギ酸ブチル選択率0.6%、メタノール選択率97.3%、メタノール収率36.4%であった。水素化分解触媒の共存によって、メタノール選択率、メタノール収率が増加した。
(Example 8)
The reaction was carried out under the same conditions as in Example 2, except that 0.5 g of Cu / SiO 2 catalyst (Cu-0860 E 1/8 manufactured by ENGELHARD) was further added as a hydrogenolysis catalyst. The CO conversion was 43.6%, the CO 2 conversion was -1.2%, the C conversion was 37.4%, the methyl formate selectivity was 2.1%, the butyl formate selectivity was 0.6%, the methanol selectivity was 97.3%, and the methanol yield was 36.4%. Coexistence of the hydrocracking catalyst increased methanol selectivity and methanol yield.

(実施例9)
実施例7に記載の方法で反応を行った後、コールドトラップ中の溶媒と生成物の液体混合物を回収した。実施例8に記載のCu/SiO2触媒0.5gを反応器に充填し、該液体混合物を高圧ポンプにて供給した。純水素ガスを供給し、反応温度150℃、反応圧2MPaで反応を行い、反応生成物をガスクロマトグラフで分析した。この反応では、ギ酸ブチルが水素化分解されてメタノールが生成する。水素化分解反応は、ギ酸ブチル転化率93.5%、メタノール選択率95.2%、CO選択率4.8%であった。実施例6からの一貫反応として評価すると、CO転化率31.2%、CO2転化率24.5%、C転化率30.3%、ギ酸ブチル選択率11.0%、メタノール選択率89.0%、メタノール収率27.0%であった。
(Example 9)
After carrying out the reaction according to the method described in Example 7, a liquid mixture of the solvent and the product in the cold trap was recovered. The reactor was charged with 0.5 g of the Cu / SiO 2 catalyst described in Example 8, and the liquid mixture was supplied with a high-pressure pump. Pure hydrogen gas was supplied, the reaction was performed at a reaction temperature of 150 ° C. and a reaction pressure of 2 MPa, and the reaction products were analyzed by gas chromatography. In this reaction, butyl formate is hydrocracked to produce methanol. In the hydrocracking reaction, butyl formate conversion was 93.5%, methanol selectivity was 95.2%, and CO selectivity was 4.8%. When evaluated as a consistent reaction from Example 6, the CO conversion was 31.2%, the CO 2 conversion was 24.5%, the C conversion was 30.3%, the butyl formate selectivity was 11.0%, the methanol selectivity was 89.0%, and the methanol yield was 27.0%. It was.

(比較例1)
Cu/ZnO/ZrO2(45/45/10)触媒の代わりに、共沈法で調製したCu/ZnO触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率44.7%、CO2転化率-7.1%、C転化率37.9%、ギ酸メチル選択率1.3%、ギ酸ブチル選択率0.3%、メタノール選択率98.5%、メタノール収率37.3%であった。
(Comparative Example 1)
The reaction was carried out by the method described in Example 1, except that the Cu / ZnO 2 (45/45/10) catalyst was added instead of the Cu / ZnO / ZrO 2 (45/45/10) catalyst. The CO conversion was 44.7%, CO 2 conversion was -7.1%, C conversion was 37.9%, methyl formate selectivity was 1.3%, butyl formate selectivity was 0.3%, methanol selectivity was 98.5%, and methanol yield was 37.3%.

Claims (8)

