JP2001342160A - Method for producing dimethyl ether - Google Patents
Method for producing dimethyl etherInfo
- Publication number
- JP2001342160A JP2001342160A JP2000164243A JP2000164243A JP2001342160A JP 2001342160 A JP2001342160 A JP 2001342160A JP 2000164243 A JP2000164243 A JP 2000164243A JP 2000164243 A JP2000164243 A JP 2000164243A JP 2001342160 A JP2001342160 A JP 2001342160A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- synthesis
- gas
- water
- dimethyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 title description 9
- 239000007789 gas Substances 0.000 claims abstract description 102
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 71
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 33
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 25
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 21
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 132
- 239000003054 catalyst Substances 0.000 claims description 73
- 239000002994 raw material Substances 0.000 claims description 37
- 238000006297 dehydration reaction Methods 0.000 claims description 16
- 230000018044 dehydration Effects 0.000 claims description 15
- 238000001308 synthesis method Methods 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 10
- 239000001569 carbon dioxide Substances 0.000 abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 52
- 238000006243 chemical reaction Methods 0.000 description 38
- 238000002474 experimental method Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- 239000011949 solid catalyst Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- GFCDJPPBUCXJSC-UHFFFAOYSA-N [O-2].[Zn+2].[Cu]=O Chemical compound [O-2].[Zn+2].[Cu]=O GFCDJPPBUCXJSC-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- -1 sodium and potassium Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 101710142585 50S ribosomal protein 6, chloroplastic Proteins 0.000 description 1
- 101100000419 Autographa californica nuclear polyhedrosis virus AC41 gene Proteins 0.000 description 1
- 102100024522 Bladder cancer-associated protein Human genes 0.000 description 1
- 101150110835 Blcap gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101100493740 Oryza sativa subsp. japonica BC10 gene Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101000725126 Spinacia oleracea 50S ribosomal protein L35, chloroplastic Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WVYYHSKIGBEZCQ-UHFFFAOYSA-N [O-2].[O-2].[Cr+3].[Fe+2] Chemical compound [O-2].[O-2].[Cr+3].[Fe+2] WVYYHSKIGBEZCQ-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000002453 autothermal reforming Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PGTIPSRGRGGDQO-UHFFFAOYSA-N copper;oxozinc Chemical compound [Zn].[Cu]=O PGTIPSRGRGGDQO-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000010702 ether synthesis reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- OUWMFFSIXVELDH-UHFFFAOYSA-N zinc chromium(3+) oxocopper oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[Cr+3].[Cu]=O OUWMFFSIXVELDH-UHFFFAOYSA-N 0.000 description 1
- ADCBRSDRBJKLFK-UHFFFAOYSA-N zinc chromium(3+) oxygen(2-) Chemical compound [O-2].[Cr+3].[O-2].[Zn+2] ADCBRSDRBJKLFK-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、合成ガスを原料と
してジメチルエーテル(DME)を製造する方法に関す
るものである。TECHNICAL FIELD The present invention relates to a method for producing dimethyl ether (DME) using synthesis gas as a raw material.
【0002】[0002]
【従来の技術】従来、媒体油に懸濁した触媒の存在下
で、一酸化炭素および水素の混合ガスからジメチルエー
テルを製造する方法は、いくつか知られている。2. Description of the Related Art Heretofore, there have been known several methods for producing dimethyl ether from a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst suspended in a medium oil.
【0003】例えば、特開平2−9833号公報、特開
平3−181435号公報、特開平3−52835号公
報、特開平4−264046号公報、特表平5−810
069号公報(WO93/10069)には、不活性液
体に懸濁したメタノール合成触媒とメタノール脱水触媒
の混合物に合成ガスを触媒させて、ジメチルエーテルま
たはジメチルエーテルとメタノールの混合物を製造する
方法が開示されている。For example, JP-A-2-9833, JP-A-3-181435, JP-A-3-52835, JP-A-4-264046, and JP-A-5-810
No. 069 (WO93 / 10069) discloses a method for producing dimethyl ether or a mixture of dimethyl ether and methanol by catalyzing a synthesis gas in a mixture of a methanol synthesis catalyst and a methanol dehydration catalyst suspended in an inert liquid. I have.
【0004】特開平2−9833号公報に開示されてい
る方法は、水素、一酸化炭素および二酸化炭素から成る
合成ガスを固体触媒と接触させ、また固体触媒の存在に
おいて反応させる前記合成ガスからのジメチルエーテル
の直接合成法において、前記合成ガスを固体触媒系の存
在において接触させることから成り、そこにおいて前記
固体触媒は3相(液相)反応器系において液状媒体の懸
濁された単一触媒または複数の触媒の混合物であり、そ
こにおいて前記3相反応器系は少くとも1基の3相反応
器から成る合成ガスからのジメチルエーテルの直接合成
法である。[0004] The method disclosed in Japanese Patent Application Laid-Open No. 2-9833 discloses a method of contacting a synthesis gas composed of hydrogen, carbon monoxide and carbon dioxide with a solid catalyst and reacting the synthesis gas in the presence of the solid catalyst. In the direct synthesis of dimethyl ether, the method comprises contacting the synthesis gas in the presence of a solid catalyst system, wherein the solid catalyst is a single catalyst suspended in a liquid medium or a three-phase (liquid phase) reactor system. A mixture of a plurality of catalysts, wherein the three-phase reactor system is a process for the direct synthesis of dimethyl ether from synthesis gas consisting of at least one three-phase reactor.
【0005】特開平3−181435号公報に開示され
ている方法は、一酸化炭素と水素の混合ガス、あるいは
これにさらに二酸化炭素および/または水蒸気が含まれ
る混合ガスからジメチルエーテルを製造する方法におい
て、触媒を媒体油に懸濁してスラリー状態で使用するこ
とを特徴とするジメチルエーテルの製造方法である。The method disclosed in Japanese Patent Application Laid-Open No. 3-181435 discloses a method for producing dimethyl ether from a mixed gas of carbon monoxide and hydrogen or a mixed gas further containing carbon dioxide and / or steam. A method for producing dimethyl ether, wherein a catalyst is suspended in a medium oil and used in a slurry state.
【0006】特開平3−52835号公報に開示されて
いる方法は、合成ガスを固体メタノール合成触媒の存在
において反応させてメタノールを生産し、又生産された
メタノールを固体脱水触媒の存在において反応させてジ
メチルエーテルを生産する。水素、一酸化炭素及び二酸
化炭素から成る合成ガスからジメチルエーテルを合成す
る方法において、前記合成ガスを、メタノール合成成分
と脱水(エーテル形成)成分から成る固体触媒系の存在に
おいて接触させて反応させ、その際前記固体触媒系3相
(液相)反応器系にある液状媒体中の単一触媒又は複数
の触媒混合物であり、前記反応器系を操作して、最小有
効メタノール速度を少くとも1時間当り触媒1kg当り
1.0gモルのメタノールに維持することを特徴とする
ジメチルエーテル合成法である。[0006] The method disclosed in Japanese Patent Application Laid-Open No. 3-52835 is to react methanol in the presence of a solid methanol synthesis catalyst to produce methanol, and to react the produced methanol in the presence of a solid dehydration catalyst. To produce dimethyl ether. In a method of synthesizing dimethyl ether from a synthesis gas consisting of hydrogen, carbon monoxide and carbon dioxide, the synthesis gas is brought into contact with and reacted in the presence of a solid catalyst system comprising a methanol synthesis component and a dehydration (ether formation) component. A solid catalyst or a mixture of catalysts in a liquid medium in a three-phase (liquid-phase) reactor system in said solid catalyst system, operating said reactor system to reduce the minimum effective methanol rate to at least one hour A dimethyl ether synthesis method characterized by maintaining methanol at 1.0 g mole per 1 kg of a catalyst.
【0007】特表平5−810069号公報に開示され
ている方法は、一酸化炭素と水素および水蒸気のいずれ
か一方または両方が含まれる混合ガス、あるいはこれに
さらに二酸化炭素が含まれる混合ガスからジメチルエー
テルを製造する方法において、少なくとも酸化亜鉛と、
酸化銅又は酸化クロムと酸化アルミニウムを含む混合触
媒を粉砕した後、加圧密着させ、その後再度粉砕した触
媒を溶媒に懸濁してスラリー状態で使用することを特徴
とするジメチルエーテルの製造方法である。[0007] The method disclosed in Japanese Patent Application Laid-Open No. Hei 5-810069 discloses a method for producing a mixed gas containing carbon monoxide and one or both of hydrogen and water vapor, or a mixed gas further containing carbon dioxide. In a method for producing dimethyl ether, at least zinc oxide,
This is a method for producing dimethyl ether, characterized in that a mixed catalyst containing copper oxide or chromium oxide and aluminum oxide is pulverized, adhered under pressure, and then the pulverized catalyst is suspended in a solvent and used in a slurry state.
【0008】一酸化炭素と水素からジメチルエーテルを
合成する反応は次のように進行する。 CO+2H2 → CH3OH (1) メタノール合成反 応 2CH3OH → CH3OCH3+H2O (2) 脱水反応 CO+H2O → H2+CO2 (3) シフト反応The reaction for synthesizing dimethyl ether from carbon monoxide and hydrogen proceeds as follows. CO + 2H 2 → CH 3 OH (1) Methanol synthesis reaction 2CH 3 OH → CH 3 OCH 3 + H 2 O (2) Dehydration reaction CO + H 2 O → H 2 + CO 2 (3) Shift reaction
【0009】すなわち本反応は、まず一酸化炭素と水素
からメタノール合成触媒上でメタノールが生成し、次い
でメタノールがメタノール脱水触媒上に移行して脱水縮
合によりジメチルエーテルと水が生成する。さらに、水
が水性ガスシフト触媒および/またはメタノール合成触
媒に移動し、一酸化炭素と反応して二酸化炭素と水素を
生成する。That is, in this reaction, first, methanol is produced from carbon monoxide and hydrogen on a methanol synthesis catalyst, and then methanol is transferred onto a methanol dehydration catalyst, and dimethyl ether and water are produced by dehydration condensation. Further, water moves to the water gas shift catalyst and / or the methanol synthesis catalyst and reacts with carbon monoxide to produce carbon dioxide and hydrogen.
【0010】上記のような単一の反応器内に少なくとも
メタノール合成触媒とメタノール脱水触媒を配置する合
成ガスからDME直接合成プロセスにおいて、従来は原
料ガス中の水分(すなわち水蒸気と水ミスト)を特に目
的を持って管理することはなく、そのため実際に比較的
高濃度の水分が原料ガス中に含まれたままDME合成反
応器に供給されていた。In a DME direct synthesis process from a synthesis gas in which at least a methanol synthesis catalyst and a methanol dehydration catalyst are arranged in a single reactor as described above, conventionally, the water (ie, steam and water mist) in the raw material gas is particularly reduced. There was no purposeful management, and therefore, a relatively high concentration of water was actually supplied to the DME synthesis reactor while being contained in the raw material gas.
【0011】また、同じく原料ガス中のCO2濃度につ
いても従来は特に目的を持って管理することはなく、そ
のため実際に比較的高濃度のCO2が原料ガス中に含ま
れたままDME合成反応器に供給されていた。また、研
究者らによっては、原料ガス中のCO2が触媒の安定性
をもたらすと報告する者もあった。[0011] Similarly, the CO 2 concentration in the source gas has not conventionally been managed with a particular purpose, and therefore, the DME synthesis reaction has been actually carried out while the relatively high concentration of CO 2 is contained in the source gas. Was supplied to the vessel. Also, some researchers have reported that CO 2 in the feed gas provides catalyst stability.
【0012】[0012]
【発明が解決しようとする課題】合成ガスを原料として
ジメチルエーテルを製造する方法において、ジメチルエ
ーテルの収率を高め、また触媒を失活させず安定使用で
きることは常に求められている。In a process for producing dimethyl ether from a synthesis gas as a raw material, it is always required to increase the yield of dimethyl ether and to use the catalyst stably without deactivating the catalyst.
【0013】本発明の目的は、合成ガスからジメチルエ
ーテルをより高い収率で安定製造しうる方法を提供する
ことにある。An object of the present invention is to provide a method capable of stably producing dimethyl ether from a synthesis gas at a higher yield.
【0014】[0014]
【課題を解決するための手段】本発明者らは上記課題を
解決するべく鋭意検討の結果、原料ガス中の水分が、D
ME合成触媒の活性低下を早めることを見出し、原料ガ
ス中の水分濃度を低く管理することでDME合成の安定
性を高めることができることを発見した。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the moisture in the raw material gas has been reduced to D
They have found that the activity of the ME synthesis catalyst can be reduced quickly, and that the stability of DME synthesis can be increased by controlling the water concentration in the raw material gas to be low.
【0015】また、原料ガス中のCO2が、DME合成
の反応効率を低下させることを見出し、また原料ガス中
のCO2が触媒の安定性に何ら関わっていないことを見
出し、そのため原料ガス中のCO2濃度を低く管理する
ことでDME生産の効率を高めることができることを発
見した。Further, CO 2 in the raw material gas is found to reduce the reaction efficiency of DME synthesis, also CO 2 in the raw material gas is found that they had no involvement in the stability of the catalyst, therefore the raw material gas It has been found that the efficiency of DME production can be increased by controlling the CO 2 concentration of the DME at a low level.
【0016】本発明は、かかる知見に基づいてなされた
ものであり、一酸化炭素と水素とを含む原料ガスからジ
メチルエーテルを合成する方法において、原料ガスに含
まれる水分が0.35%以下であることを特徴とするジ
メチルエーテルの合成方法と、一酸化炭素と水素とを含
む原料ガスからジメチルエーテルを合成する反応方法に
おける、原料ガスに含まれるCO2が5%以下であるこ
とを特徴とするジメチルエーテルの合成方法、に関する
ものである。The present invention has been made based on this finding. In a method for synthesizing dimethyl ether from a raw material gas containing carbon monoxide and hydrogen, the raw material gas has a water content of 0.35% or less. In the method for synthesizing dimethyl ether, and the reaction method for synthesizing dimethyl ether from a raw material gas containing carbon monoxide and hydrogen, CO 2 contained in the raw material gas is 5% or less. A synthesis method.
【0017】DME合成反応の原料ガス中に高濃度の水
分が含まれていると、DME合成反応の長期安定性が損
なわれる。特に、スラリー床DME合成反応において、
スラリー中で触媒を支持する溶媒に溶存できる水分量は
低く限られており、また水分を水性ガスシフト反応等に
より転化できる能力も限られている。その為、原料ガス
中にある程度以上の水分が含まれると、反応器内の水分
濃度が上昇し、これが例えば触媒活性成分である銅のシ
ンタリングによる活性低下を招き、結果的にDME合成
の長期安定性を損なう。原料ガス中に含まれる水分を低
減することは、例えばDME合成反応器に供給する直前
で水分を水性ガスシフト反応させる前処理反応器を設置
することにより達成される。If the raw material gas for the DME synthesis reaction contains a high concentration of water, the long-term stability of the DME synthesis reaction is impaired. In particular, in a slurry bed DME synthesis reaction,
The amount of water that can be dissolved in the solvent that supports the catalyst in the slurry is low and limited, and the ability to convert water by a water gas shift reaction or the like is also limited. Therefore, when the raw material gas contains a certain amount of water or more, the water concentration in the reactor rises, which leads to a decrease in the activity due to, for example, sintering of copper, which is a catalytically active component, and as a result, the long term Impairs stability. The reduction of the moisture contained in the raw material gas can be achieved by, for example, installing a pretreatment reactor that causes a water gas shift reaction of the moisture immediately before the supply to the DME synthesis reactor.
【0018】また、原料ガス中のCO2は、反応器内に
おいてDME合成の前段階のMeOH合成のための原料
と振舞うよりはむしろ不活性ガスのように振る舞いMe
OH合成にほとんど関与しない。その為、原料中にCO
2が存在することは、MeOH合成の原料であるH2と
COの分圧の低下を招き、その為H2やCOの転化率か
低下しDME合成効率が低下するものである。原料ガス
中のCO2の濃度を低下させることは、例えばDME合
成反応器に供給する前に例えばCO2を吸収法などによ
り除去することで達成される。また、合成ガスを製造す
る段階において、例えばメタンのオートサーマルリフォ
ーミングの反応条件を適切に設定することによりCO2
の濃度をある程度低減できる。Also, CO 2 in the raw material gas behaves like an inert gas rather than behaving as a raw material for MeOH synthesis before the DME synthesis in the reactor.
Has little involvement in OH synthesis. Therefore, CO
The presence of 2 causes a decrease in the partial pressure of H 2 and CO, which are the raw materials for MeOH synthesis, so that the conversion rates of H 2 and CO are reduced and the DME synthesis efficiency is reduced. The reduction of the concentration of CO 2 in the source gas is achieved by, for example, removing CO 2 by an absorption method or the like before supplying it to the DME synthesis reactor. Further, in the stage of producing the synthesis gas, for example, by appropriately setting the reaction conditions of the autothermal reforming of methane, CO 2
Can be reduced to some extent.
【0019】[0019]
【発明の実施の形態】本発明が適用される原料ガスは、
水素と一酸化炭素の割合がH2/COモル比で0.5〜
3.0、好ましくは0.8〜2.0の混合比のものを使
用できる。一方、水素と一酸化炭素の割合(H2/CO
比)が著しく小さな(例えば、0.5以下)混合ガスあ
るいは水素を含まない一酸化炭素の場合には、別途スチ
ームを供給して反応器中で一酸化炭素の一部をスチーム
により水素と二酸化炭素に変換することが必要である。
水蒸気の量は変換したい一酸化炭素量(不足している水
素量と等しい)と等モルである。また、二酸化炭素の量
は変換された一酸化炭素と同じモル数となる。このよう
な原料ガスの例としては、石炭ガス化ガス、天然ガスか
らの合成ガス、炭層メタン等を挙げることができる。DETAILED DESCRIPTION OF THE INVENTION The source gas to which the present invention is applied is
Ratio of hydrogen and carbon monoxide 0.5 with H 2 / CO molar ratio
Those having a mixing ratio of 3.0, preferably 0.8 to 2.0 can be used. On the other hand, the ratio of hydrogen and carbon monoxide (H 2 / CO
Ratio) is extremely small (for example, 0.5 or less) or in the case of carbon monoxide containing no hydrogen, steam is supplied separately to partially remove carbon monoxide in the reactor with steam and hydrogen and carbon dioxide. It needs to be converted to carbon.
The amount of water vapor is equimolar to the amount of carbon monoxide to be converted (equal to the amount of missing hydrogen). Also, the amount of carbon dioxide is the same as the number of moles of the converted carbon monoxide. Examples of such a source gas include coal gasification gas, synthesis gas from natural gas, and coalbed methane.
【0020】本発明では、この原料ガスに含まれる水分
量を0.35容積%以下、好ましくは0.3容積%以下
にする。水分量を0.35容積%以下にする方法は特に
限定されるものではなく、乾燥剤を使用してもよいが、
好ましい方法は水性ガスシフト反応をジメチルエーテル
合成反応前に行わせて水分を水素に変える方法である。
すなわち、水性ガスシフト反応器をジメチルエーテル合
成反応器の上流側に設置して、水性ガスシフト触媒によ
って原料ガスに含まれている水分を一酸化炭素と反応さ
せて水素に変えるのである。In the present invention, the amount of water contained in the raw material gas is set to 0.35% by volume or less, preferably 0.3% by volume or less. The method for reducing the water content to 0.35% by volume or less is not particularly limited, and a desiccant may be used.
A preferred method is to carry out a water gas shift reaction prior to the dimethyl ether synthesis reaction to convert water to hydrogen.
That is, the water gas shift reactor is installed on the upstream side of the dimethyl ether synthesis reactor, and the water contained in the raw material gas is reacted with carbon monoxide by the water gas shift catalyst to convert it into hydrogen.
【0021】水性ガスシフト触媒としては酸化銅−酸化
亜鉛、酸化銅−酸化クロム−酸化亜鉛、酸化鉄−酸化ク
ロムなどがある。メタノール合成触媒は強いシフト触媒
活性を有するので水性ガスシフト触媒を兼ねることがで
きる。メタノール脱水触媒及び水性ガスシフト触媒を兼
ねるものとしてアルミナ担持酸化銅触媒を用いることが
できる。水性ガスシフト反応は100〜500℃程度、
好ましくは150〜450℃程度、1〜30MPa程
度、好ましくは1.5〜15MPa程度で行うのが適当
である。水分濃度はDME合成反応器の入口側に水分濃
度計を設けて監視し、水分濃度上昇がみられたら触媒を
交換する等の対策をとる。Examples of the water gas shift catalyst include copper oxide-zinc oxide, copper oxide-chromium oxide-zinc oxide, and iron oxide-chromium oxide. Since the methanol synthesis catalyst has a strong shift catalytic activity, it can also serve as a water gas shift catalyst. An alumina-supported copper oxide catalyst can be used as a catalyst that also functions as a methanol dehydration catalyst and a water gas shift catalyst. Water gas shift reaction is about 100 ~ 500 ℃,
It is suitable to carry out the reaction preferably at about 150 to 450 ° C. and about 1 to 30 MPa, preferably about 1.5 to 15 MPa. The water concentration is monitored by installing a water concentration meter at the inlet side of the DME synthesis reactor, and taking measures such as replacing the catalyst when the water concentration increases.
【0022】原料ガスに含まれる二酸化炭素の量を5容
積%以下、好ましくは4.5容積%以下にする。二酸化
炭素の量を5容積%以下にする方法は特に制限されない
が、例えばジエタノールアミン等のアミン吸収法、膜分
離法等が適当である。The amount of carbon dioxide contained in the raw material gas is set to 5% by volume or less, preferably 4.5% by volume or less. The method for reducing the amount of carbon dioxide to 5% by volume or less is not particularly limited, but for example, an amine absorption method such as diethanolamine, a membrane separation method and the like are suitable.
【0023】ジメチルエーテル合成触媒には、メタノー
ル合成触媒とメタノール脱水触媒が混合されて用いら
れ、場合により水性ガスシフト触媒がさらに加えられ
る。これらは混合状態で使用されるほか、水性ガスシフ
ト触媒を切り放して二段反応とすることもできる。As the dimethyl ether synthesis catalyst, a mixture of a methanol synthesis catalyst and a methanol dehydration catalyst is used, and in some cases, a water gas shift catalyst is further added. These may be used in a mixed state, or the water gas shift catalyst may be cut off to form a two-stage reaction.
【0024】メタノール合成触媒としては、通常工業的
にメタノール合成に用いられる酸化銅−酸化亜鉛、酸化
亜鉛−酸化クロム、酸化銅−酸化亜鉛/酸化クロム、酸
化銅−酸化亜鉛/アルミナ等がある。メタノール脱水触
媒としては酸塩基触媒であるγ−アルミナ、シリカ、シ
リカ・アルミナ、ゼオライトなどがある。ゼオライトの
金属酸化物成分としてはナトリウム、カリウム等のアル
カリ金属の酸化物、カルシウム、マグネシウム等のアル
カリ土族の酸化物等である。水性ガスシフト触媒は前述
のもののなかから選択することができ、また、メタノー
ル合成触媒に兼ねさせることもできる。Examples of the methanol synthesis catalyst include copper oxide-zinc oxide, zinc oxide-chromium oxide, copper oxide-zinc oxide / chromium oxide, and copper oxide-zinc oxide / alumina, which are usually industrially used for methanol synthesis. Examples of the methanol dehydration catalyst include γ-alumina, silica, silica / alumina, and zeolite, which are acid-base catalysts. Examples of the metal oxide component of zeolite include oxides of alkali metals such as sodium and potassium, and alkaline earth oxides such as calcium and magnesium. The water gas shift catalyst can be selected from those described above, and can also be used as a methanol synthesis catalyst.
【0025】前述のメタノール合成触媒、メタノール脱
水触媒および水性ガスシフト触媒の混合割合は、特に限
定されることなく各成分の種類あるいは反応条件等に応
じて適宜選定すればよいが、通常は重量比でメタノール
合成触媒1に対してメタノール脱水触媒は0.1〜5程
度、好ましくは0.2〜2程度、そして、水性ガスシフ
ト触媒は、0.2〜5程度、好ましくは0.5〜3程度
の範囲が適当であることが多い。メタノール合成触媒に
水性ガスシフト触媒を兼ねさせた場合には、上記の水性
ガスシフト触媒の量はメタノール合成触媒の量に合算さ
れる。The mixing ratio of the above-mentioned methanol synthesis catalyst, methanol dehydration catalyst and water gas shift catalyst is not particularly limited, and may be appropriately selected according to the type of each component or the reaction conditions. The methanol dehydration catalyst is about 0.1-5, preferably about 0.2-2, and the water gas shift catalyst is about 0.2-5, preferably about 0.5-3, based on the methanol synthesis catalyst 1. The range is often appropriate. When the methanol synthesis catalyst also serves as the water gas shift catalyst, the amount of the water gas shift catalyst is added to the amount of the methanol synthesis catalyst.
【0026】上記の触媒は粉末状態で使用され、平均粒
径が300μm以下、好ましくは1〜200μm程度、
特に好ましくは10〜150μm程度が適当である。そ
のために必要によりさらに粉砕することができる。The above-mentioned catalyst is used in a powder state, and has an average particle size of 300 μm or less, preferably about 1 to 200 μm.
Particularly preferably, about 10 to 150 μm is appropriate. For that purpose, it can be further pulverized if necessary.
【0027】媒体油は反応条件下において液体状態を呈
するものであればそのいずれもが使用可能である。例え
ば脂肪族、芳香族および脂環族の炭化水素、アルコー
ル、エーテル、エステル、ケトンおよびハロゲン化物、
これらの化合物の混合物等を使用できる。好ましいもの
は炭化水素を主成分とするものである。また、硫黄分を
除去した軽油、減圧軽油、水素化処理したコールタール
の高沸点留分、フィッシャートロプシュ合成油、高沸点
食用油等も使用できる。溶媒中に存在させる触媒量は溶
媒の種類、反応条件などによって適宜決定されるが、通
常は溶媒に対して1〜50重量%であり、2〜30重量
%程度が好ましい。Any medium oil can be used as long as it exhibits a liquid state under the reaction conditions. For example, aliphatic, aromatic and alicyclic hydrocarbons, alcohols, ethers, esters, ketones and halides,
A mixture of these compounds and the like can be used. Preferred are those containing a hydrocarbon as a main component. Further, light oil from which sulfur content has been removed, vacuum gas oil, high-boiling fraction of hydrogenated coal tar, Fischer-Tropsch synthetic oil, high-boiling edible oil and the like can also be used. The amount of the catalyst to be present in the solvent is appropriately determined depending on the type of the solvent, the reaction conditions and the like, but is usually 1 to 50% by weight, preferably about 2 to 30% by weight based on the solvent.
【0028】スラリー反応における反応条件としては、
反応温度は150〜400℃が好ましく、特に250〜
350℃の範囲が好ましい。反応温度が150℃より低
くても、また400℃より高くても一酸化炭素の転化率
が低くなる。反応圧力は10〜300kg/cm2、よ
り好ましくは15〜150kg/cm2、特に好ましく
は20〜70kg/cm2が適当である。反応圧力が1
0kg/cm2より低いと一酸化炭素の転化率が低く、
また300kg/cm2より高いと反応器が特殊なもの
となり、また昇圧のために多大なエネルギーが必要であ
って経済的でない。空間速度(触媒1kgあたりの標準
状態における混合ガスの供給速度)は、100〜500
00L/kg・hが好ましく、特に500〜30000
L/kg・hである。空間速度が50000L/kg・
hより大きいと一酸化炭素の転化率が低くなり、また1
00L/kg・hより小さいと反応器が極端に大きくな
って経済的でない。The reaction conditions in the slurry reaction include:
The reaction temperature is preferably from 150 to 400 ° C, especially from 250 to 400 ° C.
A range of 350 ° C. is preferred. If the reaction temperature is lower than 150 ° C. or higher than 400 ° C., the conversion of carbon monoxide is low. The reaction pressure is suitably from 10 to 300 kg / cm 2 , more preferably from 15 to 150 kg / cm 2 , particularly preferably from 20 to 70 kg / cm 2 . Reaction pressure is 1
If it is lower than 0 kg / cm 2, the conversion of carbon monoxide is low,
On the other hand, if it is higher than 300 kg / cm 2, the reactor becomes special, and a large amount of energy is required for pressurization, which is not economical. The space velocity (supply rate of the mixed gas in a standard state per kg of the catalyst) is 100 to 500
00L / kg · h is preferable, and especially 500 to 30,000
L / kg · h. Space velocity is 50,000L / kg ・
h, the conversion rate of carbon monoxide is low.
If it is less than 00 L / kg · h, the reactor becomes extremely large and is not economical.
【0029】合成反応生成ガスからのジメチルエーテル
の分離方法は本発明者が先に開発し、公開公報に開示さ
れている方法あるいは公知の方法を適宜組み合わせて実
施することができる。The method of separating dimethyl ether from the synthesis reaction product gas can be carried out by the inventor of the present invention, which has been previously developed, and which is disclosed in a publication or a known method.
【0030】[0030]
【実施例】1)原料ガス中水分の影響 内容量が100mlである反応器を備えた実験装置に、
メタノール合成触媒(酸化銅−酸化亜鉛−アルミナ)と
メタノール脱水触媒(アルミナ)を2:1の割合で混合
し更にパラフィン油を加えた触媒スラリーを入れて実験
に供した。原料ガスは、H2、COが1:1のガスに水
分を添加したものを用い、反応温度は260℃、圧力は
5MPaとした。原料ガスに対する触媒重量の比率は、
原料ガス1mol/hrあたりに触媒4gとした。反応
実験において、実験開始後の30時間は水分の添加は行
わず、30時間後から25時間、水分を添加し、そのあ
と水分の添加を停止して更に25時間反応を継続した。
その結果を表に示す。Example 1) Effect of moisture in raw material gas An experimental apparatus equipped with a reactor having an inner volume of 100 ml
A methanol synthesis catalyst (copper oxide-zinc oxide-alumina) and a methanol dehydration catalyst (alumina) were mixed at a ratio of 2: 1, and a catalyst slurry to which paraffin oil was further added was used for the experiment. As the raw material gas, a gas obtained by adding moisture to a gas of H 2 and CO at a ratio of 1: 1 was used. The reaction temperature was 260 ° C. and the pressure was 5 MPa. The ratio of catalyst weight to feed gas is
4 g of catalyst was used per 1 mol / hr of raw material gas. In the reaction experiment, water was not added for 30 hours after the start of the experiment, water was added for 25 hours from 30 hours after that, the addition of water was stopped, and the reaction was continued for another 25 hours.
The results are shown in the table.
【0031】[0031]
【表1】 [Table 1]
【0032】結果として、水添加濃度が0.88%以上
ではDME合成の効率は水添加により著しく損なわれ
た。一方0.35%以下ではその低下率は低下し、0.
15%ではほとんど水添加なしと同等の結果を得た。ま
た、水添加が0の場合が最もDME合成の安定性が優れ
ていた。また、いずれの場合もメタノールがDMEの1
0%弱の割合で副生した。As a result, when the water concentration was 0.88% or more, the efficiency of DME synthesis was significantly impaired by the water addition. On the other hand, when the content is 0.35% or less, the decrease rate is reduced, and the content is reduced to 0.
At 15%, almost the same result as without water addition was obtained. When the water addition was 0, the stability of DME synthesis was most excellent. In each case, methanol was 1 of DME.
By-products were produced at a rate of just under 0%.
【0033】2)原料ガス中の水分の水性ガスシフト反
応 内容量が50mlの反応器にガスシフト触媒(酸化銅−
酸化亜鉛)を充填し、水分を含むH2、COの混合ガス
を流通させた。H2/COは1であった。反応器は固定
床とした。反応温度は200℃とした。原料ガスに対す
る触媒重量の比率は、原料ガス1mol/hrあたりに
触媒3gとした。反応結果を表に示した。2) Water gas shift reaction of water in raw material gas A gas shift catalyst (copper oxide-
Zinc oxide) and a mixed gas of H 2 and CO containing water was passed. H 2 / CO was 1. The reactor was a fixed bed. The reaction temperature was 200 ° C. The ratio of the catalyst weight to the raw material gas was 3 g of the catalyst per 1 mol / hr of the raw material gas. The reaction results are shown in the table.
【0034】[0034]
【表2】 [Table 2]
【0035】結果として、水性ガスシフト反応によりガ
ス中の水分濃度は0.1%以下にまで低下できることが
分かった。また、100時間の連続実験において、反応
の劣化はまったく見られなかった。As a result, it was found that the water concentration in the gas can be reduced to 0.1% or less by the water gas shift reaction. Further, in the continuous experiment for 100 hours, no deterioration of the reaction was observed.
【0036】3)シフトとDMEのプロセス 例えば、DME合成反応器の直前にガスシフト反応器を
配置する場合、DME合成反応器出口ガスの熱を使っ
て、ガスシフト反応器へ供給される原料ガスを加熱する
ことが出来る。DME合成反応器の反応温度が260℃
程度である場合、ガスシフト反応器へ供給される原料ガ
ス温度は200℃前後に昇温可能である。3) Shift and DME Process For example, when a gas shift reactor is arranged immediately before a DME synthesis reactor, the raw material gas supplied to the gas shift reactor is heated using the heat of the gas exiting the DME synthesis reactor. You can do it. Reaction temperature of DME synthesis reactor is 260 ° C
In this case, the temperature of the raw material gas supplied to the gas shift reactor can be raised to around 200 ° C.
【0037】4)原料ガス中のCO2の影響 内容量が100mlである反応器を備えた実験装置に、
メタノール合成触媒とメタノール脱水触媒を2:1の割
合で混合し更にパラフィン油を加えた触媒スラリーを入
れて実験に供した。原料ガスは、H2、COが1:1の
ガスにCO2を所定濃度混合したものを用い、反応温度
は260℃、圧力は5MPaとした。原料ガスに対する
触媒重量の比率は、原料ガス1mol/hrあたりに触
媒4gとした。反応実験において、実験開始後の6時間
後のDMEの収率を表に示した。4) Influence of CO 2 in the raw material gas An experimental apparatus equipped with a reactor having an inner volume of 100 ml
A methanol synthesis catalyst and a methanol dehydration catalyst were mixed at a ratio of 2: 1 and a catalyst slurry to which paraffin oil was further added was used for the experiment. As the raw material gas, a gas obtained by mixing H 2 and CO in a ratio of 1: 1 with CO 2 at a predetermined concentration was used, and the reaction temperature was 260 ° C. and the pressure was 5 MPa. The ratio of the catalyst weight to the raw material gas was 4 g of the catalyst per 1 mol / hr of the raw material gas. In the reaction experiment, the yield of DME 6 hours after the start of the experiment is shown in the table.
【0038】[0038]
【表3】 [Table 3]
【0039】結果として、CO2濃度が高くなるにつ
れ、DMEの収率は単調に減少した。CO2濃度が0%
のとき、最も収率が高かった。また、CO2濃度が5%
以下ではSTYは20を超えており、10%や15%で
はかなり低くなった。また、CO2濃度が0%のとき
と、10%の場合について長期反応安定性を比較したと
ころ、実験開始後100時間の時点において、反応安定
性の違いは見られなかった。また、いずれの場合もメタ
ノールがDMEの10%弱の割合で副生した。As a result, the DME yield decreased monotonically with increasing CO 2 concentration. 0% CO 2 concentration
At that time, the highest yield was obtained. The CO 2 concentration is 5%
In the following, the STY exceeded 20, and was significantly lower at 10% and 15%. When the long-term reaction stability was compared between the case where the CO 2 concentration was 0% and the case where the CO 2 concentration was 10%, no difference in the reaction stability was observed at the time point of 100 hours after the start of the experiment. In each case, methanol was by-produced at a rate of less than 10% of DME.
【0040】5)CO2除去のプロセス 例えば、DME合成反応器の上流に、水酸化ナトリウム
等のアルカリ水溶液によるCO2吸収塔を設置すること
によって、DME合成の原料ガス中のCO2を0まで下
げることができる。[0040] 5) Process CO 2 removed, for example, upstream of the DME synthesis reactor, by placing the CO 2 absorption column with an aqueous alkaline solution such as sodium hydroxide, the CO 2 in the feed gas of DME synthesis to 0 Can be lowered.
【0041】[0041]
【発明の効果】本発明により、DME合成の原料ガス中
の水分濃度をある一定値より低く管理することにより、
またそれを実現するプロセスを構築することにより、従
来よりDME合成の長期安定性を向上させることができ
る。According to the present invention, by controlling the water concentration in the raw material gas for DME synthesis below a certain value,
In addition, by constructing a process for realizing this, the long-term stability of DME synthesis can be improved as compared with the related art.
【0042】また、DME合成の原料ガス中のCO2濃
度をある一定値より低く管理することにより、またそれ
を実現するプロセスを構築することにより、従来よりD
ME合成の効率を向上させることができる。Further, by controlling the CO 2 concentration in the raw material gas for DME synthesis to be lower than a certain value, and by establishing a process for realizing the same, the D
The efficiency of ME synthesis can be improved.
【図1】 本発明により、水性ガスシフト反応器をDM
E合成反応器の上流側に設けた例を示すフローシートで
ある。FIG. 1 shows a water gas shift reactor according to the present invention.
It is a flow sheet which shows the example provided in the upstream of the E synthesis reactor.
【図2】 本発明により、CO2吸収塔をDME合成反
応器の上流側に設けた例を示すフローシートである。FIG. 2 is a flow sheet showing an example in which a CO 2 absorption tower is provided on the upstream side of a DME synthesis reactor according to the present invention.
フロントページの続き (72)発明者 戸村 啓二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小川 高志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小野 正巳 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 奥山 契一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 青木 誠治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4H006 AA02 AC29 AC41 AC43 BA05 BA07 BA09 BA30 BA66 BA69 BB11 BC10 BC11 BC18 BC31 BC32 BC36 BD10 BE20 BE40 GN05 GP01 4H039 CA60 CA61 CB20 CL25 CL35Continuing on the front page (72) Inventor Keiji Tomura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Takashi Ogawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Stock Inside the company (72) Inventor Masami Ono 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Kenichi Okuyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Seiji Aoki 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4H006 AA02 AC29 AC41 AC43 BA05 BA07 BA09 BA30 BA66 BA69 BB11 BC10 BC11 BC18 BC31 BC32 BC36 BD10 BE20 BE40 GN05 GP01 4H039 CA60 CA61 CB20 CL25 CL35
Claims (5)
ジメチルエーテルを合成する方法において、原料ガスに
含まれる水分が0.35%以下であることを特徴とする
ジメチルエーテルの合成方法1. A method for synthesizing dimethyl ether from a source gas containing carbon monoxide and hydrogen, wherein the moisture contained in the source gas is 0.35% or less.
脱水触媒の存在下で行われる請求項1記載の合成方法2. The method according to claim 1, wherein the synthesis is carried out in the presence of a methanol synthesis catalyst and a methanol dehydration catalyst.
ジメチルエーテルを合成する反応方法における、原料ガ
スに含まれるCO2が5%以下であることを特徴とする
ジメチルエーテルの合成方法3. A method for synthesizing dimethyl ether from a source gas containing carbon monoxide and hydrogen, wherein CO 2 contained in the source gas is 5% or less.
脱水触媒の存在下で行われる請求項3記載の合成方法4. The method according to claim 3, wherein the synthesis is carried out in the presence of a methanol synthesis catalyst and a methanol dehydration catalyst.
である請求項1又は2記載の合成方法5. The synthesis method according to claim 1, wherein CO 2 contained in the raw material gas is 5% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000164243A JP3449612B2 (en) | 2000-06-01 | 2000-06-01 | Method for producing dimethyl ether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000164243A JP3449612B2 (en) | 2000-06-01 | 2000-06-01 | Method for producing dimethyl ether |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001342160A true JP2001342160A (en) | 2001-12-11 |
JP3449612B2 JP3449612B2 (en) | 2003-09-22 |
Family
ID=18667889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000164243A Expired - Lifetime JP3449612B2 (en) | 2000-06-01 | 2000-06-01 | Method for producing dimethyl ether |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3449612B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008132467A (en) * | 2006-11-28 | 2008-06-12 | Korea Gas Corp | Method of producing catalyst used for synthesizing dimethyl ether from synthesis gas containing carbon dioxide |
KR102540205B1 (en) * | 2022-11-04 | 2023-06-09 | (주)바이오프랜즈 | Method for converting carbon dioxide of fuel gas to carbon monodioxide, Dimethyl ether production system using flue gas of cement kiln boiler using ths same and Manufacturing method of dimethyl ether using the same |
-
2000
- 2000-06-01 JP JP2000164243A patent/JP3449612B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008132467A (en) * | 2006-11-28 | 2008-06-12 | Korea Gas Corp | Method of producing catalyst used for synthesizing dimethyl ether from synthesis gas containing carbon dioxide |
KR102540205B1 (en) * | 2022-11-04 | 2023-06-09 | (주)바이오프랜즈 | Method for converting carbon dioxide of fuel gas to carbon monodioxide, Dimethyl ether production system using flue gas of cement kiln boiler using ths same and Manufacturing method of dimethyl ether using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3449612B2 (en) | 2003-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11148985B2 (en) | Process for oxidative conversion of methane to ethylene | |
US5637259A (en) | Process for producing syngas and hydrogen from natural gas using a membrane reactor | |
EP2152409B1 (en) | Catalytic hydrogenation of carbon dioxide into syngas mixture | |
JP5411133B2 (en) | Catalytic hydrogenation of carbon dioxide to synthesis gas. | |
US5728871A (en) | Process for the preparation of acetic acid | |
US5840969A (en) | Process for the preparation of acetic acid from a synthesis gas of hydrogen and carbon monoxide | |
AU2009325375A1 (en) | Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide | |
EA021535B1 (en) | Process for the preparation of ethanol and higher alcohols | |
AU2012393260A1 (en) | Process for the preparation of hydrocarbons | |
EP0149255A2 (en) | Process for producing alcohols from carbon monoxide and hydrogen using an alkali-molybdenum sulfide catalyst | |
Trimm et al. | Steam reforming and methanol synthesis | |
JPH04321635A (en) | Tantalum-containing catalyst useful for manufacturing alcohol from synthesis gas | |
JP5127145B2 (en) | Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol | |
US4847000A (en) | Process for manufacturing synthesis gas or hydrogen by catalytic conversion of methanol in the liquid phase | |
WO2017085603A2 (en) | Methods for the conversion of co2 into syngas for use in the production of olefins | |
JP5264084B2 (en) | Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol | |
CN101193845B (en) | Process for the conversion of synthesis gas to oxygenates | |
JPS5953249B2 (en) | Production method of aromatic alcohol | |
JP3449612B2 (en) | Method for producing dimethyl ether | |
JP5264083B2 (en) | Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol | |
JP5626077B2 (en) | Methanol production method and methanol production catalyst | |
AU6446699A (en) | Single step synthesis gas-to-dimethyl ether process with methanol introduction | |
JP3447494B2 (en) | Method for producing dimethyl ether | |
JP3414178B2 (en) | Method for producing dimethyl ether | |
WO2020127287A1 (en) | A process for preparing dimethyl carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090711 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090711 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100711 Year of fee payment: 7 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
ABAN | Cancellation of abandonment | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100711 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |