JPH05170404A - Method for converting carbon dioxide by methane - Google Patents

Method for converting carbon dioxide by methane

Info

Publication number
JPH05170404A
JPH05170404A JP3343339A JP34333991A JPH05170404A JP H05170404 A JPH05170404 A JP H05170404A JP 3343339 A JP3343339 A JP 3343339A JP 34333991 A JP34333991 A JP 34333991A JP H05170404 A JPH05170404 A JP H05170404A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
nickel
oxide
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343339A
Other languages
Japanese (ja)
Inventor
Shoichi Nishiyama
正一 西山
Yoshifumi Sasaki
好文 佐々木
Hisanori Okada
久則 岡田
Tetsuo Asakawa
哲夫 淺川
Sotaro Nakamura
宗太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Original Assignee
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KANKYO GIJUTSU ITEN KE, KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER, Tosoh Corp filed Critical KOKUSAI KANKYO GIJUTSU ITEN KE
Priority to JP3343339A priority Critical patent/JPH05170404A/en
Publication of JPH05170404A publication Critical patent/JPH05170404A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide the converting method of carbon dioxide being a cause material for making the earth warm and not evaluated up to the present as an useful industrial raw material to carbon monooxide and hydrogen which are useful for industries. CONSTITUTION:A gaseous mixture incorporating carbon dioxide and methane at a specified ratio is allowed to pass through a catalyst supporting lanthanum oxide or cerium oxide and nickel or nickel oxide as effective components to recover carbon monooxide and hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタンを還元剤として
地球温暖化の主要な原因物質となっている二酸化炭素
を、工業的に有用な一酸化炭素と水素(以下、合成ガス
と略す)に変換する方法に関する。
The present invention relates to industrially useful carbon monoxide and hydrogen (hereinafter abbreviated as syngas) for carbon dioxide, which is a major causative agent of global warming using methane as a reducing agent. On how to convert to.

【0002】[0002]

【従来技術】二酸化炭素は地球温暖化の主要原因物質と
して、排出の削減、有効利用が緊急の課題として求めら
れ、近年、二酸化炭素の化学的変換法が多方面(電気的
還元法、光合成法、接触水素還元法等)で検討されてい
る。
2. Description of the Related Art As carbon dioxide is a major causative agent of global warming, reduction of emission and effective use are urgently required, and in recent years, chemical conversion methods of carbon dioxide have been widely used (electric reduction method, photosynthesis method). , Catalytic hydrogen reduction method, etc.).

【0003】そのなかで、メタンを還元剤として二酸化
炭素をヒドロホルミル化により各種有機化合物を合成す
る際の原料等として有用な合成ガスに変換する報告例は
極めて少なく、アルミナ及びシリカ担持貴金属或いはV
III族遷移金属触媒を使用した接触法(React.
Kinet.catal.,24(3−4),253
(1984)、及び第68回触媒討論会(A)予稿集,
3H327(1991))があるにすぎない。
[0003] Among them, there are very few reports of converting carbon dioxide into a synthesis gas useful as a raw material when synthesizing various organic compounds by hydroformylation using methane as a reducing agent.
Catalytic method using Group III transition metal catalyst (React.
Kinet. catal. , 24 (3-4), 253
(1984), and 68th Catalytic Discussion Group (A) Proceedings,
3H327 (1991)).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、貴金属
を担持した触媒を使用する場合、貴金属が高価であり経
済的に不利となることが考えられ、また貴金属と同等の
触媒活性と寿命を有し、より安価なVIII族遷移金
属、中でもニッケル触媒は炭素析出傾向が強く、そのた
め活性の劣化が起こり易いという間題がある。
However, when a catalyst carrying a noble metal is used, it is considered that the noble metal is expensive and economically disadvantageous, and has the same catalytic activity and life as noble metal. There is a problem that the cheaper Group VIII transition metals, especially nickel catalysts, have a strong tendency to deposit carbon, and therefore activity tends to deteriorate.

