JP5264083B2 - Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol - Google Patents

Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol Download PDF

Info

Publication number
JP5264083B2
JP5264083B2 JP2007021950A JP2007021950A JP5264083B2 JP 5264083 B2 JP5264083 B2 JP 5264083B2 JP 2007021950 A JP2007021950 A JP 2007021950A JP 2007021950 A JP2007021950 A JP 2007021950A JP 5264083 B2 JP5264083 B2 JP 5264083B2
Authority
JP
Japan
Prior art keywords
catalyst
methanol
formate
carbonate
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007021950A
Other languages
Japanese (ja)
Other versions
JP2007245138A (en
Inventor
薫 藤元
健一郎 藤本
典之 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2007021950A priority Critical patent/JP5264083B2/en
Priority to PCT/JP2007/052886 priority patent/WO2007094471A1/en
Publication of JP2007245138A publication Critical patent/JP2007245138A/en
Application granted granted Critical
Publication of JP5264083B2 publication Critical patent/JP5264083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a methanol synthesis catalyst for synthesis of methanol via a formic acid ester wherein a reaction is performed by using a raw material gas containing hydrogen and at least either of carbon monoxide and carbon dioxide in the presence of an alcohol as a solvent. The methanol synthesis catalyst contains a hydrocracking catalyst in addition to at least one of sodium formate, rubidium carbonate and caesium carbonate.

Description

本発明は、メタノール合成用触媒、及び該触媒の製造方法、並びにメタノールの製造方法に関する。さらに詳しくは、一酸化炭素、二酸化炭素のいずれかの炭素源と水素からメタノールを製造する際に、活性の高い触媒及びこれを用いて高効率で生成物を得る方法に関する。   The present invention relates to a catalyst for methanol synthesis, a method for producing the catalyst, and a method for producing methanol. More specifically, the present invention relates to a highly active catalyst and a method for obtaining a product with high efficiency by using this catalyst when producing methanol from carbon source of either carbon monoxide or carbon dioxide and hydrogen.

一般的に、工業的にメタノールを合成する際には、メタンを主成分とする天然ガスを水蒸気改質して得られる一酸化炭素と水素(合成ガス)を原料とし、銅・亜鉛系等の触媒を用いて固定床気相法にて、200〜300℃、5〜25MPaという厳しい条件で合成される(非特許文献1)。反応機構としては以下に示すように、二酸化炭素の水素化により、メタノール、水が生成し、次いで生成水が一酸化炭素と反応し二酸化炭素と水素が生成(水性ガスシフト反応)する逐次反応であるとする説が一般的に受け入れられている。   Generally, when industrially synthesizing methanol, carbon monoxide and hydrogen (synthetic gas) obtained by steam reforming natural gas mainly composed of methane are used as raw materials, and copper, zinc-based, etc. The catalyst is synthesized using a fixed bed gas phase method under severe conditions of 200 to 300 ° C. and 5 to 25 MPa (Non-patent Document 1). As shown below, the reaction mechanism is a sequential reaction in which methanol and water are produced by hydrogenation of carbon dioxide, and then the produced water reacts with carbon monoxide to produce carbon dioxide and hydrogen (water gas shift reaction). The theory is generally accepted.

CO2 + 3H2 → CH3OH + H2O (1)
H2O + CO → CO2 + H2 (2)
CO + 2H2 → CH3OH (3)
本反応は発熱反応であるが、気相法では熱伝導が悪いために、効率的な抜熱が困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスをリサイクルするという効率に難点のあるプロセスとなっている。しかし、合成ガス中に含まれる、水、二酸化炭素による反応阻害は受けにくいという長所を活かして、様々なプラントが稼働中である。
CO 2 + 3H 2 → CH 3 OH + H 2 O (1)
H 2 O + CO → CO 2 + H 2 (2)
CO + 2H 2 → CH 3 OH (3)
Although this reaction is an exothermic reaction, it is difficult to remove heat efficiently due to poor heat conduction in the gas phase method, so the conversion rate when passing through the reactor is kept low, and unreacted high-pressure raw material gas Recycling is a difficult process in terms of efficiency. However, taking advantage of the fact that reaction inhibition by water and carbon dioxide contained in synthesis gas is difficult, various plants are in operation.

一方、液相でメタノールを合成して、抜熱速度を向上させる様々の方法が検討されている。中でも、低温(100〜180℃程度)で活性の高い触媒を用いる方法は、熱力学的にも生成系に有利であり、注目を集めている(非特許文献2等)。使用される触媒はアルカリ金属アルコキサイドであるが、これらの方法では、合成ガス中に必ず含有される水、二酸化炭素による活性低下が報告され、何れも実用には至っていない(非特許文献3)。これは活性の高いアルカリ金属アルコキサイドが反応中に、低活性で安定なギ酸塩等に変化するためである。活性低下を防ぐためにはppbオーダーまで、原料ガス中の水、二酸化炭素を除去する必要があるが、そのような前処理を行うとコストが高くなり現実的ではない。   On the other hand, various methods for improving the heat removal rate by synthesizing methanol in a liquid phase have been studied. Among them, a method using a catalyst having high activity at a low temperature (about 100 to 180 ° C.) is thermodynamically advantageous for the production system, and has attracted attention (Non-patent Document 2, etc.). The catalyst used is an alkali metal alkoxide, but these methods have reported a decrease in activity due to water and carbon dioxide that are always contained in the synthesis gas, and none of them have been put into practical use (Non-patent Document 3). This is because a highly active alkali metal alkoxide is converted into a low activity and stable formate during the reaction. In order to prevent the decrease in activity, it is necessary to remove water and carbon dioxide in the raw material gas up to the ppb order. However, such pretreatment increases the cost and is not realistic.

本発明者らはこれまでに、水、二酸化炭素による活性低下が小さい触媒として、アルカリ金属アルコキサイドを除くアルカリ金属系触媒とアルカリ土類金属系触媒の一方又は双方を水素化分解触媒と共存させて使用する系を見出している(特許文献1)。しかし、更なる触媒活性向上によって高効率に製品メタノールを合成することが可能になる。
特開2001-862701 J. C. J. Bart et al., Catal. Today, 2, 1 (1987) 大山聖一, PETROTECH, 18(1), 27 (1995) S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)
The present inventors have so far made one or both of an alkali metal catalyst and an alkaline earth metal catalyst excluding alkali metal alkoxide coexist with a hydrocracking catalyst as a catalyst with a small decrease in activity due to water and carbon dioxide. A system to be used has been found (Patent Document 1). However, further improvement in catalytic activity makes it possible to synthesize product methanol with high efficiency.
JP2001-862701 JCJ Bart et al., Catal. Today, 2, 1 (1987) Seiichi Oyama, PETROTECH, 18 (1), 27 (1995) S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)

本発明は、上記の課題を解決することを目的とするものであり、メタノールの合成原料ガス中に二酸化炭素、水等が少量混在しても触媒の活性低下の度合いが低く、かつ、低温、低圧でギ酸エステル及びメタノールを合成することが可能な触媒及び該触媒の製造方法、並びに該触媒を用いた液相でのメタノールの合成方法を提供するものである。   The present invention aims to solve the above-mentioned problems, and even if a small amount of carbon dioxide, water, etc. are mixed in the methanol synthesis raw material gas, the degree of catalyst activity decrease is low, and the temperature is low. The present invention provides a catalyst capable of synthesizing formate and methanol at low pressure, a method for producing the catalyst, and a method for synthesizing methanol in a liquid phase using the catalyst.

本発明の特徴とするところは、以下に記す通りである。
(1) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPdを含有する水素化分解触媒(触媒成分2)を有し、該水素化分解触媒の前記Na(触媒成分2)が炭酸塩又はギ酸塩としてCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていないことを特徴とするメタノール合成用触媒。
The features of the present invention are as described below.
(1) A catalyst for synthesizing methanol via a formic acid ester that reacts in the presence of at least one of carbon monoxide and carbon dioxide, and hydrogen, and an alcohol as a solvent. In addition to at least one of rubidium and cesium carbonate (catalyst component 1) , a hydrocracking catalyst (catalyst component 2) containing Cu, Mg and Na, or Cu, Mg, Na and Pd is included, and the hydrogenation The decomposition catalyst Na (catalyst component 2) is supported on a solid catalyst of Cu / MgO as a carbonate or formate , and sodium formate (catalyst present) as at least one of the sodium formate, rubidium carbonate, and cesium carbonate. Component 1) is a catalyst for methanol synthesis, which is not supported on the solid catalyst.

(2) 前記水素化分解触媒の前記PdがCu/MgOの固体触媒に担持されていることを特徴とする(1)に記載のメタノール合成用触媒。 (2) The methanol synthesis catalyst according to (1), wherein the Pd of the hydrocracking catalyst is supported on a Cu / MgO solid catalyst.

(3) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg、Na及びPdを含有する水素化分解触媒(触媒成分2)を有し、該水素化分解触媒の前記Pd(触媒成分2)がCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていないことを特徴とするメタノール合成用触媒。 (3) A catalyst for synthesizing methanol via a formate ester that reacts in the presence of at least one of carbon monoxide and carbon dioxide, and hydrogen, and an alcohol as a solvent. In addition to at least one of rubidium and cesium carbonate (catalyst component 1) , the catalyst has a hydrocracking catalyst (catalyst component 2) containing Cu, Mg, Na and Pd, and the Pd (catalyst) of the hydrocracking catalyst Component 2) is supported on a solid catalyst of Cu / MgO, and sodium formate (catalyst component 1) present as at least one of sodium formate, rubidium carbonate, and cesium carbonate is not supported on the solid catalyst. A catalyst for synthesizing methanol.

4) 前記水素化分解触媒の前記Pdの担持量が0.001〜1mass%であることを特徴とする(2)〜(3)のいずれかに記載のメタノール合成用触媒。 ( 4 ) The catalyst for methanol synthesis according to any one of (2) to ( 3 ), wherein the amount of Pd supported on the hydrocracking catalyst is 0.001 to 1 mass%.

5) (1)〜(4)に記載のメタノール合成用触媒の製造方法であって、前記Cu/MgOを共沈法で調製した後、Cu/MgOにNa及び/又はPdを含浸法で担持することを特徴とするメタノール合成用触媒の製造方法。 ( 5 ) The method for producing a catalyst for methanol synthesis according to ( 1 ) to ( 4 ), wherein Cu / MgO is prepared by a coprecipitation method, and then Cu / MgO is impregnated with Na and / or Pd. A method for producing a catalyst for methanol synthesis, characterized by being supported.

6) (1)〜(4)に記載のメタノール合成用触媒の製造方法であって、前記Cu/MgOを共沈法においてpH=8〜11の範囲で一定に保ちながら調製することを特徴とするメタノール合成用触媒の製造方法。 ( 6 ) A method for producing a catalyst for methanol synthesis as described in ( 1 ) to ( 4 ), characterized in that the Cu / MgO is prepared while being kept constant in the range of pH = 8 to 11 in the coprecipitation method. A method for producing a catalyst for methanol synthesis.

(7) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPd(触媒成分2)を含有し、Pd及び/又は炭酸塩又はギ酸塩としてのNa(触媒成分2)はCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていない水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。 (7) A method of producing methanol by reacting at least one of carbon monoxide and carbon dioxide, and hydrogen-containing source gas, wherein at least one of sodium formate, rubidium carbonate, and cesium carbonate (catalyst component 1) In addition to Cu, Mg and Na, or Cu, Mg, Na and Pd (catalyst component 2) , Pd and / or Na as a carbonate or formate (catalyst component 2) is a solid of Cu / MgO. Sodium hydroformate (catalyst component 1) present as at least one of sodium formate, rubidium carbonate, and cesium carbonate supported on the catalyst is present in the hydrocracking catalyst not supported on the solid catalyst, and alcohols The reaction below is performed to produce formate ester and methanol, and the produced formate ester is hydrogenated to produce methanol Method of manufacturing methanol according to claim Rukoto.

(8) 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスをギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPd(触媒成分2)を含有し、Pd及び/又は炭酸塩又はギ酸塩としてのNa(触媒成分2)はCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていない水素化分解触媒、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。 (8) At least one of carbon monoxide, carbon dioxide, and hydrogen-containing source gas is added to at least one of sodium formate, rubidium carbonate, cesium carbonate (catalyst component 1) , Cu, Mg and Na, or Cu Mg, Na and Pd (catalyst component 2) , and Pd and / or Na (catalyst component 2) as carbonate or formate are supported on a solid catalyst of Cu / MgO, and the sodium formate, Sodium formate (catalyst component 1) present as at least one of rubidium carbonate and cesium carbonate is a product obtained by reacting in the presence of a hydrocracking catalyst not supported on the solid catalyst and an alcohol. After the methanol is separated from the reaction system, methanol is produced by hydrogenating the formate in the product with a hydrocracking catalyst. Manufacturing method Le.

9) 前記アルコール類が第一級アルコールであることを特徴とする(7)又は(8)に記載のメタノールの製造方法。 ( 9 ) The method for producing methanol according to ( 7) or (8) , wherein the alcohol is a primary alcohol.

本発明における、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに加えて、Cu、Mg、Na、Pdを含有する触媒を共存させた系で、合成原料ガスである、一酸化炭素、二酸化炭素の少なくともいずれか及び水素から溶媒アルコールの存在下ギ酸エステル及びメタノールを製造すると、低温、低圧で連続反応において安定的にメタノールを高効率で合成することが可能となった。また、合成原料ガス中に水、二酸化炭素等が少量混在しても触媒の活性低下の度合いが低いため安価でメタノールを製造することが可能となった。   In the present invention, in addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate, a system containing a catalyst containing Cu, Mg, Na, and Pd, a synthetic raw material gas, carbon monoxide, carbon dioxide When formate and methanol were produced from at least one of the above and hydrogen in the presence of a solvent alcohol, it was possible to synthesize methanol stably and efficiently in a continuous reaction at low temperature and low pressure. In addition, even if a small amount of water, carbon dioxide, or the like is mixed in the synthetic raw material gas, it is possible to produce methanol at a low cost because the degree of decrease in the activity of the catalyst is low.

以下、本発明を詳細に説明する。
本発明者らは、鋭意検討した結果、触媒及び溶媒を反応器に仕込み原料ガスを供給する半回分式の連続反応において、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPdを含有し、Pd及び/又は炭酸塩又はギ酸塩としてのNaがCu/MgOの固体触媒に担持されている水素化分解触媒を含有する触媒を用いると、一酸化炭素、二酸化炭素の少なくともいずれか、及び水素とアルコール類からメタノールの製造において、高収率で製造可能であることを見出し、本発明に至った
Hereinafter, the present invention will be described in detail.
As a result of diligent investigations, the present inventors have conducted a semi-batch continuous reaction in which a catalyst and a solvent are charged into a reactor and a raw material gas is supplied, in addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate, Cu, Use a catalyst containing a hydrocracking catalyst containing Mg and Na, or Cu, Mg, Na and Pd, and Pd and / or Na as carbonate or formate supported on a Cu / MgO solid catalyst And in the manufacture of methanol from at least one of carbon monoxide and carbon dioxide, and hydrogen and alcohols, it was found that it can be produced in high yield, and the present invention has been achieved .

例えば、図1に示すような反応プロセスで連続的にメタノールを製造し得る。半回分式反応器2にギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに加えて、Cu、Mg、Na、Pdを含有する固体触媒を溶媒アルコールと共に仕込み、合成ガス1を供給する。反応器出口の生成物(ギ酸エステル、メタノール)、未反応ガスの混合物3を冷却器4で冷却し、未反応ガス5、ギ酸エステルとアルコールの液体混合物6に分離する。後者は次段に設置した蒸留塔7においてギ酸エステル8、メタノール9に分離する。転化率が低い場合は未反応ガス5を再度半回分式反応器2に供給することも可能であるが、高収率で得られる場合は未反応ガスを合成ガス製造の熱源(燃料)として利用する。   For example, methanol can be continuously produced by a reaction process as shown in FIG. In addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate, a semi-batch reactor 2 is charged with a solid catalyst containing Cu, Mg, Na, and Pd together with a solvent alcohol, and synthesis gas 1 is supplied. The product 3 at the outlet of the reactor (formate ester, methanol) and the unreacted gas mixture 3 are cooled by a cooler 4 and separated into an unreacted gas 5 and a liquid mixture 6 of formate ester and alcohol. The latter is separated into formate ester 8 and methanol 9 in distillation column 7 installed in the next stage. When the conversion rate is low, it is possible to supply the unreacted gas 5 to the semi-batch reactor 2 again, but when it is obtained in high yield, the unreacted gas is used as a heat source (fuel) for synthesis gas production. To do.

Cu、Mg及びNa、又はCu、Mg、Na及びPdを含有する固体触媒は具体的にはCu/MgOX/Na/Pd(Xは0でもよい化学的に許容し得る値)であり、例えば、Cu/MgOX/HCOONa/Pd(Xは化学的に許容し得る値)である。Cu/MgOXの調製は、含浸法、沈殿法、ゾルゲル法、共沈法、イオン交換法、混練法、蒸発乾固法などの通常の方法によれば良く、特に限定されるものではないが、共沈法によると好結果が得られやすい。共沈法で調製する際に一定に保つpHによって、CO転化率は大きく異なる。Cu/MgOXを調製する際のpHは8〜11が好ましく、より好ましくは8.5〜10.5であり、更に好ましくは9〜10である。pHが11を超える範囲については、高アルカリ雰囲気に保持する為に沈殿剤として使用するアルカリ性化合物の使用量が著しく増加する為、経済的でない。Cu/MgOXへのNa塩の担持方法は、上記の通常の方法によれば良く、特に限定されるものではないが、含浸法又は蒸発乾固法によると好結果が得られやすい。Cu/MgOXに対するNaの担持量は、効果を発現する最低量以上であり、特に限定されることは無いが、0.1〜60mass%の範囲が好ましく、より好ましくは1〜40mass%であり、更に好ましくは3〜30mass%である。また、担持するNa塩としてはギ酸ナトリウム、炭酸ナトリウムなどが好ましい。これらのNa塩を担持することで触媒活性が増加する。また、Cu/MgOX/Naは、Cu/MgOXにおいてわずかに見られる経時的な活性低下を抑制することができる。よって、アルカリ金属炭酸塩の添加効果は、活性向上と活性低下抑制にある。 The solid catalyst containing Cu, Mg and Na, or Cu, Mg, Na and Pd is specifically Cu / MgO x / Na / Pd (where X is a chemically acceptable value which may be 0), for example Cu / MgO X / HCOONa / Pd (X is a chemically acceptable value). The preparation of Cu / MgO X may be carried out by ordinary methods such as impregnation method, precipitation method, sol-gel method, coprecipitation method, ion exchange method, kneading method, evaporation to dryness method, and is not particularly limited. Good results are likely to be obtained by the coprecipitation method. The CO conversion varies greatly depending on the pH that is kept constant during preparation by the coprecipitation method. The pH for preparing Cu / MgO X is preferably 8 to 11, more preferably 8.5 to 10.5, and still more preferably 9 to 10. When the pH exceeds 11, the amount of the alkaline compound used as the precipitating agent to maintain the high alkaline atmosphere is remarkably increased, which is not economical. The method for supporting Na salt on Cu / MgO X may be the above-mentioned ordinary method, and is not particularly limited, but good results are easily obtained by the impregnation method or the evaporation to dryness method. The amount of Na supported on Cu / MgO X is not less than the minimum amount that exhibits the effect, and is not particularly limited, but is preferably in the range of 0.1 to 60 mass%, more preferably 1 to 40 mass%, Preferably it is 3-30 mass%. Further, sodium formate, sodium carbonate and the like are preferable as the Na salt to be supported. Catalytic activity increases by loading these Na salts. Further, Cu / MgO X / Na can be suppressed over time decrease in activity which is slightly observed in the Cu / MgO X. Therefore, the addition effect of alkali metal carbonate is in activity improvement and activity reduction suppression.

Pdの担持方法も通常の方法によれば良く、特に限定されるものではないが、同様に含浸法、蒸発乾固法によると好結果が得られやすい。Cu/MgOX/Naに対するPdの担持量は、効果を発現する最低量以上であり、特に限定されることは無いが、0.001〜1mass%の範囲が好ましく、より好ましくは0.005〜0.5mass%、更に好ましくは0.01〜0.1mass%である。Pdを担持することによって、触媒活性が向上する。 The Pd loading method may be a normal method and is not particularly limited. Similarly, good results are easily obtained by the impregnation method and the evaporation to dryness method. The amount of Pd supported with respect to Cu / MgO X / Na is not less than the minimum amount that exhibits an effect, and is not particularly limited, but is preferably in the range of 0.001 to 1 mass%, more preferably 0.005 to 0.5 mass%, More preferably, it is 0.01-0.1 mass%. By supporting Pd, the catalytic activity is improved.

Na、Pdは上述のようにCu/MgOXへ逐次担持することが好ましいが、担持するNa塩と担持するPdの前駆体であるPdプレカーサーが同一の液体に溶解する場合、同時に担持することも可能である。また、Pdを先に担持することでCu/MgOX/Pdを調製し、次いでNa塩を担持することもできる。 Na and Pd are preferably supported sequentially on Cu / MgO X as described above, but when the Na salt to be supported and the Pd precursor that is the precursor of Pd to be supported are dissolved in the same liquid, they may be supported simultaneously. Is possible. Alternatively, Cu / MgO x / Pd can be prepared by loading Pd first, and then a Na salt can be loaded.

上述のCu、Mg及びNa、又はCu、Mg、Na及びPdを含有する固体触媒は、主に生成ギ酸エステルの水素化分解において触媒作用を示すが、溶媒アルコールへのCO挿入反応にも触媒作用を示す。 The above-mentioned solid catalyst containing Cu, Mg and Na, or Cu, Mg, Na and Pd mainly shows a catalytic action in the hydrocracking of the produced formate, but also catalyses the CO insertion reaction into the solvent alcohol. Indicates.

ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムのアルカリ金属塩は、溶媒アルコールへのCO挿入反応において高い活性を示す。   Sodium metal formate, rubidium carbonate, and alkali metal salts of cesium carbonate show high activity in the CO insertion reaction into solvent alcohol.

反応に用いるアルコール類としては、鎖状または脂環式炭化水素類に水酸基が付いたものの他、フェノール及びその置換体、更には、チオール及びその置換体でも良い。これらアルコール類は、第1級、第2級および第3級のいずれでもよいが、反応効率等の点からは第1級アルコールが好ましく、メチルアルコール、エチルアルコール等の低級アルコールが最も一般的である。   The alcohol used in the reaction may be a chain or alicyclic hydrocarbon having a hydroxyl group, a phenol and a substituted product thereof, or a thiol and a substituted product thereof. These alcohols may be any of primary, secondary and tertiary, but primary alcohols are preferred from the viewpoint of reaction efficiency, etc., and lower alcohols such as methyl alcohol and ethyl alcohol are the most common. is there.

反応は、液相、気相のいずれでも行うことができるが、温和な条件を選定しうる系を採用することができる。具体的には、温度70〜250℃、圧力3〜100気圧が好適な条件であり、より好ましくは温度120〜200℃、圧力15〜80気圧であるが、これらに限定されない。アルコール類は、反応が進行する程度の量があればよいが、それ以上の量を溶媒として用いることもできる。また、上記反応に際してアルコール類の他に、適宜有機溶媒を併せて用いることができる。   The reaction can be carried out in either the liquid phase or the gas phase, but a system in which mild conditions can be selected can be employed. Specifically, a temperature of 70 to 250 ° C. and a pressure of 3 to 100 atmospheres are preferable conditions, and a temperature of 120 to 200 ° C. and a pressure of 15 to 80 atmospheres are more preferable, but not limited thereto. Alcohols only need to have such an amount that the reaction proceeds, but more than that can be used as a solvent. In the above reaction, in addition to alcohols, an organic solvent can be used as appropriate.

得られるギ酸エステルは、蒸留等の常法により精製することができるが、そのままメタノールの製造に供することもできる。すなわち、ギ酸エステルを水素化分解してメタノールを製造しうる。   The resulting formic acid ester can be purified by conventional methods such as distillation, but can also be used for the production of methanol as it is. That is, methanol can be produced by hydrogenolysis of formate.

水素化分解には水素化分解触媒が用いられ、たとえばCu、Pt、Ni、Co、Ru、Pd系の一般的な水素化分解触媒を用いることができるが、本発明のCu/MgOX/Na/Pdを使用することもできる。原料ガスとアルコール類からギ酸エステルとメタノールを生成させる前記反応系にこれらの一般的な水素化分解触媒を共存させておくことにより、メタノール選択率を増加させ効率良くメタノールを製造することも可能である。 For hydrocracking, a hydrocracking catalyst is used. For example, a general hydrocracking catalyst of Cu, Pt, Ni, Co, Ru, Pd can be used, but the Cu / MgO x / Na of the present invention can be used. You can also use / Pd. By making these general hydrocracking catalysts coexist in the reaction system for producing formate and methanol from the raw material gas and alcohol, it is possible to increase methanol selectivity and efficiently produce methanol. is there.

また、ギ酸エステル選択率が高い反応条件において、一段階でメタノールを製造することが困難な場合は、反応で得られた生成物を反応系から蒸留法等で分離した後、該生成物中のギ酸エステルを水素化分解触媒および水素を共存させて、水素化分解してメタノールを得ることも可能である。   In addition, when it is difficult to produce methanol in one step under the reaction conditions with high formate ester selectivity, the product obtained in the reaction is separated from the reaction system by distillation or the like, It is also possible to obtain methanol by hydrocracking formate in the presence of a hydrocracking catalyst and hydrogen.

本発明の触媒を用いた方法では、原料ガス中の炭素源としてはCO2のみでもメタノールを得ることができるが、COのみの場合と比較すると活性は低い。また、炭素源としてCOを主成分とする原料ガス中に含有されるCO2、H2O濃度は、低いほど高収率でメタノールを得ることができるが、それぞれ1%程度含有しても、CO転化率、メタノール収率はほとんど影響を受けない。しかし、それ以上の濃度で含有するとCO転化率、メタノール収率は低下する。 In the method using the catalyst of the present invention, methanol can be obtained even with only CO 2 as the carbon source in the raw material gas, but the activity is lower than in the case of using only CO. Moreover, the lower the concentration of CO 2 and H 2 O contained in the source gas containing CO as a main component as a carbon source, the higher the yield of methanol can be obtained. CO conversion and methanol yield are hardly affected. However, if it is contained at a concentration higher than that, the CO conversion rate and the methanol yield decrease.

本発明におけるメタノールの製造方法は、次の反応式に基づくものと推定される(アルコール類が鎖状または脂環式炭化水素類に水酸基が付いたものである場合を例にとって示す)。   The method for producing methanol in the present invention is presumed to be based on the following reaction formula (shown as an example where the alcohol is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto).

ROH+CO→HCOOR (4)
HCOOR+2H2→CH3OH+ROH (5)
(ここでRはアルキル基を示す)
ROH + CO → HCOOR (4)
HCOOR + 2H 2 → CH 3 OH + ROH (5)
(Where R represents an alkyl group)

したがって、メタノールの製造原料は、一酸化炭素と水素、二酸化炭素と水素の、少なくともいずれかであり、アルコール類は回収、再利用しうる。本発明方法によれば、原料ガス中に水、二酸化炭素が、少量存在していても、触媒の活性低下は小さい。   Therefore, the raw material for producing methanol is at least one of carbon monoxide and hydrogen, carbon dioxide and hydrogen, and alcohols can be recovered and reused. According to the method of the present invention, even if a small amount of water and carbon dioxide are present in the raw material gas, the decrease in the activity of the catalyst is small.

尚、本発明における、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかに加えて、水素化分解触媒を有する触媒においては、液相で使用すると、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかは一部又は条件によっては全部が溶解して、水素化分解触媒とは分離しても、互いに触媒としての作用効果を奏することから、触媒を用意する際に、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかと、水素化分解触媒とをそれぞれ反応系に投入、又は、両者を混合したものを反応系に投入して、本発明の触媒として用いても構わない。   In the present invention, in addition to at least one of sodium formate, rubidium carbonate, and cesium carbonate, a catalyst having a hydrocracking catalyst, when used in a liquid phase, is at least one of sodium formate, rubidium carbonate, and cesium carbonate. Even if they are partially or completely dissolved depending on the conditions, and they are separated from the hydrocracking catalyst, they can act as catalysts, so when preparing the catalyst, sodium formate, rubidium carbonate, cesium carbonate At least one of the above and a hydrocracking catalyst may be added to the reaction system, or a mixture of both may be input to the reaction system and used as the catalyst of the present invention.

以下、実施例1〜19、比較例1、2により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。また、これらの結果は表1、表2として一覧化した。
実施例1
内容積50mlのオートクレーブを用い、溶媒として水1質量%を含むエタノール10mlに、炭酸ルビジウム2.5mmolに加えて、Cu(NO32・3H2O、Mg(NO32・6H2Oを原料として共沈法でpH=10.0に保持しながらCu/MgOXを調製し、Cu/MgOX に対してNa2CO3(18.7mass%)、Pd(0.25mass%)を逐次含浸担持したCu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gを添加し、合成ガス(CO 32.40vol%、水素 64.58vol%、Ar 3.02vol%)を5MPa 充填して、160℃、5時間反応を行い、反応生成物をガスクロマトグラフで分析した。メタノール生成量84.6mmol、ギ酸エチル生成量2.1mmolであった。
Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 19 and Comparative Examples 1 and 2, but the present invention is not limited to these Examples. These results are listed in Tables 1 and 2.
Example 1
Using an autoclave with an internal volume of 50 ml, in addition to 2.5 mmol of rubidium carbonate in 10 ml of ethanol containing 1% by mass of water as a solvent, Cu (NO 3 ) 2 · 3H 2 O, Mg (NO 3 ) 2 · 6H 2 O Cu / MgO X was prepared as a raw material while maintaining pH = 10.0 by the coprecipitation method, and Cu / MgO X was sequentially impregnated and supported with Na 2 CO 3 (18.7 mass%) and Pd (0.25 mass%). / MgO X / Na 2 CO 3 (18.7 mass%) / Pd (0.25 mass%) 1 g of catalyst was added, and synthesis gas (CO 32.40 vol%, hydrogen 64.58 vol%, Ar 3.02 vol%) was charged at 5 MPa, The reaction was performed at 160 ° C. for 5 hours, and the reaction product was analyzed by gas chromatography. The amount of methanol produced was 84.6 mmol, and the amount of ethyl formate produced was 2.1 mmol.

実施例2
炭酸ルビジウム2.5mmolの代わりにギ酸ナトリウム2.5mmolを添加する他は、実施例1に記載の方法で反応を行った。メタノール生成量109.1mmol、ギ酸エチル生成量2.7mmolであった。
Example 2
The reaction was carried out by the method described in Example 1, except that 2.5 mmol of sodium formate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 109.1 mmol, and the amount of ethyl formate produced was 2.7 mmol.

実施例3
炭酸ルビジウム2.5mmolの代わりに炭酸セシウム2.5mmolを添加する他は、実施例1に記載の方法で反応を行った。メタノール生成量77.8mmol、ギ酸エチル生成量2.2mmolであった。
Example 3
The reaction was carried out by the method described in Example 1, except that 2.5 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 77.8 mmol, and the amount of ethyl formate produced was 2.2 mmol.

比較例1
炭酸ルビジウム2.5mmolの代わりにギ酸カリウム2.5mmolを添加する他は、実施例1に記載の方法で反応を行った。メタノール生成量55.3mmol、ギ酸エチル生成量2.1mmolであった。
Comparative Example 1
The reaction was carried out by the method described in Example 1 except that 2.5 mmol of potassium formate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 55.3 mmol, and the amount of ethyl formate produced was 2.1 mmol.

実施例4
炭酸ルビジウムの添加量を1.25mmolとする他は、実施例1に記載の方法で反応を行った。メタノール生成量55.6mmol、ギ酸エチル生成量1.9mmolであった。
Example 4
The reaction was carried out by the method described in Example 1 except that the amount of rubidium carbonate added was 1.25 mmol. The amount of methanol produced was 55.6 mmol and the amount of ethyl formate produced was 1.9 mmol.

実施例5
炭酸ルビジウム2.5mmolの代わりにギ酸ナトリウム1.0mmolを添加する他は、実施例1に記載の方法で反応を行った。メタノール生成量79.4mmol、ギ酸エチル生成量1.8mmolであった。
Example 5
The reaction was carried out by the method described in Example 1 except that 1.0 mmol of sodium formate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 79.4 mmol, and the amount of ethyl formate produced was 1.8 mmol.

実施例6
炭酸ルビジウム2.5mmolの代わりに炭酸セシウム1.25mmolを添加する他は、実施例1に記載の方法で反応を行った。メタノール生成量38.7mmol、ギ酸エチル生成量1.7mmolであった。
Example 6
The reaction was carried out by the method described in Example 1 except that 1.25 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 38.7 mmol and the amount of ethyl formate produced was 1.7 mmol.

実施例7
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.001mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量61.2mmol、ギ酸エチル生成量2.1mmolであった。
Example 7
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.001mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 61.2 mmol, and the amount of ethyl formate produced was 2.1 mmol.

実施例8
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.005mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量85.3mmol、ギ酸エチル生成量2.2mmolであった。
Example 8
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.005mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 85.3 mmol, and the amount of ethyl formate produced was 2.2 mmol.

実施例9
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.01mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量127.1mmol、ギ酸エチル生成量2.5mmolであった。
Example 9
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.01mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 127.1 mmol, and the amount of ethyl formate produced was 2.5 mmol.

実施例10
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.025mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量129.2mmol、ギ酸エチル生成量2.4mmolであった。
Example 10
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.025mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 129.2 mmol and the amount of ethyl formate produced was 2.4 mmol.

実施例11
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.05mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量116.0mmol、ギ酸エチル生成量2.1mmolであった。
Example 11
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.05mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 116.0 mmol, and the amount of ethyl formate produced was 2.1 mmol.

実施例12
Cu/MgOX/Na2CO3(18.7mass%)/Pd(0.25mass%)触媒1gの代わりにCu/MgOX/Na2CO3(18.7mass%)/Pd(0.1mass%)触媒1gを添加する他は、実施例2に記載の方法で反応を行った。メタノール生成量104.1mmol、ギ酸エチル生成量2.0mmolであった。
Example 12
Cu / MgO X / Na 2 CO 3 (18.7mass%) / Pd a (0.25 mass%) instead of Cu / MgO X / Na 2 CO 3 catalyst 1g (18.7mass%) / Pd ( 0.1mass%) catalyst 1g The reaction was carried out by the method described in Example 2 except for the addition. The amount of methanol produced was 104.1 mmol and the amount of ethyl formate produced was 2.0 mmol.

実施例13
内容積50mlのオートクレーブを用い、溶媒として水1質量%を含むエタノール10mlに、炭酸ルビジウム2.5mmolに加えて、Cu(NO3)2・3H2O、Mg(NO3)2・6H2Oを原料として共沈法でpH=10.0に保持しながらCu/MgOXを調製し、Na2CO3(18.7mass%)を含浸担持したCu/MgOX/Na2CO3(18.7mass%)触媒1gを添加し、合成ガス(CO 32.40%、水素 64.58%、Ar 3.02%)を5MPa 充填して、160℃、5時間反応を行い、反応生成物をガスクロマトグラフで分析した。メタノール生成量75.6mmol、ギ酸エチル生成量1.6mmolであった。
Example 13
Using an autoclave with an internal volume of 50 ml, in addition to 2.5 mmol of rubidium carbonate in 10 ml of ethanol containing 1% by weight of water as a solvent, Cu (NO 3 ) 2 · 3H 2 O, Mg (NO 3 ) 2 · 6H 2 O the Cu / MgO X was prepared while maintaining the pH = 10.0 by co-precipitation method as a starting material, Na 2 CO 3 Cu / MgO impregnated carrying (18.7mass%) X / Na 2 CO 3 (18.7mass%) catalyst 1g Was charged with 5 MPa of synthesis gas (CO 32.40%, hydrogen 64.58%, Ar 3.02%), the reaction was performed at 160 ° C. for 5 hours, and the reaction product was analyzed by gas chromatography. The amount of methanol produced was 75.6 mmol, and the amount of ethyl formate produced was 1.6 mmol.

実施例14
炭酸ルビジウムの添加量を1.25mmolとする他は、実施例13に記載の方法で反応を行った。メタノール生成量46.8mmol、ギ酸エチル生成量1.9mmolであった。
Example 14
The reaction was performed by the method described in Example 13, except that the amount of rubidium carbonate added was 1.25 mmol. The amount of methanol produced was 46.8 mmol and the amount of ethyl formate produced was 1.9 mmol.

実施例15
反応温度を140℃とする他は、実施例13に記載の方法で反応を行った。メタノール生成量30.5mmol、ギ酸エチル生成量3.6mmolであった。
Example 15
The reaction was conducted by the method described in Example 13 except that the reaction temperature was 140 ° C. The amount of methanol produced was 30.5 mmol, and the amount of ethyl formate produced was 3.6 mmol.

実施例16
反応圧力を3.5MPaとする他は、実施例13に記載の方法で反応を行った。メタノール生成量29.4mmol、ギ酸エチル生成量1.7mmolであった。
Example 16
The reaction was performed by the method described in Example 13 except that the reaction pressure was 3.5 MPa. The amount of methanol produced was 29.4 mmol and the amount of ethyl formate produced was 1.7 mmol.

実施例17
炭酸ルビジウム2.5mmolの代わりに炭酸セシウム2.5mmolを添加する他は、実施例13に記載の方法で反応を行った。メタノール生成量55.8mmol、ギ酸エチル生成量2.3mmolであった。
Example 17
The reaction was performed by the method described in Example 13, except that 2.5 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 55.8 mmol, and the amount of ethyl formate produced was 2.3 mmol.

実施例18
炭酸ルビジウム2.5mmolの代わりに炭酸セシウム1.25mmolを添加する他は、実施例13に記載の方法で反応を行った。メタノール生成量42.7mmol、ギ酸エチル生成量1.9mmolであった。
Example 18
The reaction was performed by the method described in Example 13, except that 1.25 mmol of cesium carbonate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 42.7 mmol and the amount of ethyl formate produced was 1.9 mmol.

実施例19
炭酸ルビジウム2.5mmolの代わりにギ酸ナトリウム2.5mmolを添加する他は、実施例13に記載の方法で反応を行った。メタノール生成量34.1mmol、ギ酸エチル生成量1.9mmolであった。
Example 19
The reaction was performed by the method described in Example 13, except that 2.5 mmol of sodium formate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 34.1 mmol, and the amount of ethyl formate produced was 1.9 mmol.

比較例2
炭酸ルビジウム2.5mmolの代わりにギ酸カリウム2.5mmolを添加する他は、実施例8に記載の方法で反応を行った。メタノール生成量20.0mmol、ギ酸エチル生成量2.3mmolであった。
Comparative Example 2
The reaction was performed by the method described in Example 8, except that 2.5 mmol of potassium formate was added instead of 2.5 mmol of rubidium carbonate. The amount of methanol produced was 20.0 mmol, and the amount of ethyl formate produced was 2.3 mmol.

Figure 0005264083
Figure 0005264083

Figure 0005264083
Figure 0005264083

上記の実施例、比較例より、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムは、他のアルカリ金属塩、例えばギ酸カリウムと比較して著しくメタノール生成量が増加し、水素化分解触媒としてはCu、Mg及びNa、又はCu、Mg、Na及びPdを含有した触媒を使用すると良好な結果が得られることが明らかである。 From the above Examples and Comparative Examples, sodium formate, rubidium carbonate, and cesium carbonate significantly increase the amount of methanol produced compared to other alkali metal salts such as potassium formate , and Cu, Mg and hydrocracking catalysts. It is clear that good results are obtained when using catalysts containing Na or Cu, Mg, Na and Pd.

本発明の低温液相メタノール合成を実施する反応装置である。1 is a reactor for carrying out the low-temperature liquid phase methanol synthesis of the present invention.

符号の説明Explanation of symbols

1 合成ガス
2 半回分式反応器
3 生成物、未反応ガスの混合物
4 冷却器
5 未反応ガス
6 ギ酸エステルとメタノールの液体混合物
7 蒸留塔
8 ギ酸エステル
9 メタノール
1 Syngas
2 Semi-batch reactor
3 Mixture of product and unreacted gas
4 Cooler
5 Unreacted gas
6 Liquid mixture of formate and methanol
7 Distillation tower
8 Formate
9 Methanol

Claims (9)

一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPdを含有する水素化分解触媒(触媒成分2)を有し、該水素化分解触媒の前記Na(触媒成分2)は炭酸塩又はギ酸塩としてCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていないことを特徴とするメタノール合成用触媒。 A catalyst for synthesizing methanol via a formic acid ester that reacts in the presence of at least one of carbon monoxide and carbon dioxide and hydrogen and an alcohol as a solvent, comprising sodium formate, rubidium carbonate, carbonic acid In addition to at least one of cesium (catalyst component 1) , a hydrocracking catalyst (catalyst component 2) containing Cu, Mg and Na, or Cu, Mg, Na and Pd is used. The Na (catalyst component 2) is supported on a Cu / MgO solid catalyst as a carbonate or formate , and is present as sodium formate (catalyst component 1) present as at least one of the sodium formate, rubidium carbonate, and cesium carbonate. Is a catalyst for methanol synthesis, which is not supported on the solid catalyst. 前記水素化分解触媒の前記PdがCu/MgOの固体触媒に担持されていることを特徴とする請求項1に記載のメタノール合成用触媒。   The catalyst for methanol synthesis according to claim 1, wherein the Pd of the hydrocracking catalyst is supported on a Cu / MgO solid catalyst. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスと、溶媒としてのアルコールの存在下で反応を行うギ酸エステルを経由するメタノール合成用触媒であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg、Na及びPdを含有する水素化分解触媒(触媒成分2)を有し、該水素化分解触媒の前記Pd(触媒成分2)がCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていないことを特徴とするメタノール合成用触媒。 A catalyst for synthesizing methanol via a formic acid ester that reacts in the presence of at least one of carbon monoxide and carbon dioxide and hydrogen and an alcohol as a solvent, comprising sodium formate, rubidium carbonate, carbonic acid At least one of cesium, in addition to (catalyst component 1) have Cu, Mg, a hydrocracking catalyst containing Na and Pd (catalyst component 2), the Pd of hydrogenation cracking catalyst (catalyst component 2) Is supported on a solid catalyst of Cu / MgO, and sodium formate (catalyst component 1) present as at least one of sodium formate, rubidium carbonate, and cesium carbonate is not supported on the solid catalyst. A catalyst for methanol synthesis. 前記水素化分解触媒における前記Pdの担持量が0.001〜1mass%であることを特徴とする請求項2又は3に記載のメタノール合成用触媒。   The catalyst for methanol synthesis according to claim 2 or 3, wherein the supported amount of Pd in the hydrocracking catalyst is 0.001 to 1 mass%. 請求項1〜4のいずれか1項に記載のメタノール合成用触媒の製造方法であって、前記Cu/MgOを共沈法で調製した後、Cu/MgOにNa及び/又はPdを含浸法で担持することを特徴とするメタノール合成用触媒の製造方法。   The method for producing a catalyst for methanol synthesis according to any one of claims 1 to 4, wherein the Cu / MgO is prepared by a coprecipitation method and then Cu / MgO is impregnated with Na and / or Pd. A method for producing a catalyst for methanol synthesis, characterized by being supported. 請求項1〜4のいずれか1項に記載のメタノール合成用触媒の製造方法であって、前記Cu/MgOを共沈法においてpH=8〜11の範囲で一定に保ちながら調製することを特徴とするメタノール製造用触媒の製造方法。   It is a manufacturing method of the catalyst for methanol synthesis | combination of any one of Claims 1-4, Comprising: Said Cu / MgO is prepared while keeping constant in the range of pH = 8-11 in a coprecipitation method. A method for producing a catalyst for methanol production. 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを反応させてメタノールを製造する方法であって、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPd(触媒成分2)を含有し、Pd及び/又は炭酸塩又はギ酸塩としてのNa(触媒成分2)はCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていない水素化分解触媒、及びアルコール類の存在下に反応を行い、ギ酸エステル及びメタノールを生成すると共に、生成したギ酸エステルを水素化してメタノールを製造することを特徴とするメタノールの製造方法。 A method of producing methanol by reacting at least one of carbon monoxide, carbon dioxide, and hydrogen, and adding methanol to at least one of sodium formate, rubidium carbonate, and cesium carbonate (catalyst component 1) , Cu, Mg and Na, or Cu, Mg, Na and Pd (catalyst component 2) , Pd and / or Na as a carbonate or formate (catalyst component 2) supported on a solid catalyst of Cu / MgO Sodium formate (catalyst component 1) present as at least one of sodium formate, rubidium carbonate, and cesium carbonate is reacted in the presence of a hydrocracking catalyst not supported on the solid catalyst and alcohols. To produce formate and methanol, and to produce methanol by hydrogenating the formate produced A process for producing methanol characterized by 一酸化炭素、二酸化炭素の少なくともいずれか、及び水素を含む原料ガスを、ギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれか(触媒成分1)に加えて、Cu、Mg及びNa、又はCu、Mg、Na及びPd(触媒成分2)を含有し、Pd及び/又は炭酸塩又はギ酸塩としてのNa(触媒成分2)はCu/MgOの固体触媒に担持されており、前記のギ酸ナトリウム、炭酸ルビジウム、炭酸セシウムの少なくともいずれかとして存在するギ酸ナトリウム(触媒成分1)は前記固体触媒に担持されていない水素化分解触媒、及びアルコール類の存在下に反応を行うことで得られた生成物を反応系から分離した後、該生成物中のギ酸エステルを水素化分解触媒で水素化してメタノールを製造することを特徴とするメタノールの製造方法。 A source gas containing at least one of carbon monoxide, carbon dioxide, and hydrogen is added to at least one of sodium formate, rubidium carbonate, and cesium carbonate (catalyst component 1), and then Cu, Mg, and Na, or Cu, Mg , Na and Pd (catalyst component 2) , and Pd and / or Na (catalyst component 2) as carbonate or formate is supported on a Cu / MgO solid catalyst, and the above-mentioned sodium formate, rubidium carbonate Sodium formate (catalyst component 1) present as at least one of cesium carbonate reacts with the product obtained by carrying out the reaction in the presence of a hydrocracking catalyst not supported on the solid catalyst and an alcohol. After separation from the system, methanol is produced by hydrogenating the formate in the product with a hydrocracking catalyst. Production method. 前記アルコール類が第一級アルコールであることを特徴とする請求項7又は8に記載のメタノールの製造方法。   The method for producing methanol according to claim 7 or 8, wherein the alcohol is a primary alcohol.
JP2007021950A 2006-02-17 2007-01-31 Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol Expired - Fee Related JP5264083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007021950A JP5264083B2 (en) 2006-02-17 2007-01-31 Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
PCT/JP2007/052886 WO2007094471A1 (en) 2006-02-17 2007-02-16 Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006041627 2006-02-17
JP2006041627 2006-02-17
JP2007021950A JP5264083B2 (en) 2006-02-17 2007-01-31 Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol

Publications (2)

Publication Number Publication Date
JP2007245138A JP2007245138A (en) 2007-09-27
JP5264083B2 true JP5264083B2 (en) 2013-08-14

Family

ID=38371647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021950A Expired - Fee Related JP5264083B2 (en) 2006-02-17 2007-01-31 Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol

Country Status (2)

Country Link
JP (1) JP5264083B2 (en)
WO (1) WO2007094471A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
EP2736872A1 (en) * 2011-07-27 2014-06-04 Basf Se Method for producing formamides and formic acid esters
MY169033A (en) * 2012-11-26 2019-02-04 Basf Se Method for producing methyl formate by reacting methanol with carbon monoxide in the presence of a catalyst system which comprises alkali formate and alkali alcoholate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444654A1 (en) * 1978-12-19 1980-07-18 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF ALCOHOLS AND MORE PARTICULARLY PRIMARY, SATURATED AND LINEAR ALCOHOLS FROM SYNTHESIS GAS
US4289710A (en) * 1979-12-19 1981-09-15 Union Carbide Corporation Process for producing methanol from synthesis gas with palladium-calcium catalysts
JPS5998024A (en) * 1982-11-29 1984-06-06 Res Assoc Petroleum Alternat Dev<Rapad> Synthesis of mixed alcohol
ZA838898B (en) * 1982-12-13 1984-07-25 Ici Plc Catalytic process
US5387570A (en) * 1993-05-07 1995-02-07 Exxon Research & Engineering Co. Catalysts for iso-alcohol synthesis from CO + H2
GB9404198D0 (en) * 1994-03-04 1994-04-20 Ici Plc Copper catalysts
JP2685130B2 (en) * 1995-09-22 1997-12-03 通商産業省基礎産業局長 Ethanol production method
RU2231521C2 (en) * 2000-02-25 2004-06-27 Ниппон Стил Корпорейшн Method for preparing formic acid ester or methanol and catalyst for this method
JP2005095872A (en) * 2003-08-19 2005-04-14 Nippon Steel Corp Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP2005126427A (en) * 2003-09-30 2005-05-19 Nippon Steel Corp Method for producing formic acid ester and methanol

Also Published As

Publication number Publication date
WO2007094471A1 (en) 2007-08-23
JP2007245138A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP2005126427A (en) Method for producing formic acid ester and methanol
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
CN101384363A (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP5843250B2 (en) Method for producing methanol
JP5777043B2 (en) Method for producing methanol
JP2010215543A (en) Method for producing methanol
WO2005030686A1 (en) Method for producing organic compound
JP2001342160A (en) Method for producing dimethyl ether
JPH0959189A (en) Production of methanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees