JP2005095872A - Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol - Google Patents

Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol Download PDF

Info

Publication number
JP2005095872A
JP2005095872A JP2004237666A JP2004237666A JP2005095872A JP 2005095872 A JP2005095872 A JP 2005095872A JP 2004237666 A JP2004237666 A JP 2004237666A JP 2004237666 A JP2004237666 A JP 2004237666A JP 2005095872 A JP2005095872 A JP 2005095872A
Authority
JP
Japan
Prior art keywords
methanol
catalyst
formate
conversion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004237666A
Other languages
Japanese (ja)
Inventor
Noriyuki Yamane
典之 山根
Kenichiro Fujimoto
健一郎 藤本
Noritatsu Tsubaki
範立 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004237666A priority Critical patent/JP2005095872A/en
Publication of JP2005095872A publication Critical patent/JP2005095872A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for synthesizing a formate and ethanol, the activity of which is not deteriorated to a high degree even when a raw material contains CO<SB>2</SB>, water, or the like, or even when the catalyst is deposited on a carrier and by which the formate or methanol is obtained at a low temperature in low pressure. <P>SOLUTION: The formate or methanol is produced by reacting the gaseous raw material consisting of carbon monoxide and hydrogen in the presence of an alcohol and the catalyst containing both of Cu and Mg. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ギ酸エステル及びメタノール合成用触媒、並びにギ酸エステル及びメタノールの製造方法に関する。さらに詳しくは、一酸化炭素又は二酸化炭素の一方又は双方の炭素源と水素からメタノールを製造する際に、水、二酸化炭素などによる活性低下に対する耐性の高い触媒及びこれを用いて、高効率で生成物を得る方法に関する。   The present invention relates to a catalyst for synthesizing formate ester and methanol, and a method for producing formate ester and methanol. More specifically, when methanol is produced from one or both of carbon monoxide and carbon dioxide and hydrogen, it is produced with high efficiency using a catalyst having high resistance to activity reduction due to water, carbon dioxide, etc. and this. It relates to a method for obtaining things.

一般的に、工業的にメタノールを合成する際には、メタンを主成分とする天然ガスを水蒸気改質して得られる一酸化炭素と水素(合成ガス)を原料とし、銅・亜鉛系などの触媒を用いて固定床気相法にて、200〜300℃、5〜25MPa という厳しい条件で合成される(例えば、非特許文献1参照)。本反応は発熱反応であるが、気相法では熱伝導が悪いために効率的な抜熱が困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスをリサイクルするという効率に難点のあるプロセスとなっている。しかし、合成ガス中に含まれる、水、二酸化炭素による反応阻害は受けにくいという長所を活かして、様々なプラントが稼働中である。   In general, when synthesizing methanol industrially, carbon monoxide and hydrogen (synthetic gas) obtained by steam reforming natural gas mainly composed of methane are used as raw materials. The catalyst is synthesized by a fixed bed gas phase method under severe conditions of 200 to 300 ° C. and 5 to 25 MPa (see, for example, Non-Patent Document 1). Although this reaction is an exothermic reaction, efficient removal of heat is difficult due to poor heat conduction in the gas phase method, so the conversion rate when passing through the reactor is kept low, and unreacted high-pressure raw material gas is removed. It is a process that is difficult to recycle. However, taking advantage of the fact that reaction inhibition by water and carbon dioxide contained in synthesis gas is difficult, various plants are in operation.

一方、液相でメタノールを合成して抜熱速度を向上させる様々の方法が検討されている。中でも、低温(100〜180℃程度)で活性の高い触媒を用いる方法は、熱力学的にも生成系に有利であり、注目を集めている(例えば、非特許文献2参照)。しかし、これらの方法では、合成ガス中に含まれることが多い水、二酸化炭素による活性低下が報告され、何れも実用には至っていない(例えば、非特許文献3参照)。   On the other hand, various methods for improving the heat removal rate by synthesizing methanol in the liquid phase have been studied. Among them, the method using a catalyst having high activity at a low temperature (about 100 to 180 ° C.) is thermodynamically advantageous for the production system, and has attracted attention (for example, see Non-Patent Document 2). However, these methods have reported a decrease in activity due to water and carbon dioxide, which are often contained in synthesis gas, and none of them has been put into practical use (see, for example, Non-Patent Document 3).

本発明者らはこれまでに、水、二酸化炭素による活性低下が小さい低温液相メタノール合成触媒として、共沈法により調製したCu/ZnOを開発している(例えば、非特許文献4参照)。工業用触媒と比較すると著しく高い活性を示すが、担体に分散させると活性は大きく低下する。また、担体に分散させると中間体のギ酸エステルは得られるものの、メタノールは得られないという問題点があった。   The present inventors have so far developed Cu / ZnO prepared by a coprecipitation method as a low-temperature liquid-phase methanol synthesis catalyst with a small decrease in activity due to water and carbon dioxide (see, for example, Non-Patent Document 4). Although the activity is remarkably high as compared with the industrial catalyst, the activity is greatly reduced when dispersed on a carrier. Further, when dispersed in a carrier, an intermediate formate ester can be obtained, but methanol cannot be obtained.

J. C. J. Bart et al., Catal. Today, 2, 1 (1987)J. C. J. Bart et al., Catal. Today, 2, 1 (1987) 大山聖一, PETROTECH, 18(1), 27 (1995)Seiichi Oyama, PETROTECH, 18 (1), 27 (1995) S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)S. Ohyama, Applied Catalysis A: General, 180, 217 (1999) N. Tsubaki, M. Ito, K. Fujimoto, Journal of Catalysis, 197, 224 (2001)N. Tsubaki, M. Ito, K. Fujimoto, Journal of Catalysis, 197, 224 (2001)

本発明は、上記の課題を解決することを目的とするものであり、ギ酸エステルまたはメタノールの合成原料ガス中に二酸化炭素、水等が混在しても触媒の活性低下の度合いが低く、かつ、低温、低圧でギ酸エステル及びメタノールを合成することを可能とし、担体に分散させても活性低下が小さく、更に連続反応においても安定的に合成可能な、触媒及びそれを用いた液相でのギ酸エステル及びメタノールの合成方法を提供するものである。   The present invention aims to solve the above-mentioned problems, and even if carbon dioxide, water, etc. are mixed in the synthesis raw material gas of formate ester or methanol, the degree of decrease in the activity of the catalyst is low, and Formic acid and liquid formic acid using the catalyst that can synthesize formate and methanol at low temperature and low pressure, have a small decrease in activity even when dispersed on a carrier, and can be synthesized stably even in continuous reaction A method for synthesizing an ester and methanol is provided.

本発明の特徴とするところは、以下に記す通りである。
(1) CuとMgを同時に含有することを特徴とするギ酸エステル及びメタノール合成用触媒。
The features of the present invention are as described below.
(1) A catalyst for synthesizing formate and methanol characterized by containing Cu and Mg simultaneously.

(2) アルカリ金属の、炭酸塩、硝酸塩、硫酸塩、又は水酸化物の少なくとも一つを更に含有することを特徴とする(1)に記載のギ酸エステル及びメタノール合成用触媒。 (2) The formate ester and methanol synthesis catalyst according to (1), further containing at least one of an alkali metal carbonate, nitrate, sulfate, or hydroxide.

(3) 前記触媒が多孔質無機化合物に担持されてなることを特徴とする(1)又は(2)に記載のギ酸エステル及びメタノール合成用触媒。 (3) The catalyst for synthesizing formate and methanol according to (1) or (2), wherein the catalyst is supported on a porous inorganic compound.

(4) 前記アルカリ金属炭酸塩がNa2CO3である(2)又は(3)に記載のギ酸エステル及びメタノール合成用触媒。 (4) The formate ester and methanol synthesis catalyst according to (2) or (3), wherein the alkali metal carbonate is Na 2 CO 3 .

(5) 前記多孔質無機化合物が多孔質シリカであることを特徴とする(3)又は(4)に記載のギ酸エステル及びメタノール合成用触媒。 (5) The catalyst for synthesizing formate and methanol according to (3) or (4), wherein the porous inorganic compound is porous silica.

(6) 一酸化炭素又は二酸化炭素の一方 又は双方と水素を含む原料ガスを反応させてギ酸エステル及びメタノールを製造する方法であって、(1)〜(5)のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことを特徴とするギ酸エステル及びメタノールの製造方法。 (6) A method for producing formate and methanol by reacting one or both of carbon monoxide and carbon dioxide with a source gas containing hydrogen, comprising the catalyst according to any one of (1) to (5) A method for producing formic acid ester and methanol, wherein the reaction is carried out in the presence of an alcohol as a solvent.

(7) 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてメタノールを製造する方法であって、(1)〜(5)のいずれかに記載の触媒、水素化分解触媒と溶媒としてのアルコール類の存在下で反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするギ酸エステル及びメタノールの製造方法。 (7) A method for producing methanol by reacting one or both of carbon monoxide and carbon dioxide with a source gas containing hydrogen, the catalyst according to any one of (1) to (5), hydrocracking A method for producing formic acid ester and methanol, comprising reacting in the presence of a catalyst and an alcohol as a solvent to produce formic acid ester and methanol, and hydrogenating the produced formic acid ester to produce methanol.

(8) 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを、(1)〜(5)のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。 (8) By reacting a raw material gas containing one or both of carbon monoxide and carbon dioxide and hydrogen in the presence of the catalyst according to any one of (1) to (5) and an alcohol as a solvent. A method for producing methanol, comprising separating a product obtained from a reaction system and then hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol.

(9) 前記アルコール類が第二級アルコールである(6)〜(8)のいずれかに記載の製造方法。 (9) The production method according to any one of (6) to (8), wherein the alcohol is a secondary alcohol.

本発明の触媒は、原料ガス中に二酸化炭素、水等が混在しても、又、触媒担体に分散しても、更には連続反応化しても、触媒活性の低下度合いが低く、この触媒を用いたギ酸エステル及びメタノールの製造方法は従来法に比べ低温・低圧で高収率にて合成できるので、設備コストも低減でき、安価にギ酸エステル及びメタノールを供給することが可能になった。   The catalyst of the present invention has a low degree of decrease in catalytic activity even if carbon dioxide, water, etc. are mixed in the raw material gas, dispersed in the catalyst carrier, or further continuously reacted. Since the method for producing formate ester and methanol used can be synthesized at a low yield and a low yield compared to the conventional method, the equipment cost can be reduced and the formate ester and methanol can be supplied at low cost.

以下、本発明を詳細に説明する。
本発明者らは、鋭意検討した結果、CuとMgを同時に含有する触媒、又は、更にアルカリ金属元素を同時に含有する触媒、更には、これらの触媒と多孔質無機化合物を同時に含有する触媒(これらの触媒が多孔質無機化合物に担持されているもの)を用いると、水または二酸化炭素の一方又は双方が混在しても、一酸化炭素又は二酸化炭素の一方又は双方と水素からなる原料ガスから、溶媒としてアルコール類を使用することで、ギ酸エステルおよびメタノールが製造可能であることを見出し、本発明に至った。
Hereinafter, the present invention will be described in detail.
As a result of intensive studies, the present inventors have found that a catalyst containing Cu and Mg simultaneously, a catalyst containing an alkali metal element at the same time, and a catalyst containing these catalyst and a porous inorganic compound simultaneously (these When the catalyst is supported on a porous inorganic compound), even if one or both of water and carbon dioxide are mixed, from the source gas consisting of one or both of carbon monoxide or carbon dioxide and hydrogen, It has been found that formate and methanol can be produced by using alcohols as a solvent, and the present invention has been achieved.

本発明の触媒は、具体的にはCu/MgOX又はCu/MgOX/Na2CO3(Xは化学的に許容し得る値)である。アルカリ金属としては、炭酸塩の他に、硝酸塩、硫酸塩、酸化物を含有しても良い。少なくとも1つを含有し、複数種でも構わない。Na2CO3以外のアルカリ金属炭酸塩としては、Li2CO3、K2CO3、Cs2CO3等が挙げられる。Cu/MgOXにNa2CO3を担持すると、Cu/MgOXと比較して活性が増加する。また、Cu/MgOX/Na2CO3は、Cu/MgOXにおいてわずかに見られる経時的な活性低下を抑制することができる。よって、アルカリ金属炭酸塩の添加効果は、活性向上と活性低下抑制にある。 The catalyst of the present invention is specifically Cu / MgO X or Cu / MgO X / Na 2 CO 3 (X is a chemically acceptable value). As an alkali metal, you may contain nitrate, a sulfate, and an oxide other than carbonate. It contains at least one and may be plural kinds. Examples of the alkali metal carbonate other than Na 2 CO 3 include Li 2 CO 3 , K 2 CO 3 , and Cs 2 CO 3 . When carrying the Na 2 CO 3 to Cu / MgO X, the activity is increased compared to Cu / MgO X. Further, Cu / MgO X / Na 2 CO 3 can be suppressed over time decrease in activity which is slightly observed in the Cu / MgO X. Therefore, the addition effect of alkali metal carbonate is in activity improvement and activity reduction suppression.

上記触媒を多孔質無機化合物上に担持させて使用することも可能であり、多孔質無機化合物としては具体的にはシリカが好適である。多孔質無機化合物上への担持の目的は、活性成分のCu/MgOX又はCu/MgOX/Na2CO3を高分散させ比表面積を増加させることにより、反応効率を向上させ、使用するCu/MgOX又はCu/MgOX/Na2CO3の量を低減することにある。シリカ上にCu/MgOX又はCu/MgOX/Na2CO3を分散させた触媒では、Cu/MgOX単体又はCu/MgOX/Na2CO3単体と比較して原料の転化率は減少するもののメタノール収率が増加する。Cu/MgOXの調製は、含浸法、沈殿法、ゾルゲル法、共沈法、イオン交換法、混練法、蒸発乾固法などの通常の方法によれば良く、特に限定されるものではないが、共沈法によると好結果が得られやすい。また、Cu/MgOX/Na2CO3はCu/MgOXを共沈法で調製し、これに蒸発乾固法でNa2CO3を担持すると好結果が得られやすい。多孔質無機化合物上への分散も通常の方法によれば良い。反応に用いる溶媒としてのアルコール類としては、鎖状または脂環式炭化水素類に水酸基が付いたものの他、フェノール及びその置換体、更には、チオール及びその置換体でも良い。これらアルコール類は、第1級、第2級および第3級のいずれでもよいが、反応効率等の点からは第2級アルコールが好ましく、2-プロパノール、2-ブタノール等の低級アルコールが最も一般的である。反応は、液相、気相のいずれでも行うことができるが、温和な条件を選定しうる系を採用することができる。具体的には、温度70〜250℃、圧力3〜70気圧、時間5分〜10時間が好適な条件であり、より好ましくは温度120〜200℃、圧力15〜50気圧、時間5分〜10時間であるが、これらに限定されない。アルコール類は、反応が進行する程度の量があればよいが、それ以上の量を溶媒として用いることもできる。また、上記反応に際してアルコール類の他に、適宜有機溶媒を併せて用いることができる。 It is also possible to use the catalyst supported on a porous inorganic compound. Specifically, silica is suitable as the porous inorganic compound. The purpose of loading onto the porous inorganic compound is to increase the reaction efficiency by increasing the specific surface area by highly dispersing Cu / MgO X or Cu / MgO X / Na 2 CO 3 as an active ingredient, and to use Cu to be used. The purpose is to reduce the amount of / MgO X or Cu / MgO X / Na 2 CO 3 . In the case of a catalyst in which Cu / MgO X or Cu / MgO X / Na 2 CO 3 is dispersed on silica, the conversion rate of the raw material is reduced compared to Cu / MgO X alone or Cu / MgO X / Na 2 CO 3 alone. The methanol yield increases. Preparation of Cu / MgO X may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, evaporation to dryness method, and is not particularly limited. Good results are likely to be obtained by the coprecipitation method. In addition, Cu / MgO X / Na 2 CO 3 is easily prepared by co-precipitation of Cu / MgO X and carrying Na 2 CO 3 by evaporation to dryness. The dispersion onto the porous inorganic compound may be performed by a usual method. As the alcohol used as a solvent for the reaction, in addition to a chain or alicyclic hydrocarbon having a hydroxyl group, phenol and a substituted product thereof, and further a thiol and a substituted product thereof may be used. These alcohols may be any of primary, secondary, and tertiary, but secondary alcohols are preferred from the viewpoint of reaction efficiency, etc., and lower alcohols such as 2-propanol and 2-butanol are most common. Is. The reaction can be carried out in either the liquid phase or the gas phase, but a system in which mild conditions can be selected can be employed. Specifically, the temperature is 70 to 250 ° C., the pressure is 3 to 70 atmospheres, and the time is 5 minutes to 10 hours. More preferably, the temperature is 120 to 200 ° C., the pressure is 15 to 50 atmospheres, and the time is 5 minutes to 10 hours. Although it is time, it is not limited to these. Alcohols only need to have such an amount that the reaction proceeds, but more than that can be used as a solvent. In the above reaction, in addition to alcohols, an organic solvent can be used as appropriate.

生成物として得られるギ酸エステルとメタノールの混合物は、蒸留により精製してギ酸エステルとメタノールに分離することができ、ギ酸エステルはそのままメタノールの製造に供することもできる。すなわち、ギ酸エステルを水素化分解してメタノールを製造しうる。水素化分解には水素化分解触媒が用いられ、たとえばCu、Pt、Ni、Co、Ru、Pd系の一般的な水素化分解触媒を用いることができる。本発明においては、原料ガスとアルコール類からギ酸エステルとメタノールを生成させる前記反応系にこれらの水素化分解触媒を共存させておくことにより、メタノール選択率を増加させ効率良くメタノールを製造することができる。   The mixture of formic acid ester and methanol obtained as a product can be purified by distillation and separated into formic acid ester and methanol, and the formic acid ester can be directly used for the production of methanol. That is, methanol can be produced by hydrogenolysis of formate. For hydrocracking, a hydrocracking catalyst is used. For example, a general hydrocracking catalyst of Cu, Pt, Ni, Co, Ru, Pd can be used. In the present invention, by allowing these hydrocracking catalysts to coexist in the reaction system for producing formate and methanol from the raw material gas and alcohol, it is possible to increase methanol selectivity and efficiently produce methanol. it can.

また、前記方法でメタノールを製造することが困難な場合は、蒸留により生成したギ酸エステルを分離した後に、水素化分解触媒および水素を共存させてメタノールを得ることが可能である。また、ギ酸エステルとメタノールの混合物を分離せず水素化分解触媒及び水素を共存させて、混合物中のギ酸エステルを水素化分解してメタノールを得ることもできる。ギ酸エステル水素化分解反応によって、メタノール、残存ギ酸エステル、溶媒アルコール(下記(1)式のR-OH)の混合物が得られるが、蒸留によってメタノールを精製する。   In addition, when it is difficult to produce methanol by the above-described method, it is possible to obtain methanol by coexisting a hydrocracking catalyst and hydrogen after separating a formate produced by distillation. Alternatively, methanol can be obtained by hydrocracking the formate ester in the mixture in the presence of a hydrocracking catalyst and hydrogen without separating the mixture of formate ester and methanol. A mixture of methanol, residual formate ester, and solvent alcohol (R—OH of the following formula (1)) is obtained by the formate ester hydrogenolysis reaction, and methanol is purified by distillation.

本発明におけるギ酸エステル、そしてメタノールの製造方法は、次に示す反応式に基づくものと推定される(アルコール類が鎖状または脂環式炭化水素類に水酸基が付いたものである場合を例にとって示す)。   The method for producing formate and methanol in the present invention is presumed to be based on the following reaction formula (in the case where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto as an example. Show).

R-OH+CO →HCOOR (1)
HCOOR+2H2 →CH3OH+R-OH (2)
(ここでRはアルキル基を示す)
R-OH + CO → HCOOR (1)
HCOOR + 2H 2 → CH 3 OH + R-OH (2)
(Where R represents an alkyl group)

ただし、反応系に水が存在する場合は次に示す反応式に基づくと考えられ、前記反応式と並行してギ酸エステルまたはメタノールが生成するものと推定される。 However, when water is present in the reaction system, it is considered to be based on the following reaction formula, and it is estimated that formate or methanol is generated in parallel with the above reaction formula.

CO+H2O →CO2+H2 (3)
CO2+H2+R-OH →HCOOR+H2O (4)
HCOOR+2H2 →CH3OH+R-OH (5)
したがって、メタノールの製造原料は、一酸化炭素と水素、二酸化炭素と水素の、少なくともいずれかであり、アルコール類は回収、再利用しうる。本発明方法によれば、原料ガス中に水、二酸化炭素が、かなりの量で存在していても、触媒の活性が失われることはない。
CO + H 2 O → CO 2 + H 2 (3)
CO 2 + H 2 + R-OH → HCOOR + H 2 O (4)
HCOOR + 2H 2 → CH 3 OH + R-OH (5)
Therefore, the raw material for producing methanol is at least one of carbon monoxide and hydrogen, carbon dioxide and hydrogen, and alcohols can be recovered and reused. According to the method of the present invention, even if water and carbon dioxide are present in a considerable amount in the raw material gas, the activity of the catalyst is not lost.

以下、実施例1〜21と比較例1,2により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。また、これらの結果は表1及び表2として一覧化した。   Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 21 and Comparative Examples 1 and 2, but the present invention is not limited to these Examples. These results are listed in Table 1 and Table 2.

以下の実施例に記載した、CO転化率、CO2転化率、C転化率、ギ酸エステル選択率、メタノール選択率、メタノール収率はそれぞれ次に示す式により算出した。 The CO conversion rate, CO 2 conversion rate, C conversion rate, formate ester selectivity, methanol selectivity, and methanol yield described in the following examples were calculated by the following formulas.

・CO転化率(%)=[1−(反応後に回収されたCOモル数)/(仕込んだCOモル数)]×100 CO conversion rate (%) = [1− (number of moles of CO recovered after reaction) / (number of moles of charged CO)] × 100

・CO2転化率(%)=[1−(反応後に回収されたCO2モル数)/(仕込んだCO2モル数)]×100 CO 2 conversion rate (%) = [1− (number of moles of CO 2 recovered after reaction) / (number of moles of charged CO 2 )] × 100

・C転化率(%)=CO転化率(%)×[(仕込んだCOモル数)/(仕込んだCO+CO2モル数)]+CO2転化率(%)×[(仕込んだCO2モル数)/(仕込んだCO+CO2モル数)] ・ C conversion rate (%) = CO conversion rate (%) x [(number of charged CO moles) / (charged CO + CO 2 mole number)] + CO 2 conversion rate (%) x [(number of charged CO 2 moles) / (CO2 charged + 2 moles of CO)]

・ギ酸エステル選択率(%)=[(反応後に回収されたギ酸エステルモル数)/((C転化率(%))×(仕込んだCO+CO2モル数))]×100 Formate ester selectivity (%) = [(mol formate ester recovered after reaction) / ((C conversion rate (%)) × (charged CO + CO 2 mol))] × 100

・メタノール選択率(%)=[(反応後に回収されたメタノールモル数)/((C転化率(%))×(仕込んだCO+CO2モル数))]×100 Methanol selectivity (%) = [(molar number of methanol recovered after reaction) / ((C conversion (%)) × (number of charged CO + CO 2 moles))] × 100

但し、溶媒としてメタノールを使用した場合は、溶媒として投入したメタノール分を差し引く。   However, when methanol is used as the solvent, the methanol content added as the solvent is subtracted.

・メタノール収率(%)=((生成したメタノールモル数)/(仕込んだCO+CO2モル数))×100
上記と同様に、溶媒としてメタノールを使用した場合は、溶媒として投入したメタノール分を差し引く。
-Methanol yield (%) = ((number of moles of methanol produced) / (number of moles of charged CO + 2 moles of CO)) x 100
Similarly to the above, when methanol is used as the solvent, the methanol content added as the solvent is subtracted.

実施例1:
内容積85mlのオートクレーブを用い、溶媒として水1質量%を含むエタノール10mlに、Cu(NO3)2・3H2O、Mg(NO3)2・6 H2Oを原料として共沈法で調製したCu/MgOX触媒1gを添加し、合成ガス(CO 32.6%、CO2 5.2%、水素 59.2%、Ar 3.0%)を3MPa 充填して、170℃、2時間、反応を行い、反応生成物をガスクロマトグラフで分析した。CO転化率15.5%、CO2転化率23.2%、C転化率16.6%、ギ酸エチル選択率65.6%、メタノール選択率34.4%、メタノール収率5.7%であった。後述の比較例1記載の工業用触媒と比較すると著しく高い活性を示した。また、比較例2に記載の自作したCu/ZnOと比較するとメタノール収率は小さいが同程度のC転化率を示した。
Example 1:
Prepared by coprecipitation method using Cu (NO 3 ) 2 · 3H 2 O and Mg (NO 3 ) 2 · 6 H 2 O as raw materials in 10 ml of ethanol containing 1% by weight of water as a solvent using an autoclave with an internal volume of 85 ml 1 g of Cu / MgO X catalyst was added and charged with 3 MPa of synthesis gas (CO 32.6%, CO 2 5.2%, hydrogen 59.2%, Ar 3.0%) and reacted at 170 ° C for 2 hours. Was analyzed by gas chromatography. The CO conversion was 15.5%, the CO 2 conversion was 23.2%, the C conversion was 16.6%, the ethyl formate selectivity was 65.6%, the methanol selectivity was 34.4%, and the methanol yield was 5.7%. Compared with the industrial catalyst described in Comparative Example 1 described later, the activity was remarkably high. Further, compared with the self-made Cu / ZnO described in Comparative Example 2, the methanol yield was small, but the C conversion rate was similar.

実施例2:
Cu/MgOX触媒の代わりにCu/MgOX/Na2CO3触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率17.2%、CO2転化率19.1%、C転化率17.5%、ギ酸エチル選択率54.8%、メタノール選択率45.2%、メタノール収率7.9%であった。
Example 2:
Another addition of Cu / MgO X / Na 2 CO 3 catalyst in place of Cu / MgO X catalyst The reaction was performed by the method described in Example 1. CO conversion was 17.2%, CO 2 conversion was 19.1%, C conversion was 17.5%, ethyl formate selectivity was 54.8%, methanol selectivity was 45.2%, and methanol yield was 7.9%.

比較例1:
Cu/MgOX触媒の代わりに工業用Cu/ZnO触媒(ICI 51-2)を添加する他は、実施例1に記載の方法で反応を行った。C転化率1.3%、ギ酸エチル選択率70%、メタノール選択率30%、メタノール収率0.4%であった。
Comparative Example 1:
The reaction was carried out by the method described in Example 1 except that an industrial Cu / ZnO catalyst (ICI 51-2) was added instead of the Cu / MgO X catalyst. C conversion was 1.3%, ethyl formate selectivity was 70%, methanol selectivity was 30%, and methanol yield was 0.4%.

実施例3:
Cu/MgOX触媒の代わりにCu/MgOX-SiO2触媒(SiO2;富士シリシア化学(株)製 Q-10)を添加する他は、実施例1に記載の方法で反応を行った。CO転化率12.7%、CO2転化率-3.5%、C転化率10.5%、ギ酸エチル選択率25.9%、メタノール選択率74.1%、メタノール収率7.8%であった。実施例1記載のCu/MgOXと比較するとC転化率は約6%低下するが、メタノール選択率及びメタノール収率は増加した。一方、後述のように比較例2記載のCu/ZnOをSiO2上に分散させた比較例3記載のCu/ZnO-SiO2触媒では担持によりC転化率は約9%低下し、メタノールは生成しなかった。Cu/MgOXはSiO2上への担持による活性低下が小さい触媒であることを確認した。
Example 3:
Cu / MgO X catalyst instead Cu / MgO X -SiO 2 catalyst; addition to adding (SiO 2 Fuji Silysia Q-10 Chemical Co.) was subjected to reaction by the method described in Example 1. The CO conversion was 12.7%, CO 2 conversion was -3.5%, C conversion was 10.5%, ethyl formate selectivity was 25.9%, methanol selectivity was 74.1%, and methanol yield was 7.8%. Compared with Cu / MgO X described in Example 1, the C conversion decreased by about 6%, but the methanol selectivity and methanol yield increased. On the other hand, in the Cu / ZnO-SiO 2 catalyst described in Comparative Example 3 in which Cu / ZnO described in Comparative Example 2 is dispersed on SiO 2 as described later, the C conversion is reduced by about 9% by loading, and methanol is produced. I didn't. Cu / MgO X was confirmed to be a catalyst with a small decrease in activity due to loading on SiO 2 .

実施例4:
Cu/MgOX触媒の代わりにCu/MgOX/Na2CO3-SiO2触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率14.5%、CO2転化率-5.2%、C転化率11.8%、ギ酸エチル選択率20.4%、メタノール選択率79.6%、メタノール収率9.4%であった。
Example 4:
Another addition of Cu / MgO X / Na 2 CO 3 -SiO 2 catalyst in place of Cu / MgO X catalyst The reaction was performed by the method described in Example 1. The CO conversion was 14.5%, the CO 2 conversion was -5.2%, the C conversion was 11.8%, the ethyl formate selectivity was 20.4%, the methanol selectivity was 79.6%, and the methanol yield was 9.4%.

比較例2:
Cu/MgOX触媒の代わりに共沈法で調製したCu/ZnOをSiO2担体に分散させたCu/ZnO-SiO2触媒を添加する他は、実施例1に記載の方法で反応を行った。CO転化率6.2%、CO2転化率15.5%、C転化率7.5%、ギ酸エチル選択率100%、メタノール選択率0%、メタノール収率0%であった。
Comparative Example 2:
The reaction was carried out by the method described in Example 1, except that a Cu / ZnO-SiO 2 catalyst in which Cu / ZnO prepared by a coprecipitation method was dispersed in a SiO 2 support instead of the Cu / MgO X catalyst was added. . The CO conversion was 6.2%, the CO 2 conversion was 15.5%, the C conversion was 7.5%, the ethyl formate selectivity was 100%, the methanol selectivity was 0%, and the methanol yield was 0%.

実施例5:
反応時間を1時間とする他は、実施例1に記載の方法で反応を行った。CO転化率15.3%、CO2転化率2.2%、C転化率13.5%、ギ酸エチル選択率56.4%、メタノール選択率43.6%、メタノール収率5.9%であった。
Example 5:
The reaction was carried out by the method described in Example 1 except that the reaction time was 1 hour. The CO conversion was 15.3%, the CO 2 conversion was 2.2%, the C conversion was 13.5%, the ethyl formate selectivity was 56.4%, the methanol selectivity was 43.6%, and the methanol yield was 5.9%.

実施例6:
反応時間を5時間とする他は、実施例1に記載の方法で反応を行った。CO転化率18.6%、CO2転化率-13.7%、C転化率14.1%、ギ酸エチル選択率33.9%、メタノール選択率66.1%、メタノール収率9.3%であった。
Example 6:
The reaction was carried out by the method described in Example 1 except that the reaction time was 5 hours. CO conversion 18.6%, CO 2 conversion -13.7%, C conversion 14.1%, ethyl formate selectivity 33.9%, methanol selectivity 66.1%, methanol yield 9.3%.

実施例7:
反応時間を10時間とする他は、実施例1に記載の方法で反応を行った。CO転化率23.3%、CO2転化率-13.8%、C転化率18.2%、ギ酸エチル選択率21.5%、メタノール選択率78.5%、メタノール収率14.3%であった。
Example 7:
The reaction was carried out by the method described in Example 1 except that the reaction time was 10 hours. The CO conversion was 23.3%, the CO 2 conversion was -13.8%, the C conversion was 18.2%, the ethyl formate selectivity was 21.5%, the methanol selectivity was 78.5%, and the methanol yield was 14.3%.

実施例8:
反応時間を10時間とする他は、実施例8に記載の方法で反応を行った。CO転化率16.5%、CO2転化率0%、C転化率16.5%、ギ酸エチル選択率5.6%、メタノール選択率62.7%、メタノール収率10.3%であった。
Example 8:
The reaction was performed by the method described in Example 8 except that the reaction time was 10 hours. The CO conversion was 16.5%, the CO 2 conversion was 0%, the C conversion was 16.5%, the ethyl formate selectivity was 5.6%, the methanol selectivity was 62.7%, and the methanol yield was 10.3%.

実施例9:
反応時間を10時間とする他は、実施例9に記載の方法で反応を行った。CO転化率42.0%、CO2転化率0%、C転化率42.0%、ギ酸エチル選択率9.7%、メタノール選択率66.2%、メタノール収率27.8%であった。
Example 9:
The reaction was carried out by the method described in Example 9 except that the reaction time was 10 hours. The CO conversion was 42.0%, the CO 2 conversion was 0%, the C conversion was 42.0%, the ethyl formate selectivity was 9.7%, the methanol selectivity was 66.2%, and the methanol yield was 27.8%.

実施例10:
反応時間を10時間とする他は、実施例10に記載の方法で反応を行った。CO転化率12.2%、CO2転化率40.9%、C転化率23.4%、ギ酸エチル選択率40.0%、メタノール選択率60.0%、メタノール収率14.0%であった。
Example 10:
The reaction was performed by the method described in Example 10 except that the reaction time was 10 hours. The CO conversion was 12.2%, the CO 2 conversion was 40.9%, the C conversion was 23.4%, the ethyl formate selectivity was 40.0%, the methanol selectivity was 60.0%, and the methanol yield was 14.0%.

実施例11:
反応時間を10時間とする他は、実施例11に記載の方法で反応を行った。CO転化率0%、CO2転化率42.7%、C転化率42.7%、ギ酸エチル選択率26.0%、メタノール選択率29.9%、メタノール収率12.8%であった。
Example 11:
The reaction was carried out by the method described in Example 11 except that the reaction time was 10 hours. The CO conversion was 0%, the CO 2 conversion was 42.7%, the C conversion was 42.7%, the ethyl formate selectivity was 26.0%, the methanol selectivity was 29.9%, and the methanol yield was 12.8%.

実施例12:
溶媒として2-ブタノールを使用する他は実施例1に記載の方法で反応を行った。CO転化率21.2%、CO2転化率11.5%、C転化率19.9%、ギ酸エチル選択率86.5%、メタノール選択率13.5%、メタノール収率2.7%であった。溶媒としてエタノールを使用する実施例1と比較するとメタノール収率は減少するが、C転化率は増加した。
Example 12:
The reaction was carried out by the method described in Example 1 except that 2-butanol was used as the solvent. The CO conversion was 21.2%, the CO 2 conversion was 11.5%, the C conversion was 19.9%, the ethyl formate selectivity was 86.5%, the methanol selectivity was 13.5%, and the methanol yield was 2.7%. Compared to Example 1 using ethanol as the solvent, the methanol yield decreased, but the C conversion increased.

実施例13:
溶媒として2-プロパノールを使用する他は実施例1に記載の方法で反応を行った。CO転化率22.3%、CO2転化率32.5%、C転化率23.7%、ギ酸エチル選択率71.3%、メタノール選択率28.7%、メタノール収率6.8%であった。溶媒としてエタノールを使用する実施例1と比較するとメタノール収率、C転化率は共に増加した。
Example 13:
The reaction was performed by the method described in Example 1 except that 2-propanol was used as the solvent. The CO conversion was 22.3%, the CO 2 conversion was 32.5%, the C conversion was 23.7%, the ethyl formate selectivity was 71.3%, the methanol selectivity was 28.7%, and the methanol yield was 6.8%. Compared with Example 1 using ethanol as a solvent, both methanol yield and C conversion increased.

実施例14:
水素化分解触媒としてCu/SiO2触媒(ENGELHARD製 Cu-0860 E 1/8)1gを共存させて使用する他は実施例1に記載の方法で反応を行った。CO転化率13.5%、CO2転化率24.1%、C転化率15.0%、ギ酸エチル選択率19.4%、メタノール選択率80.6%、メタノール収率12.1%であった。水素化分解触媒の共存によって、メタノール選択率、メタノール収率が増加した。
Example 14:
The reaction was carried out by the method described in Example 1, except that 1 g of Cu / SiO 2 catalyst (Cu-0860 E 1/8 manufactured by ENGELHARD) was used as a hydrocracking catalyst. CO conversion was 13.5%, CO 2 conversion was 24.1%, C conversion was 15.0%, ethyl formate selectivity was 19.4%, methanol selectivity was 80.6%, and methanol yield was 12.1%. Coexistence of the hydrocracking catalyst increased methanol selectivity and methanol yield.

実施例15:
実施例1に記載の方法で反応を行った後、オートクレーブ中の溶媒、生成物、触媒の混合物よりデカンテーションにより溶媒と生成物の液体混合物を分取した。該液体混合物と実施例18に記載のCu/SiO2触媒1gをオートクレーブに仕込み、水素ガスを3MPa充填し、150℃、2時間、反応を行い、反応生成物をガスクロマトグラフで分析した。この反応ではギ酸エチルが水素化分解されてメタノールが生成する。水素化分解反応は、ギ酸エチル転化率89.7%、メタノール選択率96.0%、CO選択率4.0%であった。実施例1からの一貫反応として評価するとCO転化率15.0%、CO2転化率23.2%、C転化率16.1%、ギ酸エチル選択率6.8%、メタノール選択率93.2%、メタノール収率15.0%であった。
Example 15:
After performing the reaction by the method described in Example 1, a liquid mixture of the solvent and the product was separated from the mixture of the solvent, the product and the catalyst in the autoclave by decantation. The liquid mixture and 1 g of the Cu / SiO 2 catalyst described in Example 18 were charged into an autoclave, charged with 3 MPa of hydrogen gas, reacted at 150 ° C. for 2 hours, and the reaction product was analyzed by gas chromatography. In this reaction, ethyl formate is hydrocracked to produce methanol. The hydrogenolysis reaction had an ethyl formate conversion of 89.7%, a methanol selectivity of 96.0%, and a CO selectivity of 4.0%. When evaluated as a consistent reaction from Example 1, CO conversion 15.0%, CO 2 conversion 23.2%, C conversion 16.1%, ethyl formate selectivity 6.8%, methanol selectivity 93.2%, methanol yield 15.0% .

実施例16:
図1に示す内容積100mlの半回分式反応器を用い、連続反応での影響を見た。反応装置は、触媒と溶媒アルコールを仕込むオートクレーブ4に、ガスボンベ1から減圧弁2およびマスフローコントローラー3を経て圧力と流量を調整し、原料ガスを連続的に供給可能なものである。オートクレーブ4には、熱電対6を設置して温度管理しており、また、モーター5によって攪拌翼を回転して触媒を含む溶媒を攪拌する。オートクレーブ4出口のガス成分は冷却器7で冷却してギ酸エチル、メタノール、水の液体成分をコールドトラップ8で捕集し、その後に背圧弁9で常圧に戻してガス成分を一部サンプリング12し、ガスクロマトグラフィーで分析する。余剰のガスは流量計10を通してドラフト11へ排気する。コールドトラップ8中の液の成分組成およびサンプリング12したガス成分組成とガス流量から、各種転化率、選択率、及びメタノール収率を算出する。溶媒として水1質量%を含むエタノール20mlに、Cu/MgOX触媒1gを添加し、合成ガス(CO 32.6%、CO2 5.2%、水素 59.2%、Ar 3.0%)を30ml/miで供給し、170℃-3MPaの連続反応を行った。20時間が経過したところで転化率は安定し、CO転化率25.5%、CO2転化率16.9%、C転化率24.3%、ギ酸エチル選択率53.4%、メタノール選択率46.6%、メタノール収率11.3%であった。
Example 16:
Using a semi-batch reactor with an internal volume of 100 ml shown in FIG. 1, the effect of continuous reaction was observed. The reaction apparatus is capable of continuously supplying a source gas to an autoclave 4 charged with a catalyst and a solvent alcohol from a gas cylinder 1 through a pressure reducing valve 2 and a mass flow controller 3 to adjust a pressure and a flow rate. The autoclave 4 is provided with a thermocouple 6 for temperature control, and the motor 5 rotates a stirring blade to stir the solvent containing the catalyst. The gas component at the outlet of the autoclave 4 is cooled by a cooler 7 and liquid components of ethyl formate, methanol and water are collected by a cold trap 8 and then returned to normal pressure by a back pressure valve 9 to partially sample the gas component 12 And analyzed by gas chromatography. Excess gas is exhausted to the draft 11 through the flow meter 10. Various conversion rates, selectivities, and methanol yields are calculated from the component composition of the liquid in the cold trap 8, the sampled gas component composition, and the gas flow rate. 1 g of Cu / MgO X catalyst is added to 20 ml of ethanol containing 1% by mass of water as a solvent, and synthesis gas (CO 32.6%, CO 2 5.2%, hydrogen 59.2%, Ar 3.0%) is supplied at 30 ml / mi. A continuous reaction at 170 ° C. and 3 MPa was performed. After 20 hours, the conversion rate was stable, CO conversion rate 25.5%, CO 2 conversion rate 16.9%, C conversion rate 24.3%, ethyl formate selectivity 53.4%, methanol selectivity 46.6%, methanol yield 11.3% there were.

実施例17:
内容積300mlの半回分式反応器を用い、溶媒として水1質量%を含むエタノール80mlに、Cu/MgOX触媒4gを添加し、合成ガス(CO 32.6%、CO2 5.2%、水素 59.2%、Ar 3.0%)を120ml/minで供給し、170℃-3MPaの連続反応を行った。20時間が経過したところで転化率は安定し、CO転化率24.8%、CO2転化率14.3%、C転化率23.4%、ギ酸エチル選択率52.2%、メタノール選択率47.8%、メタノール収率11.2%であった。スケールを変化しても、同様に合成可能であることが明らかとなった。
Example 17:
Using a semi-batch reactor with an internal volume of 300 ml, adding 80 g of ethanol containing 1% by mass of water as a solvent, adding 4 g of Cu / MgO X catalyst, syngas (CO 32.6%, CO 2 5.2%, hydrogen 59.2%, Ar 3.0%) was supplied at 120 ml / min, and a continuous reaction at 170 ° C. to 3 MPa was performed. After 20 hours, the conversion rate was stable, CO conversion rate 24.8%, CO 2 conversion rate 14.3%, C conversion rate 23.4%, ethyl formate selectivity 52.2%, methanol selectivity 47.8%, methanol yield 11.2% there were. It became clear that synthesis was possible even when the scale was changed.

実施例18:
触媒量を6gとする他は、実施例20に記載の方法で反応を行った。同様に20時間が経過したところで転化率は安定し、CO転化率81.3、CO2転化率38.5%、C転化率75.5%、ギ酸エチル選択率2.2%、メタノール選択率97.8%、メタノール収率69.1%であった。
Example 18:
The reaction was performed by the method described in Example 20 except that the amount of catalyst was 6 g. Similarly, when 20 hours have passed, the conversion rate is stable, CO conversion rate 81.3, CO 2 conversion rate 38.5%, C conversion rate 75.5%, ethyl formate selectivity 2.2%, methanol selectivity 97.8%, methanol yield 69.1% Met.

Figure 2005095872
Figure 2005095872

Figure 2005095872
Figure 2005095872

本発明の実施例で使用した半回分式反応器である。It is the semibatch type reactor used in the Example of this invention.

符号の説明Explanation of symbols

1 ガスボンベ
2 減圧弁
3 マスフローコントローラー
4 オートクレーブ
5 モーター
6 熱電対
7 冷却器
8 コールドトラップ
9 背圧弁
10 流量計
11 ドラフト
12 サンプリング
DESCRIPTION OF SYMBOLS 1 Gas cylinder 2 Pressure reducing valve 3 Mass flow controller 4 Autoclave 5 Motor 6 Thermocouple 7 Cooler 8 Cold trap 9 Back pressure valve 10 Flow meter 11 Draft 12 Sampling

Claims (9)

CuとMgを同時に含有することを特徴とするギ酸エステル及びメタノール合成用触媒。   Catalyst for formate ester and methanol synthesis characterized by containing Cu and Mg simultaneously. アルカリ金属の、炭酸塩、硝酸塩、硫酸塩、又は水酸化物の少なくとも一つを更に含有することを特徴とする請求項1記載のギ酸エステル及びメタノール合成用触媒。   2. The formate ester and methanol synthesis catalyst according to claim 1, further comprising at least one of an alkali metal carbonate, nitrate, sulfate, or hydroxide. 前記触媒が多孔質無機化合物に担持されてなることを特徴とする請求項1又は2記載のギ酸エステル及びメタノール合成用触媒。   3. The formate ester and methanol synthesis catalyst according to claim 1, wherein the catalyst is supported on a porous inorganic compound. 前記アルカリ金属炭酸塩がNa2CO3である請求項2又は3記載のギ酸エステル及びメタノール合成用触媒。 4. The formate ester and methanol synthesis catalyst according to claim 2, wherein the alkali metal carbonate is Na 2 CO 3 . 前記多孔質無機化合物が多孔質シリカであることを特徴とする請求項3又は4記載のギ酸エステル及びメタノール合成用触媒。   5. The formate ester and methanol synthesis catalyst according to claim 3, wherein the porous inorganic compound is porous silica. 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてギ酸エステル及びメタノールを製造する方法であって、請求項1〜5のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことを特徴とするギ酸エステル及びメタノールの製造方法。   6. A method for producing formate and methanol by reacting one or both of carbon monoxide and carbon dioxide with a raw material gas containing hydrogen, comprising: the catalyst according to any one of claims 1 to 5 and an alcohol as a solvent. A process for producing formic acid ester and methanol, wherein the reaction is carried out in the presence of 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを反応させてメタノールを製造する方法であって、請求項1〜5のいずれかに記載の触媒、水素化分解触媒と溶媒としてのアルコール類の存在下で反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするギ酸エステル及びメタノールの製造方法。   A method for producing methanol by reacting one or both of carbon monoxide and carbon dioxide with a raw material gas containing hydrogen, wherein the catalyst, the hydrocracking catalyst and the solvent according to any one of claims 1 to 5 are used. A method for producing formic acid ester and methanol, which comprises reacting in the presence of an alcohol to produce formic acid ester and methanol, and hydrogenating the produced formic acid ester to produce methanol. 一酸化炭素又は二酸化炭素の一方又は双方と水素を含む原料ガスを、請求項1〜5のいずれかに記載の触媒と溶媒としてのアルコール類の存在下で反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。   A product obtained by reacting a raw material gas containing one or both of carbon monoxide and carbon dioxide and hydrogen in the presence of the catalyst according to any one of claims 1 to 5 and an alcohol as a solvent. A methanol production method comprising: separating methanol from a reaction system and hydrogenating a formate in the product with a hydrocracking catalyst to produce methanol. 前記アルコール類が第二級アルコールである請求項6〜8のいずれかに記載の製造方法。   The production method according to claim 6, wherein the alcohol is a secondary alcohol.
JP2004237666A 2003-08-19 2004-08-17 Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol Withdrawn JP2005095872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237666A JP2005095872A (en) 2003-08-19 2004-08-17 Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003207878 2003-08-19
JP2004237666A JP2005095872A (en) 2003-08-19 2004-08-17 Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol

Publications (1)

Publication Number Publication Date
JP2005095872A true JP2005095872A (en) 2005-04-14

Family

ID=34466669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237666A Withdrawn JP2005095872A (en) 2003-08-19 2004-08-17 Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol

Country Status (1)

Country Link
JP (1) JP2005095872A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094461A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094471A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094454A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094468A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2009214077A (en) * 2008-03-12 2009-09-24 Nippon Steel Corp Manufacturing method of catalyst for methanol synthesis and manufacturing method of methanol
JP2019534778A (en) * 2016-09-09 2019-12-05 インテンシケム グループ リミテッド Hydrogenation treatment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094461A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094471A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094454A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094468A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2007216178A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Catalyst for synthesizing methanol, preparing method of the catalyst and manufacturing method of methonol
JP2007217373A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Catalyst for synthesizing methanol, method for producing the same and method for producing methanol
JP2007245139A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2007245138A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2009214077A (en) * 2008-03-12 2009-09-24 Nippon Steel Corp Manufacturing method of catalyst for methanol synthesis and manufacturing method of methanol
JP2019534778A (en) * 2016-09-09 2019-12-05 インテンシケム グループ リミテッド Hydrogenation treatment
JP7175879B2 (en) 2016-09-09 2022-11-21 インテンシケム グループ リミテッド Hydrotreating

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5861024B2 (en) Method for producing glycol from polyhydric alcohol
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
US20200299214A1 (en) Production of ethanol from carbon dioxide and hydrogen
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP2005126427A (en) Method for producing formic acid ester and methanol
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP2941022B2 (en) Method for producing liquid hydrocarbons from CO2 and H2
JP5843250B2 (en) Method for producing methanol
JP5777043B2 (en) Method for producing methanol
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP2010215543A (en) Method for producing methanol
WO2005030686A1 (en) Method for producing organic compound
JP2023167854A (en) Acetone hydrogenation catalyst and method for producing isopropanol
JPS60248647A (en) Production of alpha-phenylethylamine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060926

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106