溶媒としてのアルコールの存在下、一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスからギ酸エステル及びギ酸エステルを経由してメタノールを合成するギ酸エステル及びメタノール合成用触媒であって、主成分としてCuとZnを同時に含有し助触媒として周期律表第4族、第6族、第7族、第13族及びランタノイドから選ばれる一種類以上の成分を含有することを特徴とするギ酸エステル及びメタノール合成用触媒。   A formate ester and methanol synthesis catalyst for synthesizing methanol from a source gas containing one or both of carbon monoxide and carbon dioxide and hydrogen in the presence of alcohol as a solvent via formate ester and formate ester, Formate ester comprising Cu and Zn as components at the same time, and containing one or more components selected from Group 4, Group 6, Group 7, Group 13 and lanthanoid as a co-catalyst And catalysts for methanol synthesis. 助触媒がZrである請求項1に記載の触媒。   2. The catalyst according to claim 1, wherein the promoter is Zr. 前記ギ酸エステル及びメタノール合成用触媒が多孔質無機化合物に担持されてなることを特徴とする請求項1に記載のギ酸エステル及びメタノール合成用触媒。   The formate ester and methanol synthesis catalyst according to claim 1, wherein the formate ester and methanol synthesis catalyst are supported on a porous inorganic compound. 前記多孔質無機化合物が多孔質シリカである請求項3に記載の触媒。   4. The catalyst according to claim 3, wherein the porous inorganic compound is porous silica. 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてギ酸エステル及びメタノールを製造する方法であって、請求項1〜4のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことを特徴とするギ酸エステル及びメタノールの製造方法。   5. A method for producing a formate ester and methanol by reacting one or both of carbon monoxide and carbon dioxide with a raw material gas containing hydrogen, comprising: the catalyst according to claim 1 and an alcohol as a solvent. A process for producing formic acid ester and methanol, wherein the reaction is carried out in the presence of 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてメタノールを製造する方法であって、請求項1〜4のいずれかに記載の触媒、水素化分解触媒及び溶媒としてのアルコール類の存在下で反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。   A method for producing methanol by reacting one or both of carbon monoxide and carbon dioxide with a source gas containing hydrogen, wherein the catalyst, the hydrocracking catalyst and the solvent according to any one of claims 1 to 4 are used. A method for producing methanol, comprising reacting in the presence of an alcohol to produce formate ester and methanol, and producing methanol by hydrogenating the produced formate ester. 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを、請求項1〜4のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。   A product obtained by reacting a raw material gas containing one or both of carbon monoxide and carbon dioxide and hydrogen in the presence of the catalyst according to any one of claims 1 to 4 and an alcohol as a solvent. A methanol production method comprising: separating methanol from a reaction system and hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol. 前記アルコール類が第二級アルコールである請求項5〜7のいずれかに記載の製造方法。   The production method according to claim 5, wherein the alcohol is a secondary alcohol.
JP2004060824A 2004-03-04 2004-03-04 Catalyst for synthesizing formate and methanol and method for producing formate and methanol Withdrawn JP2005246261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060824A JP2005246261A (en) 2004-03-04 2004-03-04 Catalyst for synthesizing formate and methanol and method for producing formate and methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060824A JP2005246261A (en) 2004-03-04 2004-03-04 Catalyst for synthesizing formate and methanol and method for producing formate and methanol

Publications (1)

Publication Number Publication Date
JP2005246261A true JP2005246261A (en) 2005-09-15

Family

ID=35027258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060824A Withdrawn JP2005246261A (en) 2004-03-04 2004-03-04 Catalyst for synthesizing formate and methanol and method for producing formate and methanol

Country Status (1)

Country Link
JP (1) JP2005246261A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104742A1 (en) * 2008-02-20 2009-08-27 日本ガス合成株式会社 Liquefied petroleum gas production catalyst, and method for production of liquefied petroleum gas using the catalyst
JP2010500168A (en) * 2006-08-10 2010-01-07 ユニバーシティ オブ サザン カリフォルニア Nanostructured solid regenerative polyamine and polyol absorbents for the separation of carbon dioxide from gas mixtures containing air
JP2014057925A (en) * 2012-09-18 2014-04-03 Mitsui Chemicals Inc Catalyst for manufacturing methanol, method for manufacturing the same, and method for manufacturing methanol
JP2014523448A (en) * 2011-07-27 2014-09-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing formamide and formate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500168A (en) * 2006-08-10 2010-01-07 ユニバーシティ オブ サザン カリフォルニア Nanostructured solid regenerative polyamine and polyol absorbents for the separation of carbon dioxide from gas mixtures containing air
JP2012055886A (en) * 2006-08-10 2012-03-22 Univ Of Southern California Nano-structure supported solid regenerative polyamine and polyol absorbent for separation of carbon dioxide from gas mixture including air
KR101262213B1 (en) * 2006-08-10 2013-05-16 유니버시티 오브 써던 캘리포니아 Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
WO2009104742A1 (en) * 2008-02-20 2009-08-27 日本ガス合成株式会社 Liquefied petroleum gas production catalyst, and method for production of liquefied petroleum gas using the catalyst
JPWO2009104742A1 (en) * 2008-02-20 2011-06-23 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
CN102015105B (en) * 2008-02-20 2014-07-02 日本气体合成株式会社 Liquefied petroleum gas production catalyst, and method for production of liquefied petroleum gas using the catalyst
JP2014523448A (en) * 2011-07-27 2014-09-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing formamide and formate
JP2014057925A (en) * 2012-09-18 2014-04-03 Mitsui Chemicals Inc Catalyst for manufacturing methanol, method for manufacturing the same, and method for manufacturing methanol

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP2012144491A (en) Method for producing glycol from multihydric alcohol
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP2005126427A (en) Method for producing formic acid ester and methanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP5777043B2 (en) Method for producing methanol
JP5843250B2 (en) Method for producing methanol
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP2010215543A (en) Method for producing methanol
JPH0136448B2 (en)
WO2005030686A1 (en) Method for producing organic compound
Barger Process for the conversion of lower alcohols to higher branched oxygenates
JPS60248647A (en) Production of alpha-phenylethylamine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605