【0005】[0005]

【課題を解決するための手段】本発明者らは、触媒にお
いて各種の添加物効果を検討した結果、特にランタンま
たはセリウム金属酸化物を含有した触媒において炭素析
出が起こらず安定した活性を示すことを見いだし本発明
を完成するに至った。
Means for Solving the Problems As a result of examining various additive effects in the catalyst, the present inventors have found that the catalyst containing lanthanum or cerium metal oxide shows stable activity without carbon deposition. They have found the present invention and completed the present invention.

【0006】即ち、本発明のメタンによる二酸化炭素の
変換方法の特徴は、二酸化炭素及びメタンを含有するガ
スを触媒に接触させ、一酸化炭素と水素を製造するにあ
たり、触媒として、ランタン金属酸化物またはセリウム
金属酸化物の少なくともいずれかを含む金属或いは金属
酸化物触媒を用いることにある。
That is, the feature of the method for converting carbon dioxide by methane of the present invention is that when a gas containing carbon dioxide and methane is brought into contact with a catalyst to produce carbon monoxide and hydrogen, a lanthanum metal oxide is used as the catalyst. Alternatively, a metal or metal oxide catalyst containing at least one of cerium metal oxide is used.

【0007】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0008】本発明において用いる触媒は、ランタン金
属酸化物またはセリウム金属酸化物の少なくともいずれ
かと金属あるいは金属酸化物からなるものであっても、
またその両者をシリカ、アルミナ、ジルコニア、ニオビ
ア、チタニア、結晶性アルミノシリケート等の酸化物に
担持させたものであってもよい。
The catalyst used in the present invention may be composed of at least either lanthanum metal oxide or cerium metal oxide and metal or metal oxide,
Alternatively, both of them may be supported on an oxide such as silica, alumina, zirconia, niobia, titania, or crystalline aluminosilicate.

【0009】なおランタン金属酸化物とセリウム金属酸
化物の両方を含む場合、それらの重量比は特に制限され
ない。
When both lanthanum metal oxide and cerium metal oxide are contained, their weight ratio is not particularly limited.

【0010】ランタン金属酸化物又はセリウム金属酸化
物の触媒中の含有量は、0.01重量%以上であれば特
に制限されず、より好ましくは0.1〜95重量%であ
る。該ランタン金属酸化物、またはセリウム金属酸化物
を含有した担体上に、酸化マグネシウム、酸化カルシウ
ム等のアルカリ土類金属酸化物類を添加することもでき
る。
The content of lanthanum metal oxide or cerium metal oxide in the catalyst is not particularly limited as long as it is 0.01% by weight or more, more preferably 0.1 to 95% by weight. It is also possible to add alkaline earth metal oxides such as magnesium oxide and calcium oxide onto the carrier containing the lanthanum metal oxide or the cerium metal oxide.

【0011】上記金属或いは金属酸化物としては貴金
属、VIII族遷移金属及びこれら金属の酸化物から選
ばれる金属あるいは金属酸化物を含むものであればよ
い。
The metal or metal oxide may be any metal or metal oxide selected from noble metals, Group VIII transition metals and oxides of these metals.

【0012】具体的には、ロジウム、イリジウム、ルテ
ニウム、コバルト、ニッケル或はそれらの酸化物が挙げ
られる。中でも、コストの面でより安価なニッケル或は
ニッケル酸化物が経済的に有利である。
Specific examples thereof include rhodium, iridium, ruthenium, cobalt, nickel and oxides thereof. Among them, nickel or nickel oxide, which is cheaper in terms of cost, is economically advantageous.

【0013】金属或は金属酸化物の触媒中の含有量は、
0.01〜70重量%が好ましい。含有量が0.01重
量%未満では十分な二酸化炭素の転化率が得られないこ
とがある。一方、70重量%を越える場合は期待するほ
どの転化率の向上は認められない。
The content of metal or metal oxide in the catalyst is
0.01 to 70% by weight is preferable. If the content is less than 0.01% by weight, a sufficient carbon dioxide conversion rate may not be obtained. On the other hand, when it exceeds 70% by weight, the expected improvement in conversion is not observed.

【0014】ランタン金属酸化物またはセリウム金属酸
化物の少なくともいずれかを含む金属或は金属酸化物を
触媒の調製法としては、特に制限はなく通常の含浸法、
共沈法などの方法で製造される。
There is no particular limitation on the method for preparing a catalyst containing a metal or a metal oxide containing at least one of lanthanum metal oxide and cerium metal oxide, and a conventional impregnation method,
It is manufactured by a method such as a coprecipitation method.

【0015】例えばランタン金属酸化物またはセリウム
金属酸化物の少なくともいずれかを含むニッケル或はニ
ッケル酸化物触媒については以下の方法があげられる。
For example, a nickel or nickel oxide catalyst containing at least one of lanthanum metal oxide and cerium metal oxide can be prepared by the following method.

【0016】(1)シリカ成型物に、ランタンまたはセ
リウム金属塩に溶解した水溶液を含浸させた乾燥・焼成
の処理を行い、更にその得られた酸化物にニッケル塩水
溶液を含浸させて活性化処理を行う。
(1) A silica molding is impregnated with an aqueous solution of lanthanum or cerium metal salt and dried and fired, and the resulting oxide is impregnated with an aqueous nickel salt solution for activation. I do.

【0017】(2)ランタンまたはセリウム金属塩とア
ルミニウム塩を混合した水溶液にアンモニアを加えて沈
澱を形成し、得られたゲルを乾燥後、ニッケル塩水溶液
を含浸させて活性化処理を行う。
(2) Ammonia is added to an aqueous solution in which a lanthanum or cerium metal salt and an aluminum salt are mixed to form a precipitate, and the resulting gel is dried and impregnated with an aqueous nickel salt solution for activation treatment.

【0018】(3)シリカアルコキサイドに、ランタン
またはセリウム金属塩及びニッケル塩を加え加水分解す
ることで沈澱を得、乾燥・焼成・還元の処理を行う。
(3) A lanthanum or cerium metal salt and a nickel salt are added to silica alkoxide and hydrolyzed to obtain a precipitate, which is dried, calcined and reduced.

【0019】(4)チタニア成型物をランタンまたはセ
リウム金属塩とニッケル塩の混合水溶液に同時含浸し、
乾燥・焼成の処理を行う。
(4) The titania molded product is simultaneously impregnated with a mixed aqueous solution of lanthanum or cerium metal salt and nickel salt,
Performs drying and baking.

【0020】(5)ニッケル酸化物とランタンまたはセ
リウム金属酸化物とを物理混合し、活性化処理を行う。
(5) The nickel oxide and the lanthanum or cerium metal oxide are physically mixed and activated.

【0021】なおニッケル以外の他の金属,金属酸化物
の場合も同様にして製造できる。
It should be noted that other metals and metal oxides other than nickel can be manufactured in the same manner.

【0022】該触媒に、酸化マグネシウム、酸化カルシ
ウム等のアルカリ金属酸化物類を上記調製法により含有
させることもできる。
The catalyst may contain an alkali metal oxide such as magnesium oxide or calcium oxide by the above-mentioned preparation method.

【0023】上記の触媒調製に使用するニッケル塩及び
ランタンまたはセリウム金属塩としては、特に制限はな
いが、活性化処理時に分解し易い硝酸塩、炭酸塩、有機
錯体がより好ましい。
The nickel salt and lanthanum or cerium metal salt used for preparing the above catalyst are not particularly limited, but nitrates, carbonates and organic complexes which are easily decomposed during the activation treatment are more preferable.

【0024】また上記の触媒の活性化処理とは、空気等
による焼成及び水素、硫化水素等による還元をいう。十
分な二酸化炭素の転化率を得るためには還元処理を行う
ことが好ましい。
The above-mentioned catalyst activation treatment means calcination with air or the like and reduction with hydrogen, hydrogen sulfide or the like. In order to obtain a sufficient carbon dioxide conversion rate, reduction treatment is preferably performed.

【0025】触媒は、成型して用いても或いは粉末のま
ま用いても差し支えなく、反応方法によって所望の大き
さに成型して用いればよい。
The catalyst may be molded or used as it is, and may be molded into a desired size according to the reaction method.

【0026】本発明方法における原料ガス中のメタンの
量は、二酸化炭素に対するメタンのモル比として規定す
ることができる。具体的には、メタン/二酸化炭素の比
は0.05〜25、好ましくは0.1〜20とすること
がよい。メタン/二酸化炭素との比が0.05未満では
リサイクルする二酸化炭素の量が多くなり、一方、メタ
ン/二酸化炭素の比が25を越えると十分な一酸化炭素
生成速度が得られなくなり不経済となることがある。
The amount of methane in the raw material gas in the method of the present invention can be defined as the molar ratio of methane to carbon dioxide. Specifically, the ratio of methane / carbon dioxide is 0.05 to 25, preferably 0.1 to 20. When the ratio of methane / carbon dioxide is less than 0.05, the amount of carbon dioxide to be recycled increases, while when the ratio of methane / carbon dioxide exceeds 25, a sufficient carbon monoxide generation rate cannot be obtained, which is uneconomical. May be.

【0027】なお、本発明において、系中に希釈ガスと
して窒素、空気または水蒸気を添加してもよい。
In the present invention, nitrogen, air or steam may be added to the system as a diluent gas.

【0028】本発明における反応温度は300〜100
0℃、より好ましくは400〜950℃である。反応温
度が300℃未満では二酸化炭素の十分な転化率が得ら
れず、また、1000℃を越える場合には触媒のシンタ
リングによる活性の低下を起こすことがある。
The reaction temperature in the present invention is 300 to 100.
The temperature is 0 ° C, more preferably 400 to 950 ° C. If the reaction temperature is lower than 300 ° C, a sufficient conversion rate of carbon dioxide cannot be obtained, and if the reaction temperature exceeds 1000 ° C, the activity may decrease due to the sintering of the catalyst.

【0029】反応圧力については特に制限はなく常圧か
ら20気圧、好ましくは常圧から10気圧で反応を行う
のがよい。
The reaction pressure is not particularly limited and it is preferable to carry out the reaction at atmospheric pressure to 20 atm, preferably atmospheric pressure to 10 atm.

【0030】触媒に対する原料供給速度は、単位触媒体
積あたりの原料供給速度(SV)で規定することができ
る。本発明の方法は、SVが500〜100000/h
で好ましく実施できる。SVが500/h未満では一酸
化炭素の生成速度が小さく、またSVが100000/
hを越えると原料の転化率が低下し経済的でなくなるこ
とがある。
The raw material supply rate to the catalyst can be defined by the raw material supply rate (SV) per unit catalyst volume. The method of the present invention has an SV of 500 to 100,000 / h.
Can be carried out preferably. If the SV is less than 500 / h, the production rate of carbon monoxide is low, and the SV is 100,000 / h.
If it exceeds h, the conversion rate of the raw material may be lowered and it may not be economical.

【0031】反応方法は、触媒と原料が効率的に接触で
きれば特に制限はなく、たとえば固定床、流動床、移動
床で反応を行わせることができる。
The reaction method is not particularly limited as long as the catalyst and the raw materials can be efficiently brought into contact with each other. For example, the reaction can be carried out in a fixed bed, a fluidized bed or a moving bed.

【0032】[0032]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明がこれらの実施例によって制限されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The invention is not limited by these examples.

【0033】実施例1 硝酸ランタン六水和物3gを水20ccに溶解した水溶
液に、3mm径の球状シリカ(富士デヴィソン製、キャ
リアクト−30)10gを3時間浸漬した後、110
℃、11時間乾燥した。次にこれを600℃で2時間空
気焼成した担体5gを、硝酸ニッケル六水和物2.4g
を水10ccに溶かした水溶液に3時間浸漬した後、1
10℃で一晩乾燥後、500℃で1時間、10%水素気
流下で還元し、重量比でニッケル10%、酸化ランタン
10%、シリカ80%を含有した触媒を得た。
Example 1 10 g of spherical silica having a diameter of 3 mm (made by Fuji Devison, Carriact-30) was immersed in an aqueous solution prepared by dissolving 3 g of lanthanum nitrate hexahydrate in 20 cc of water for 3 hours, and then 110
C., and dried for 11 hours. Next, 5 g of the carrier obtained by air-calcining this at 600 ° C. for 2 hours was added with 2.4 g of nickel nitrate hexahydrate.
Was immersed in an aqueous solution of 10 cc of water for 3 hours, then
After drying at 10 ° C. overnight, reduction was carried out at 500 ° C. for 1 hour under a 10% hydrogen flow to obtain a catalyst containing 10% by weight of nickel, 10% of lanthanum oxide and 80% of silica.

【0034】この触媒1.5gを内径14mmのSUS
反応管に充填し、反応温度を500℃に保ち、ここに二
酸化炭素:メタン:窒素のモル比が1:1:3となる混
合ガスを100cc/minで通した。なお、出口ガス
の分析はガスクロマトグラフィーにより行い、一酸化炭
素の収率、炭素析出度は炭素の物質収支から以下の計算
式により算出した。
1.5 g of this catalyst was added to SUS having an inner diameter of 14 mm.
The reaction tube was filled, the reaction temperature was kept at 500 ° C., and a mixed gas having a carbon dioxide: methane: nitrogen molar ratio of 1: 1: 3 was passed therethrough at 100 cc / min. The analysis of the outlet gas was carried out by gas chromatography, and the yield of carbon monoxide and the degree of carbon deposition were calculated from the mass balance of carbon by the following formulas.

【0035】CO収率(%)=出口COのモル数/(供
給CO2 のモル数+供給CH4 モル数)×100(%) 炭素析出度(%)=(1−出口ガスの全炭素モル数/
(供給CO2 のモル数+供給CH4 モル数))×100
(%) 結果を表1に示す。
CO yield (%) = number of moles of outlet CO / (number of moles of supplied CO 2 + number of moles of supplied CH 4 ) × 100 (%) Deposition degree of carbon (%) = (1-total carbon of outlet gas Number of moles /
(Moles of supplied CO 2 + moles of supplied CH 4 )) × 100
(%) The results are shown in Table 1.

【0036】実施例2 硝酸ランタンの代わりに、硝酸セリウム六水和物を使用
し実施例1と同様の触媒調製操作により重量比でニッケ
ル10%、酸化セリウム10%、シリカ80%を含有し
た触媒を得た。
Example 2 A catalyst containing nickel 10%, cerium oxide 10% and silica 80% by weight was prepared by the same catalyst preparation procedure as in Example 1 except that cerium nitrate hexahydrate was used instead of lanthanum nitrate. Got

【0037】この触媒1.5gを使用し、実施例1と同
様の反応操作により反応を行った。結果を表1に示す。
Using 1.5 g of this catalyst, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

【0038】実施例3 硝酸ランタン六水和物2.95gを水10ccに溶解し
た水溶液に、3mm径の球状アルミナ(住友化学製、K
HA−24)10gを3時間浸漬した後、110℃で1
1時間乾燥した。次にこれを700℃で2時間空気焼成
した担体11gを、硝酸ニッケル六水和物5.5gを水
11ccに溶かした水溶液に3時間含浸した後、600
℃で2時間空気焼成、続いて10%水素気流中500℃
で1時間の還元処理を行い、重量比でニッケル10%、
酸化ランタン10%、アルミナ80%を含有した触媒を
得た。
Example 3 A solution of 2.95 g of lanthanum nitrate hexahydrate dissolved in 10 cc of water was added to an aqueous solution of spherical alumina having a diameter of 3 mm (K, manufactured by Sumitomo Chemical Co., Ltd.).
After immersing 10g of HA-24) for 3 hours, it is 1 at 110 ° C.
It was dried for 1 hour. Next, 11 g of the carrier obtained by air-calcining this at 700 ° C. for 2 hours was impregnated with an aqueous solution in which 5.5 g of nickel nitrate hexahydrate was dissolved in 11 cc of water for 3 hours.
Air calcination at ℃ for 2 hours, then 500 ℃ in 10% hydrogen flow.
Reduction treatment for 1 hour at 10% by weight of nickel,
A catalyst containing 10% lanthanum oxide and 80% alumina was obtained.

【0039】この触媒1.5gを使用し、実施例1と同
様の反応操作により反応を行った。結果を表1に示す。
A reaction was carried out in the same manner as in Example 1 using 1.5 g of this catalyst. The results are shown in Table 1.

【0040】実施例4 硝酸ニッケル六水和物5g、硝酸ランタン六水和物2.
6gをエチレングリコール100CCに溶解したのち、
撹拌しながら80℃に加温した。そこに、温度を保ちな
がらアルミニウムイソプロポキシド32.4gを滴下
し、さらに同温度で3時間撹拌を行った。その後、水1
5gを加え加水分解し、さらに撹拌を3時間行い目的の
ゲルを得た。加圧成型後、700℃で2時間空気焼成を
行い、引き続き600℃で1時間10%水素気流中で還
元を行い、重量比でニッケル、酸化ランタン、アルミナ
を各々10%、10%、80%含む触媒を得た。
Example 4 5 g of nickel nitrate hexahydrate, lanthanum nitrate hexahydrate 2.
After dissolving 6 g in 100 g ethylene glycol,
Warm to 80 ° C. with stirring. While maintaining the temperature, 32.4 g of aluminum isopropoxide was added dropwise thereto, and the mixture was further stirred at the same temperature for 3 hours. Then water 1
5 g was added and hydrolyzed, followed by stirring for 3 hours to obtain a desired gel. After pressure molding, air calcination is performed at 700 ° C. for 2 hours, and then reduction is performed at 600 ° C. for 1 hour in a 10% hydrogen flow, and nickel, lanthanum oxide, and alumina are 10%, 10%, and 80% by weight, respectively. A catalyst containing was obtained.

【0041】この触媒1.5gを使用し、実施例1と同
様の反応操作により反応を行った。結果を表1に示す。
Using 1.5 g of this catalyst, a reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

【0042】比較例 3mm径の球状シリカ(富士デヴィソン製)14gを硝
酸ニッケル六水和物6.9gを水20ccに溶かした水
溶液に3時間浸漬した後、実施例1と同様の処理を行
い、重量比でニッケル10%、シリカ90%を含有した
触媒を得た。
Comparative Example 14 g of spherical silica having a diameter of 3 mm (manufactured by Fuji Davison) was immersed in an aqueous solution of 6.9 g of nickel nitrate hexahydrate dissolved in 20 cc of water for 3 hours, and then the same treatment as in Example 1 was performed. A catalyst containing nickel 10% and silica 90% by weight was obtained.

【0043】この触媒1.5gを反応管に充填し、実施
例1と同じ反応温度及びSVの条件下で反応を行った。
結果を表1に示す。
1.5 g of this catalyst was charged into a reaction tube, and the reaction was carried out under the same reaction temperature and SV conditions as in Example 1.
The results are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】二酸化炭素をメタンにより還元する際、
本発明の触媒を使用することで、触媒表面上での炭素析
出を抑制し合成ガスを製造することができる。
When carbon dioxide is reduced by methane,
By using the catalyst of the present invention, it is possible to suppress carbon deposition on the surface of the catalyst and produce a synthesis gas.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年1月20日[Submission date] January 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】ランタン金属酸化物またはセリウム金属酸
化物の少なくともいずれかを含む金属或は金属酸化物触
媒の調製法としては、特に制限はなく通常の含浸法、共
沈法などの方法で製造される。
The method for preparing the metal or metal oxide catalyst containing at least one of the lanthanum metal oxide and the cerium metal oxide is not particularly limited, and the usual impregnation method, coprecipitation method, etc. may be used. Manufactured by the method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】(1)シリカ成型物、ランタンまたはセ
リウム金属塩溶解させた水溶液に浸漬し、乾燥・焼成
の処理を行い、更にその得られた酸化物ニッケル塩水
溶液に浸漬し活性化処理を行う。
[0016] (1) silica molded product was immersed in an aqueous solution obtained by dissolving lanthanum or cerium metal salt, followed by drying and baking process, immersed activating process the obtained oxide to nickel salt solution I do.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】(2)ランタンまたはセリウム金属塩とア
ルミニウム塩を混合した水溶液にアンモニアを加えて沈
澱を形成し、得られたゲルを乾燥後、ニッケル塩水溶液
に浸漬し活性化処理を行う。
(2) Ammonia is added to an aqueous solution in which a lanthanum or cerium metal salt and an aluminum salt are mixed to form a precipitate, and the resulting gel is dried and then a nickel salt aqueous solution is added.
It is immersed in and activated.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】(4)チタニア成型物をランタンまたはセ
リウム金属塩とニッケル塩の混合水溶液に浸漬し、乾燥
・焼成の処理を行う。
(4) The titania molded product is immersed in a mixed aqueous solution of lanthanum or cerium metal salt and nickel salt, and dried and fired.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】実施例3 硝酸ランタン六水和物2.95gを水10ccに溶解し
た水溶液に、3mm径の球状アルミナ(住友化学製、K
HA−24)10gを3時間浸漬した後、110℃で1
1時間乾燥した。次にこれを700℃で2時間空気焼成
した担体11gを、硝酸ニッケル六水和物5.5gを水
11ccに溶かした水溶液に3時間浸漬した後、600
℃で2時間空気焼成、続いて10%水素気流中500℃
で1時間の還元処理を行い、重量比でニッケル10%、
酸化ランタン10%、アルミナ80%を含有した触媒を
得た。
Example 3 In an aqueous solution prepared by dissolving 2.95 g of lanthanum nitrate hexahydrate in 10 cc of water, spherical alumina having a diameter of 3 mm (K, manufactured by Sumitomo Chemical Co., Ltd.)
After immersing 10g of HA-24) for 3 hours, it is 1 at 110 ° C.
It was dried for 1 hour. Next, 11 g of the carrier obtained by air-calcining this at 700 ° C. for 2 hours was immersed in an aqueous solution in which 5.5 g of nickel nitrate hexahydrate was dissolved in 11 cc of water for 3 hours.
Air calcination at ℃ for 2 hours, then 500 ℃ in 10% hydrogen flow.
Reduction treatment for 1 hour at 10% by weight of nickel,
A catalyst containing 10% lanthanum oxide and 80% alumina was obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淺川 哲夫 三重県四日市市別名6丁目7−5 (72)発明者 中村 宗太郎 三重県鈴鹿市長太旭町6丁目19−18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Asakawa 6-7-5, also known as Yokkaichi-shi, Mie (72) Inventor Sotaro Nakamura 6-19-18 Nagataasa-cho, Suzuka-shi, Mie

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素及びメタンを含有するガスを
触媒に接触させ、一酸化炭素と水素を製造するにあた
り、触媒が、ランタン金属酸化物またはセリウム金属酸
化物の少なくともいずれかを含む金属或いは金属酸化物
触媒であることを特徴とするメタンによる二酸化炭素の
変換方法。
1. In producing carbon monoxide and hydrogen by bringing a gas containing carbon dioxide and methane into contact with a catalyst, the catalyst contains a metal or a metal containing at least one of lanthanum metal oxide and cerium metal oxide. A method for converting carbon dioxide using methane, which is an oxide catalyst.
【請求項2】 金属或いは金属酸化物が、ニッケル或い
はニッケル酸化物であることを特徴とする請求項1記載
の変換方法。
2. The conversion method according to claim 1, wherein the metal or metal oxide is nickel or nickel oxide.
JP3343339A 1991-12-25 1991-12-25 Method for converting carbon dioxide by methane Pending JPH05170404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343339A JPH05170404A (en) 1991-12-25 1991-12-25 Method for converting carbon dioxide by methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343339A JPH05170404A (en) 1991-12-25 1991-12-25 Method for converting carbon dioxide by methane

Publications (1)

Publication Number Publication Date
JPH05170404A true JPH05170404A (en) 1993-07-09

Family

ID=18360765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343339A Pending JPH05170404A (en) 1991-12-25 1991-12-25 Method for converting carbon dioxide by methane

Country Status (1)

Country Link
JP (1) JPH05170404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282694A (en) * 2001-03-28 2002-10-02 Shimadzu Corp Catalyst for producing carbon
JP2012520177A (en) * 2009-03-16 2012-09-06 サウディ ベーシック インダストリーズ コーポレイション Nickel / lanthanum oxide catalyst for producing synthesis gas
JP2018135262A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Method of producing hydrogen, and cerium oxide catalyst for producing hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282694A (en) * 2001-03-28 2002-10-02 Shimadzu Corp Catalyst for producing carbon
JP2012520177A (en) * 2009-03-16 2012-09-06 サウディ ベーシック インダストリーズ コーポレイション Nickel / lanthanum oxide catalyst for producing synthesis gas
JP2018135262A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Method of producing hydrogen, and cerium oxide catalyst for producing hydrogen

Similar Documents

Publication Publication Date Title
ES2227249T3 (en) CATALYST AND HYDROCARBON PREPARATION PROCEDURE.
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
NZ202305A (en) Catalytic system;process for production of alcohol mixtures
KR20060132818A (en) Process for the manufacture of methylmercaptan
JP2008132467A (en) Method of producing catalyst used for synthesizing dimethyl ether from synthesis gas containing carbon dioxide
US4229374A (en) Amine process using Cu-Sn-Na catalyst
CA1321604C (en) Catalytic process for the production of alcohols from carbon monoxide, hydrogen and olefins
EP0548679A1 (en) Process for the preparation of synthetic gases
JPH06319999A (en) Catalyst for synthetic production of isoalcohol from carbon monoxide and hydrogen
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
JPH05221602A (en) Production of synthesis gas
JP2685130B2 (en) Ethanol production method
JPH05170404A (en) Method for converting carbon dioxide by methane
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JP2807053B2 (en) Decomposition method of methanol
JPH0788376A (en) Catalyst for steam-reforming-hydrocarbon
JP3089677B2 (en) How to reduce carbon dioxide with propane
JPH05170403A (en) Method for converting carbon dioxide by methane
JPH039772B2 (en)
JPH09221437A (en) Production of ethanol
JP3095497B2 (en) How to convert carbon dioxide with ethane
JPH06279012A (en) Production of carbon monoxide
KR101783647B1 (en) Ni-Based catalysts for combined steam and carbon dioxide reforming with methane
JP3413234B2 (en) Synthesis gas production method
JPS6256788B2 (en)