JP2813770B2 - Ethanol production method - Google Patents

Ethanol production method

Info

Publication number
JP2813770B2
JP2813770B2 JP8050777A JP5077796A JP2813770B2 JP 2813770 B2 JP2813770 B2 JP 2813770B2 JP 8050777 A JP8050777 A JP 8050777A JP 5077796 A JP5077796 A JP 5077796A JP 2813770 B2 JP2813770 B2 JP 2813770B2
Authority
JP
Japan
Prior art keywords
iron
catalyst
zinc
copper
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8050777A
Other languages
Japanese (ja)
Other versions
JPH09221437A (en
Inventor
浩光 藤村
健一 中村
實 高川
Original Assignee
通商産業省基礎産業局長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通商産業省基礎産業局長 filed Critical 通商産業省基礎産業局長
Priority to JP8050777A priority Critical patent/JP2813770B2/en
Publication of JPH09221437A publication Critical patent/JPH09221437A/en
Application granted granted Critical
Publication of JP2813770B2 publication Critical patent/JP2813770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二酸化炭素を接触水
素化してエタノールを製造する方法に関する。エタノー
ルは、各種化学品、医薬や農薬などの重要な基礎原料と
なる。
[0001] The present invention relates to a method for producing ethanol by catalytic hydrogenation of carbon dioxide. Ethanol is an important basic raw material for various chemicals, medicines and agricultural chemicals.

【0002】[0002]

【従来の技術】エタノールは、現在、澱粉や廃糖蜜等の
酵母による発酵法や酸性触媒等の存在下においてエチレ
ンを水和する方法によって製造されている。近年、地球
温暖化などの環境問題が問題となり、特にその主因物質
であると考えられる二酸化炭素の排出抑制が検討されて
いるが、最も望ましい解決策は、これを回収し再資源化
することである。その一つの方策として二酸化炭素を炭
素資源としたエタノールへの工業的な変換技術の開発が
求められている。
2. Description of the Related Art At present, ethanol is produced by a fermentation method using yeast such as starch or molasses or a method of hydrating ethylene in the presence of an acidic catalyst or the like. In recent years, environmental problems such as global warming have become a problem, and in particular, the suppression of carbon dioxide emission, which is considered to be the main cause, has been studied. The most desirable solution is to collect and recycle this. is there. As one of the measures, there is a demand for the development of an industrial conversion technology for converting ethanol from carbon dioxide into carbon resources.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
の様な観点から二酸化炭素を炭素源として有効に利用し
て工業的に有用なエタノールを製造する方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing industrially useful ethanol by effectively utilizing carbon dioxide as a carbon source from the above viewpoints.

【0004】[0004]

【課題を解決するための手段】本発明者らは先に二酸化
炭素の接触水素化によりエタノールを製造する方法とし
て、(1) 鉄、銅、亜鉛、カリウムからなる触媒または
(2) 鉄、銅、亜鉛、カリウムと、さらにコバルト・ニッ
ケル・ルテニウム・ロジウム・パラジウム・オスミウム
・イリジウム・白金から選ばれた周期率表第VIII族元素
からなる触媒存在下において、二酸化炭素の水素化反応
を行うことによって高収率でエタノールが得られること
を見出し特許出願を行っていた(特願平7−26797
4号)。しかし該触媒は反応初期において好成績を示す
が、反応の時間経過に伴い活性が低下し、触媒寿命の点
において不十分であった。そこで、本発明者らは同触媒
の寿命を改善すべく更に検討を重ねた結果、上記 (1)お
よび (2)の触媒系にクロム及び又はケイ素を添加するこ
とにより触媒寿命が著しく向上することを見出し、本発
明に到達した。
DISCLOSURE OF THE INVENTION The present inventors have previously described a method for producing ethanol by catalytic hydrogenation of carbon dioxide, which comprises (1) a catalyst comprising iron, copper, zinc, and potassium;
(2) Hydrogen of carbon dioxide in the presence of iron, copper, zinc, potassium, and a catalyst composed of Group VIII elements of the periodic table selected from cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum It has been found that ethanol can be obtained in a high yield by carrying out the chlorination reaction, and a patent application has been filed (Japanese Patent Application No. 7-26797).
No. 4). However, the catalyst showed good results in the early stage of the reaction, but the activity decreased with the lapse of time of the reaction, and the catalyst life was insufficient. Therefore, the present inventors have further studied to improve the life of the catalyst, and as a result, it was found that the addition of chromium and / or silicon to the catalyst system of the above (1) and (2) significantly improved the life of the catalyst. And arrived at the present invention.

【0005】即ち本発明は (1)鉄、銅、亜鉛、カリウム
と、クロムおよび/またはケイ素を含み、銅/鉄、亜鉛
/鉄、カリウム/鉄、クロムまたはケイ素/鉄の原子比
が、それぞれ0.2〜3.0、0.2〜3.0、0.0
1〜0.5、0.001〜0.2である触媒を用いて二
酸化炭素を接触水素化することを特徴とするエタノール
の製造方法、および (2)鉄、銅、亜鉛、カリウムと、コ
バルト・ニッケル・ルテニウム・ロジウム・パラジウム
・オスミウム・イリジウム・白金から選ばれた周期率表
第VIII族元素と、クロムおよび/またはケイ素を含み、
銅/鉄、亜鉛/鉄、カリウム/鉄、周期率表第VIII族元
素/鉄、クロムまたはケイ素/鉄の原子比が、それぞれ
0.2〜3.0、0.2〜3.0、0.01〜0.5、
0.00001〜2、0.001〜0.2である触媒を
用いる該エタノールの製造方法である。
That is, the present invention comprises (1) iron, copper, zinc, potassium and chromium and / or silicon, wherein the atomic ratio of copper / iron, zinc / iron, potassium / iron, chromium or silicon / iron is respectively 0.2-3.0, 0.2-3.0, 0.0
A method for producing ethanol, comprising catalytically hydrogenating carbon dioxide using a catalyst of 1 to 0.5, 0.001 to 0.2, and (2) iron, copper, zinc, potassium, and cobalt. -Containing a Group VIII element of the periodic table selected from nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum, and chromium and / or silicon;
The atomic ratio of copper / iron, zinc / iron, potassium / iron, group VIII element of the periodic table / iron, chromium or silicon / iron is 0.2 to 3.0, 0.2 to 3.0, 0, respectively. .01-0.5,
This is a method for producing the ethanol using a catalyst of 0.00001-2, 0.001-0.2.

【0006】[0006]

【発明の実施の形態】本発明のエタノール合成反応は次
式で表される。 2CO2 +6H2 → C2 5 OH+3H2 O 本発明の触媒を調製するにあたっては、鉄、銅、亜鉛お
よびカリウムと、クロムおよび/またはケイ素、または
鉄、銅、亜鉛、カリウムおよび周期率表第VIII族元素
と、クロムおよび/またはケイ素の各成分が最終的に組
み合わされていればよく、各元素の出発物質としての化
合物形態には特に制限はなく、例えば、各当該元素の酸
化物、水酸化物、塩基性炭酸塩、硝酸塩、酢酸塩、また
は各種錯体などが用いられる。周期率表第VIII族元素
は、コバルト・ニッケル・ルテニウム・ロジウム・パラ
ジウム・オスミウム・イリジウムまたは白金である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The ethanol synthesis reaction of the present invention is represented by the following formula. 2CO 2 + 6H 2 → C 2 H 5 OH + 3H 2 O In preparing the catalyst of the present invention, iron, copper, zinc and potassium, chromium and / or silicon, or iron, copper, zinc, potassium and the periodic table It is only necessary that the Group VIII element and each component of chromium and / or silicon are finally combined, and there is no particular limitation on the compound form as a starting material of each element. Oxides, basic carbonates, nitrates, acetates, various complexes, and the like are used. The Group VIII element of the periodic table is cobalt nickel ruthenium rhodium palladium osmium iridium or platinum.

【0007】上記成分中、鉄及び銅についての出発物質
については、調製された触媒が一般的には還元して反応
に使用されるので、易還元性化合物もしくは易還元性化
合物に変換できる化合物を用いることが好ましい。各成
分の構成比は、銅/鉄、亜鉛/鉄、カリウム/鉄、周期
率表第VIII族元素/鉄、クロムまたはケイ素/鉄の原子
比が、それぞれ0.2〜3.0、0.2〜3.0、0.
01〜0.5、0.00001〜2、0.001〜0.
2である。鉄、銅、亜鉛、カリウムおよび周期率表第VI
II族元素については、これらの範囲を越えるとエタノー
ルの生成量が低下する。クロムおよびケイ素について
は、これらの範囲を越えると触媒寿命の向上効果が無く
なる。
[0007] In the above components, the starting materials for iron and copper are generally used in the reaction after the prepared catalyst is reduced, so that an easily reducible compound or a compound that can be converted to an easily reducible compound is used. Preferably, it is used. The composition ratio of each component is such that the atomic ratios of copper / iron, zinc / iron, potassium / iron, group VIII element of the periodic table / iron, chromium or silicon / iron are 0.2 to 3.0 and 0. 0, respectively. 2-3.0, 0.
01-0.5, 0.00001-2, 0.001-0.
2. Iron, Copper, Zinc, Potassium and Periodic Table VI
If the group II element exceeds these ranges, the amount of ethanol produced decreases. When chromium and silicon exceed these ranges, the effect of improving the catalyst life is lost.

【0008】本発明における触媒の調製方法としては、
特に制限はないが、周期率表第VIII族元素を含まない場
合には、例えば、鉄、銅、亜鉛およびカリウムと、ク
ロムおよび/またはケイ素の化合物を、混練して調製す
る方法、鉄、銅および亜鉛の化合物の混合溶液と沈澱
剤とを混合して得られる共沈殿にカリウム化合物と、ク
ロムおよび/またはケイ素化合物とを含浸または混合し
て調製する方法、鉄、銅および亜鉛と、クロムおよび
/またはケイ素の化合物の混合溶液と、沈澱剤とを混合
して得られる共沈澱にカリウム化合物を含浸または混合
して調製する方法、鉄、銅およびカリウムと、クロム
および/またはケイ素の化合物の混合溶液を適当な亜鉛
化合物上に担持して調製する方法、銅、亜鉛およびカ
リウムと、クロムおよび/またはケイ素の化合物の混合
溶液を適当な鉄化合物上に担持して調製する方法等を採
ることができる。
[0008] The method for preparing the catalyst in the present invention includes:
There is no particular limitation, but when it does not contain a Group VIII element of the periodic table, for example, a method of kneading and preparing a compound of iron, copper, zinc and potassium and chromium and / or silicon, iron, copper Prepared by impregnating or mixing a potassium compound, chromium and / or a silicon compound into a coprecipitate obtained by mixing a mixed solution of a compound of zinc and a compound with a precipitant, iron, copper and zinc, chromium and A method of impregnating or mixing a co-precipitate obtained by mixing a mixed solution of a compound of silicon and a precipitant with a potassium compound, mixing iron, copper and potassium with a compound of chromium and / or silicon A method of preparing a solution by supporting it on a suitable zinc compound, and supporting a mixed solution of copper, zinc and potassium and a compound of chromium and / or silicon on a suitable iron compound And the like.

【0009】また周期率表第VIII族元素を含む触媒の調
製方法としては、例えば、鉄、銅、亜鉛、カリウムお
よび周期率表第VIII族元素と、クロムおよび/またはケ
イ素の化合物を混練して調製する方法、鉄、銅および
亜鉛の化合物の混合溶液と沈澱剤とを混合して得られる
共沈殿に、周期率表第VIII族元素化合物とカリウム化合
物と、クロムおよび/またはケイ素化合物とを含浸また
は混合して調製する方法、鉄、銅、亜鉛および周期率
表第VIII族元素の化合物の混合溶液と沈澱剤とを混合し
て得られる共沈殿にカリウム化合物と、クロムおよび/
またはケイ素化合物とを含浸または混合して調製する方
法、鉄、銅、カリウムおよび周期率表第VIII族元素
と、クロムおよび/またはケイ素の化合物の混合溶液を
適当な亜鉛化合物上に担持して調製する方法。銅、亜
鉛、カリウムおよび周期率表第VIII族元素と、クロムお
よび/またはケイ素の化合物の混合溶液を適当な鉄化合
物上に担持して調製する方法などを採ることができる。
As a method for preparing a catalyst containing a Group VIII element of the periodic table, for example, iron, copper, zinc, potassium and a Group VIII element of the periodic table and a compound of chromium and / or silicon are kneaded. Method of preparation, co-precipitation obtained by mixing a mixed solution of compounds of iron, copper and zinc and a precipitant, impregnating a group VIII element compound of the periodic table, a potassium compound, and a chromium and / or silicon compound Alternatively, a potassium compound, a chromium and / or a coprecipitate obtained by mixing a mixed solution of a compound of iron, copper, zinc and a compound of the group VIII element of the periodic table with a precipitant are mixed.
Or a method of impregnating or mixing with a silicon compound, prepared by supporting a mixed solution of iron, copper, potassium and a group VIII element of the periodic table with a compound of chromium and / or silicon on a suitable zinc compound how to. A method in which a mixed solution of copper, zinc, potassium and a group VIII element of the periodic table and a compound of chromium and / or silicon is supported on a suitable iron compound to prepare the mixed solution can be employed.

【0010】また本発明の触媒調製においては、必須構
成成分の均一分散または担持のために反応に悪影響を及
ぼさない物質(アルミナ、マグネシア、チタニア、炭素
等)を使用することができる。本発明において反応に使
用する場合の触媒形状については特に制限はないが、粉
末、打錠成型品、押し出し成型品等の形状で使用するこ
とができる。
In the preparation of the catalyst according to the present invention, a substance (alumina, magnesia, titania, carbon, etc.) which does not adversely affect the reaction for the uniform dispersion or support of the essential components can be used. There is no particular limitation on the shape of the catalyst used in the reaction in the present invention, but it can be used in the form of powder, tablet molding, extrusion molding, or the like.

【0011】このようにして調製された触媒前駆体は、
焼成した後、水素にて還元し、触媒として反応に使用さ
れる。触媒前駆体の焼成処理方法は特に制限はないが、
炉内に静置して焼成する方法やガス気流中で行う方法等
で行われ、空気または不活性ガスの任意の割合に混合さ
れた雰囲気ガス等にて焼成する方法が採られる。焼成温
度は一般に200〜600℃の範囲が好ましく、焼成時
間は通常0.5〜10hr程度である。
[0011] The catalyst precursor thus prepared is
After calcining, it is reduced with hydrogen and used as a catalyst in the reaction. The method of calcining the catalyst precursor is not particularly limited,
It is carried out by a method of firing while standing in a furnace, a method of firing in a gas stream, or the like, and a method of firing with an atmosphere gas mixed with air or an inert gas at an arbitrary ratio. Generally, the firing temperature is preferably in the range of 200 to 600 ° C, and the firing time is generally about 0.5 to 10 hours.

【0012】触媒の水素還元処理は、純水素または不活
性ガスにより任意の割合に希釈された水素中で行われ、
処理方法に特に制限はないが、生成する水等の除去を考
慮すると上記の雰囲気ガスを流通しながら行うのが好ま
しい。還元温度としては250〜500℃の範囲が好ま
しく、還元時間は0.5〜20hr程度である。水素還
元後の触媒は、極めて酸化され易いため、反応に使用す
る直前に反応器内で水素還元処理を行うのが望ましい。
なお触媒の還元は、水素のみならず、水素と一酸化炭素
の混合ガスや一酸化炭素にても行うことができる。
[0012] The hydrogen reduction treatment of the catalyst is performed in pure hydrogen or hydrogen diluted at an arbitrary ratio with an inert gas.
The treatment method is not particularly limited, but it is preferable to carry out the treatment while flowing the above-mentioned atmospheric gas in consideration of removal of generated water and the like. The reduction temperature is preferably in the range of 250 to 500C, and the reduction time is about 0.5 to 20 hours. Since the catalyst after hydrogen reduction is very easily oxidized, it is desirable to perform a hydrogen reduction treatment in the reactor immediately before use in the reaction.
The reduction of the catalyst can be performed not only with hydrogen but also with a mixed gas of hydrogen and carbon monoxide or carbon monoxide.

【0013】本発明による二酸化炭素の接触水素化反応
は、固体触媒を用いる反応方式であれば特に制限はない
が、気相固定床、気相流動床、液相懸濁床等の方式を用
いることができる。本発明の反応に用いられる原料は、
二酸化炭素と水素、または更に不活性ガスを含む混合ガ
スが用いられる。この混合ガス中には一酸化炭素が含ま
れていてもよい。該混合ガス中のCO2 /H2 モル比は
0.1〜10の範囲であることが望ましい。反応温度は
100〜600℃、好ましくは200〜400℃の範囲
である。反応圧力は2〜300気圧、好ましくは10〜
80気圧の範囲である。ガス空間速度は、100〜50
000hr-1、好ましくは1000〜30000hr-1
の範囲である。反応生成物としては、主生成物のエタノ
ールの他に、メタノール、プロパノール、ブタノール等
のアルコール類、アセトアルデヒド、酢酸エステル等、
炭化水素類、一酸化炭素等が生成する。エタノールを始
めとした液状生成物は、蒸留等により分離回収すること
ができる。
The catalytic hydrogenation reaction of carbon dioxide according to the present invention is not particularly limited as long as it is a reaction system using a solid catalyst, but a system such as a gas-phase fixed bed, a gas-phase fluidized bed, or a liquid-phase suspension bed is used. be able to. The raw materials used in the reaction of the present invention are:
A mixed gas containing carbon dioxide and hydrogen or further an inert gas is used. This mixed gas may contain carbon monoxide. The CO 2 / H 2 molar ratio in the mixed gas is desirably in the range of 0.1 to 10. The reaction temperature is in the range of 100 to 600C, preferably 200 to 400C. The reaction pressure is 2 to 300 atm, preferably 10 to
The range is 80 atm. Gas space velocity is 100-50
000 hr -1 , preferably 1000 to 30000 hr -1
Range. As a reaction product, in addition to ethanol as a main product, methanol, propanol, alcohols such as butanol, acetaldehyde, acetate esters, etc.
Hydrocarbons, carbon monoxide, etc. are produced. Liquid products such as ethanol can be separated and recovered by distillation or the like.

【0014】[0014]

【実施例】以下に、本発明について実施例及び比較例を
以て具体的に説明する。但し本発明はこれらの実施例に
制限されるものではない。
The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to these embodiments.

【0015】実施例1 硝酸銅三水和物6.04g、硝酸亜鉛六水和物7.44
g、硝酸鉄九水和物30.30g、硝酸クロム九水和物
0.52gをビーカーに採り、100mlのイオン交換
水に溶解した。イオン交換水200mlに水酸化ナトリ
ウム26.31gを溶解し60℃に保った水溶液をよく
撹拌しながら、上記金属塩溶液を滴下して沈澱物を得
た。この沈澱物をイオン交換水約3リットルで洗浄した
後60℃の乾燥器内で一晩乾燥した。この乾燥沈澱5.
00gを精秤し、炭酸カリウム0.060gを溶解した
イオン交換水3mlを加え混練し、スラリー化した。触
媒の仕込み原子比は、鉄:銅:亜鉛:クロム:カリウム
が1:0.33:0.33:0.017:0.026で
あった。該スラリーを60℃の乾燥器内で2時間乾燥し
た。その後坩堝に移して400℃、3時間焼成し、得ら
れた粉末を成型し、16/32メッシュに整粒した。整
粒物のうち2.5gを精秤して還元管に充填し、常圧
下、水素流速150ml/min、300℃にて水素還
元処理を1時間行った。水素還元処理後、触媒層が冷却
したところで還元管を封管し一晩放置した。還元管から
触媒を回収する際、発熱及び重量増加が殆ど無くなって
から1.0gを精秤して反応管に充填し、常圧下、水素
流速100ml/min、350℃にて反応前還元処理
を30分間行った。反応前還元処理後、触媒層が冷却し
たところでCO2 /H2 =1/3モル組成の原料ガスに
切り換えて昇圧し、系内が70kg/cm2 となったと
ころで原料ガス流速を90ml/minに調整し昇温を
開始した。昇温完了後、継続して触媒活性試験を行い、
反応初期(300℃昇温後30分)、20時間後、20
0時間後にそれぞれ反応生成物をオンラインでガスクロ
マトグラフにより分析した。その結果を表1に示す。
Example 1 6.04 g of copper nitrate trihydrate, 7.44 of zinc nitrate hexahydrate
g, iron nitrate nonahydrate 30.30 g, and chromium nitrate nonahydrate 0.52 g were placed in a beaker and dissolved in 100 ml of ion-exchanged water. 26.31 g of sodium hydroxide was dissolved in 200 ml of ion-exchanged water, and the above-mentioned metal salt solution was added dropwise while stirring the aqueous solution maintained at 60 ° C. to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and dried overnight in a dryer at 60 ° C. 4. this dried precipitate
00 g was precisely weighed, and 3 ml of ion-exchanged water in which 0.060 g of potassium carbonate was dissolved was added and kneaded to form a slurry. The charged atomic ratio of the catalyst was 1: 0.33: 0.33: 0.017: 0.026 for iron: copper: zinc: chromium: potassium. The slurry was dried in a dryer at 60 ° C. for 2 hours. Thereafter, the mixture was transferred to a crucible and baked at 400 ° C. for 3 hours. The obtained powder was molded and sized to 16/32 mesh. 2.5 g of the sized product was precisely weighed and filled in a reduction tube, and subjected to a hydrogen reduction treatment at 300 ° C. and a hydrogen flow rate of 150 ml / min under normal pressure for 1 hour. After the hydrogen reduction treatment, when the catalyst layer was cooled, the reduction tube was sealed and left overnight. When the catalyst was recovered from the reduction tube, 1.0 g was precisely weighed and charged into the reaction tube after the heat generation and weight increase had almost disappeared. Performed for 30 minutes. After the pre-reaction reduction treatment, when the catalyst layer was cooled, the raw material gas was switched to CO 2 / H 2 = 1/3 mole composition and the pressure was increased. When the inside of the system became 70 kg / cm 2 , the raw material gas flow rate was 90 ml / min. And the temperature was raised. After the temperature rise is completed, continue the catalytic activity test,
Initial reaction (30 minutes after heating at 300 ° C.), 20 hours later, 20 minutes
After 0 hour, the respective reaction products were analyzed online by gas chromatography. Table 1 shows the results.

【0016】実施例2 硝酸銅三水和物6.04g、硝酸亜鉛六水和物7.44
g、硝酸鉄九水和物30.30gをビーカーに採り10
0mlのイオン交換水に溶解した。イオン交換水200
mlに水酸化ナトリウム26.00gを溶解し60℃に
保った水溶液をよく撹拌しながら、上記金属塩溶液を滴
下して沈澱物を得た。この沈澱物をイオン交換水約3リ
ットルで洗浄した後60℃の乾燥器内で一晩乾燥した。
この乾燥沈澱5.00gを精秤し、20wt%シリカゾ
ル0.31gと、炭酸カリウム0.060gを溶解した
イオン交換水3mlとを加え混練し、スラリー化した。
触媒の仕込み原子比は、鉄:銅:亜鉛:ケイ素:カリウ
ムが1:0.33:0.33:0.030:0.026
であった。以後、実施例1と同様の方法で触媒を調製
し、還元処理後、触媒活性試験を実施した。試験結果を
表1に示す。
Example 2 6.04 g of copper nitrate trihydrate, 7.44 of zinc nitrate hexahydrate
g, iron nitrate nonahydrate 30.30 g in a beaker 10
It was dissolved in 0 ml of ion-exchanged water. Ion exchange water 200
26.00 g of sodium hydroxide was dissolved in ml, and the above-mentioned metal salt solution was added dropwise while well stirring the aqueous solution kept at 60 ° C. to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and dried overnight in a dryer at 60 ° C.
5.00 g of the dried precipitate was precisely weighed, and 0.31 g of 20 wt% silica sol and 3 ml of ion-exchanged water in which 0.060 g of potassium carbonate were dissolved were added and kneaded to form a slurry.
The charged atomic ratio of the catalyst was iron: copper: zinc: silicon: potassium of 1: 0.33: 0.33: 0.030: 0.026.
Met. Thereafter, a catalyst was prepared in the same manner as in Example 1, and after a reduction treatment, a catalyst activity test was performed. Table 1 shows the test results.

【0017】実施例3 実施例1の60℃で乾燥後の沈澱5.00gを精秤し、
酢酸パラジウム0.10gと、炭酸カリウム0.060
gを溶解したイオン交換水3mlとをを加え混練し、ス
ラリー化した。触媒の仕込み原子比は、鉄:銅:亜鉛:
パラジウム:クロム:カリウムが1:0.33:0.3
3:0.013:0.017:0.026であった。以
後、実施例1と同様の方法で触媒を調製し、還元処理
後、触媒活性試験を実施した。試験結果を表1に示す。
Example 3 5.00 g of the precipitate obtained in Example 1 after drying at 60 ° C. was precisely weighed,
0.10 g of palladium acetate and 0.060 of potassium carbonate
3 g of ion-exchanged water in which g was dissolved was added and kneaded to form a slurry. The charged atomic ratio of the catalyst is iron: copper: zinc:
1: 0.33: 0.3 palladium: chromium: potassium
3: 0.013: 0.017: 0.026. Thereafter, a catalyst was prepared in the same manner as in Example 1, and after a reduction treatment, a catalyst activity test was performed. Table 1 shows the test results.

【0018】比較例1 硝酸銅三水和物6.04g、硝酸亜鉛六水和物7.44
g、硝酸鉄九水和物30.30gをビーカーに採り10
0mlのイオン交換水に溶解した。イオン交換水200
mlに水酸化ナトリウム26.00gを溶解し60℃に
保った水溶液をよく撹拌しながら、上記金属塩溶液を滴
下して沈澱物を得た。この沈澱物をイオン交換水約3リ
ットルで洗浄した後60℃の乾燥器内で一晩乾燥した。
この乾燥沈澱5.00gを精秤し、炭酸カリウム0.0
60gを溶解したイオン交換水3mlをを加え混練し、
スラリー化した。触媒の仕込み原子比は、鉄:銅:亜
鉛:カリウムが1:0.33:0.33:0.026で
あった。以後、実施例1と同様の方法で触媒を調製し、
還元処理後、触媒活性試験を実施した。試験結果を表2
に示す。
Comparative Example 1 6.04 g of copper nitrate trihydrate, 7.44 of zinc nitrate hexahydrate
g, iron nitrate nonahydrate 30.30 g in a beaker 10
It was dissolved in 0 ml of ion-exchanged water. Ion exchange water 200
26.00 g of sodium hydroxide was dissolved in ml, and the above-mentioned metal salt solution was added dropwise while well stirring the aqueous solution kept at 60 ° C. to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and dried overnight in a dryer at 60 ° C.
5.00 g of the dried precipitate was precisely weighed, and potassium carbonate 0.0
3 ml of ion-exchanged water in which 60 g is dissolved is added and kneaded.
A slurry was formed. The charged atomic ratio of the catalyst was 1: 0.33: 0.33: 0.026 for iron: copper: zinc: potassium. Thereafter, a catalyst was prepared in the same manner as in Example 1,
After the reduction treatment, a catalyst activity test was performed. Table 2 shows test results
Shown in

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上の実施例から明らかなように、本発
明の方法で二酸化炭素の接触水素化反応を行うことによ
り、高いCO2 転化率とエタノール選択率が得られ、触
媒の活性低下が小さく長期間使用することができる。従
って本発明の方法により二酸化炭素から有用なエタノー
ルが工業的に有利に得られ、本発明の工業的意義は大き
い。
As is clear from the above examples, by performing the catalytic hydrogenation reaction of carbon dioxide by the method of the present invention, a high CO 2 conversion and ethanol selectivity can be obtained, and the catalyst activity decreases. It is small and can be used for a long time. Therefore, useful ethanol is industrially advantageously obtained from carbon dioxide by the method of the present invention, and the present invention has great industrial significance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 29/156 C07C 29/156 // C07B 61/00 300 C07B 61/00 300 (58)調査した分野(Int.Cl.6,DB名) C07C 31/08 C07C 29/156──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C07C 29/156 C07C 29/156 // C07B 61/00 300 C07B 61/00 300 (58) Field surveyed (Int.Cl. 6 , DB name) C07C 31/08 C07C 29/156

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄、銅、亜鉛、カリウムと、クロムおよび
/またはケイ素を含み、銅/鉄、亜鉛/鉄、カリウム/
鉄、クロムまたはケイ素/鉄の原子比が、それぞれ0.
2〜3.0、0.2〜3.0、0.01〜0.5、0.
001〜0.2である触媒を用いて二酸化炭素を接触水
素化することを特徴とするエタノールの製造方法。
An iron, copper, zinc, potassium and chromium and / or silicon containing copper / iron, zinc / iron, potassium /
The atomic ratio of iron, chromium or silicon / iron is each 0.
2-3.0, 0.2-3.0, 0.01-0.5, 0.
A method for producing ethanol, comprising catalytically hydrogenating carbon dioxide using a catalyst having a molecular weight of 001 to 0.2.
【請求項2】鉄、銅、亜鉛、カリウムと、コバルト・ニ
ッケル・ルテニウム・ロジウム・パラジウム・オスミウ
ム・イリジウム・白金から選ばれた周期率表第VIII族元
素と、クロムおよび/またはケイ素を含み、銅/鉄、亜
鉛/鉄、カリウム/鉄、周期率表第VIII族元素/鉄、ク
ロムまたはケイ素/鉄の原子比が、それぞれ0.2〜
3.0、0.2〜3.0、0.01〜0.5、0.00
001〜2、0.001〜0.2である触媒を用いて二
酸化炭素を接触水素化する請求項1記載のエタノールの
製造方法。
2. An alloy comprising: iron, copper, zinc, potassium, a group VIII element of the periodic table selected from cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum; and chromium and / or silicon. The atomic ratio of copper / iron, zinc / iron, potassium / iron, group VIII element of the periodic table / iron, chromium or silicon / iron is 0.2 to 0.2, respectively.
3.0, 0.2-3.0, 0.01-0.5, 0.00
2. The method for producing ethanol according to claim 1, wherein carbon dioxide is catalytically hydrogenated using a catalyst having 001 to 2, and 0.001 to 0.2.
JP8050777A 1996-02-15 1996-02-15 Ethanol production method Expired - Lifetime JP2813770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050777A JP2813770B2 (en) 1996-02-15 1996-02-15 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050777A JP2813770B2 (en) 1996-02-15 1996-02-15 Ethanol production method

Publications (2)

Publication Number Publication Date
JPH09221437A JPH09221437A (en) 1997-08-26
JP2813770B2 true JP2813770B2 (en) 1998-10-22

Family

ID=12868268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050777A Expired - Lifetime JP2813770B2 (en) 1996-02-15 1996-02-15 Ethanol production method

Country Status (1)

Country Link
JP (1) JP2813770B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351625B1 (en) * 1999-11-11 2002-09-11 한국화학연구원 Catalyst for preparing hydrocarbon
JP4133432B2 (en) * 2003-02-26 2008-08-13 三井化学株式会社 Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst
JP2012217886A (en) * 2011-04-05 2012-11-12 Mitsubishi Heavy Ind Ltd Ethanol synthesis catalyst and ethanol synthesis system
JP2015077575A (en) * 2013-10-18 2015-04-23 岩谷産業株式会社 Hydrocarbon synthesis catalyst, and hydrocarbon production device using the same and method for producing hydrocarbon
CN107001176A (en) 2015-01-13 2017-08-01 积水化学工业株式会社 The manufacture method of butadiene manufacture system and butadiene
JP7227564B2 (en) * 2018-07-05 2023-02-22 株式会社豊田中央研究所 Catalyst for alcohol synthesis and method for producing alcohol using the same
JP7174407B2 (en) * 2018-12-28 2022-11-17 国立研究開発法人産業技術総合研究所 Method for producing methoxypropanol

Also Published As

Publication number Publication date
JPH09221437A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
KR100922998B1 (en) Process for preparing monohydric alcohols from monocarboxylic acids or derivatives thereof
EP0296734B1 (en) Copper catalyst for carbon oxide conversion
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
JPS61183237A (en) Hydrogenation of acetic acid
JPH0336571B2 (en)
JP2813770B2 (en) Ethanol production method
JPH07204509A (en) Production of unsaturated alcohol
US5347056A (en) Process for producing unsaturated alcohols
JP2685130B2 (en) Ethanol production method
JPH05221602A (en) Production of synthesis gas
US4826798A (en) Carbon dioxide calcination of methanol dissociation catalysts
JPH0436140B2 (en)
US3939191A (en) Process for methanol synthesis
JPH0456015B2 (en)
JP3346820B2 (en) Production method of methyl chloride
JP3392812B2 (en) Method for producing hydroxycarboxylic acid ester
JP3047040B2 (en) Method for producing methyl formate and catalyst for producing methyl formate
JPH09249594A (en) Production of methanol
JP3413235B2 (en) Synthesis gas production method
JPH09249595A (en) Production of methanol
JPH10109949A (en) Production of alpha-phenylethyl alcohol
JPH07133242A (en) Production of ethanol
JPH05170404A (en) Method for converting carbon dioxide by methane
JPH08198786A (en) Method for hydrogenating carboxylic acid ester
JPH09234368A (en) Novel solid catalyst containing ruthenium and tin and preparation of aryl alkyl alcohol using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term