JPH06279012A - Production of carbon monoxide - Google Patents

Production of carbon monoxide

Info

Publication number
JPH06279012A
JPH06279012A JP5065274A JP6527493A JPH06279012A JP H06279012 A JPH06279012 A JP H06279012A JP 5065274 A JP5065274 A JP 5065274A JP 6527493 A JP6527493 A JP 6527493A JP H06279012 A JPH06279012 A JP H06279012A
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
hydrogen
carbon monoxide
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065274A
Other languages
Japanese (ja)
Inventor
Yoshifumi Sasaki
好文 佐々木
Tetsuo Asakawa
哲夫 淺川
Shoichi Nishiyama
正一 西山
Hisanori Okada
久則 岡田
Sotaro Nakamura
宗太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Original Assignee
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER, Tosoh Corp filed Critical KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Priority to JP5065274A priority Critical patent/JPH06279012A/en
Publication of JPH06279012A publication Critical patent/JPH06279012A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide

Abstract

PURPOSE:To produce carbon monoxide without lowering the catalyst activity in high selectivity and yield even under high-temperature reaction condition by contacting carbon dioxide gas and hydrogen with an iron oxide catalyst supported on an inert carrier. CONSTITUTION:An iron oxide catalyst supported on an inert carrier is used as a catalyst for the production of carbon monoxide by contacting carbon dioxide gas and hydrogen with the catalyst. The supported iron oxide catalyst can be produced e.g. by adding ammonia water or sodium carbonate, etc., to an aqueous solution of aluminum nitrate, washing the formed precipitate, drying and baking the precipitate to obtain an alumina carrier, immersing the alumina carrier in an aqueous solution of iron nitrate, drying the impregnated carrier and baking in air stream. The baking temperature is preferably >=300 deg.C. When the baking temperature is <300 deg.C, the sufficient conversion of carbon dioxide may not be attained because the decomposition of the iron salt does not take place at the temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機化学工業の原料とし
て重要な一酸化炭素を製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing carbon monoxide, which is important as a raw material for the organic chemical industry.

【0002】[0002]

【従来の技術】二酸化炭素は、地球温暖化の主要原因物
質として、排出の削減、有効利用が緊急の課題として求
められている。一方、一酸化炭素は、メタノールから酢
酸を製造する際の原料として、あるいは、ヒドロホルミ
ル化により各種有機化合物を製造する際の原料として、
非常に重要な化合物である。従って、二酸化炭素を原料
としてこれを有用な一酸化炭素に変換できれば、環境問
題にもまた工業的にも非常に有意義である。
2. Description of the Related Art Carbon dioxide has been urgently required to be reduced and effectively used as a main causative substance of global warming. On the other hand, carbon monoxide, as a raw material when producing acetic acid from methanol, or as a raw material when producing various organic compounds by hydroformylation,
It is a very important compound. Therefore, if carbon dioxide can be used as a raw material and can be converted into useful carbon monoxide, it will be very significant both for environmental problems and industrially.

【0003】近年、二酸化炭素の化学的変換法が多方面
(電気的還元法、光合成法、接触還元法等)で検討され
ている。その中で、水素を還元剤として、接触還元法に
より二酸化炭素を一酸化炭素に変換する報告例は極めて
少なく、担持金属銅を触媒とする方法(フランス特許F
R2,593,164号)、担持硫化モリブデンを触媒
とする方法(CO2 固定シンポジウム予稿集(199
0))があるにすぎない。その他、アンモニア合成等に
おいて下記(1)式の逆反応を進行させる触媒として工
業的に使用されているものが考えられる。(1)式は可
逆反応であるため、(1)式の逆反応を進行させる触媒
も、二酸化炭素を水素で還元し一酸化炭素を製造する反
応を進行させることのできる触媒として利用することが
できる。
In recent years, a chemical conversion method of carbon dioxide has been studied in various fields (electric reduction method, photosynthesis method, catalytic reduction method, etc.). Among them, there are very few reports of converting carbon dioxide to carbon monoxide by the catalytic reduction method using hydrogen as a reducing agent, and a method of using supported metal copper as a catalyst (French Patent F
R2,593,164), a method of using supported molybdenum sulfide as a catalyst (CO 2 fixation symposium proceedings (199)
There is only 0)). In addition, it is conceivable that the catalyst is industrially used as a catalyst for promoting the reverse reaction of the following formula (1) in ammonia synthesis and the like. Since the formula (1) is a reversible reaction, a catalyst that advances the reverse reaction of the formula (1) can also be used as a catalyst that can proceed the reaction of reducing carbon dioxide with hydrogen to produce carbon monoxide. it can.

【0004】 CO2 +H2 →CO+H2 O (1) これらの触媒には、低温用触媒と高温用触媒の2種類が
ある。低温用触媒は、銅および亜鉛、クロム等の酸化物
からなり、200℃程度の低温で(1)式の逆反応を進
行させる。また、高温用触媒は担体に担持されていない
酸化鉄、酸化クロムからなり、400℃〜500℃で
(1)式の逆反応を進行させる。
CO 2 + H 2 → CO + H 2 O (1) There are two types of these catalysts, a low temperature catalyst and a high temperature catalyst. The low temperature catalyst is made of an oxide of copper, zinc, chromium or the like, and causes the reverse reaction of the formula (1) to proceed at a low temperature of about 200 ° C. The high temperature catalyst is composed of iron oxide and chromium oxide which are not supported on the carrier, and causes the reverse reaction of the formula (1) to proceed at 400 ° C to 500 ° C.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、二酸化
炭素の水素による還元反応は吸熱反応であるために、低
温では平衡転化率が低く、転化率を上げることが熱力学
上不可能である。すなわち、低温で同量の二酸化炭素と
水素を反応させた場合、二酸化炭素および水素の転化率
が共に低い。また、大量の水素を用い二酸化炭素を還元
しようとすると未反応の水素が増加し、また逆に二酸化
炭素の比率を高めると未反応の二酸化炭素が増加するた
めに経済的でなくなる。さらに低温ではメタンの副生が
起こり、一酸化炭素を選択的に得ることができない。そ
こで本反応を効率的に行うためには高温が必要である
が、高温では触媒のシンタリングにより活性の低下が起
こる。そこで高温においても選択性がよく、高活性を維
持する触媒が求められる。
However, since the reduction reaction of carbon dioxide with hydrogen is an endothermic reaction, the equilibrium conversion is low at low temperatures, and it is thermodynamically impossible to increase the conversion. That is, when the same amount of carbon dioxide and hydrogen are reacted at low temperature, the conversion rates of carbon dioxide and hydrogen are both low. Further, when trying to reduce carbon dioxide using a large amount of hydrogen, unreacted hydrogen increases, and conversely, when the ratio of carbon dioxide is increased, unreacted carbon dioxide increases, which is not economical. At lower temperatures, methane by-product occurs and carbon monoxide cannot be selectively obtained. Therefore, a high temperature is required to carry out this reaction efficiently, but at a high temperature, the activity decreases due to the sintering of the catalyst. Therefore, there is a demand for a catalyst that has good selectivity even at high temperatures and maintains high activity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、二酸化水素と水素
を触媒に接触させ一酸化炭素を製造するにあたり、耐熱
性のある不活性担体に酸化鉄を担持させた触媒を用いる
ことにより、高温反応下においても選択的に、収率よく
しかも活性の低下なしに一酸化炭素を製造できることを
見いだし本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a heat-resistant and inert material is used in producing carbon monoxide by bringing hydrogen dioxide and hydrogen into contact with a catalyst. By using a catalyst in which iron oxide is supported on a carrier, it has been found that carbon monoxide can be selectively produced even in a high temperature reaction with a high yield and without lowering the activity, and the present invention has been completed.

【0007】即ち、本発明は、二酸化炭素と水素を触媒
に接触させ一酸化炭素を製造する方法において、触媒が
不活性担体に担持された酸化鉄であることを特徴とする
一酸化炭素の製造方法に関する。以下に本発明をさらに
詳細に説明する。
That is, the present invention provides a method for producing carbon monoxide by contacting carbon dioxide and hydrogen with a catalyst, wherein the catalyst is iron oxide supported on an inert carrier. Regarding the method. The present invention will be described in more detail below.

【0008】本発明においては、触媒として不活性担体
に担持させた酸化鉄を用いる。この担持酸化鉄触媒の調
整方法に特に制限はなく、硝酸塩、塩化物等の鉄の無機
塩の溶液にアルミナ、シリカ、シリカアルミナ、マグネ
シア、カルシア、ジルコニア、チタニア又はそれらの混
合物である不活性担体を浸し、焼成により得ることがで
きる。担体の調製法にも制限はなく、市販の担体を用い
てもよいし、沈澱法、アルコキシド法等の公知の方法で
調製することもできる。
In the present invention, iron oxide supported on an inert carrier is used as a catalyst. There is no particular limitation on the method for adjusting the supported iron oxide catalyst, and nitrate, chloride, etc. in a solution of an inorganic salt of iron, alumina, silica, silica-alumina, magnesia, calcia, zirconia, titania or an inert carrier which is a mixture thereof. Can be obtained by dipping and firing. The method for preparing the carrier is not limited, and a commercially available carrier may be used, or the carrier may be prepared by a known method such as a precipitation method or an alkoxide method.

【0009】担持酸化鉄触媒の調製法として、例えば沈
澱法により、硝酸アルミニウムの水溶液にアンモニア水
あるいは炭酸ナトリウムなどを加え沈澱を得、これを水
洗後、乾燥して焼成することによりアルミナ担体を得
る。このアルミナ担体を硝酸鉄水溶液に浸し、乾燥後、
空気気流中で焼成することにより担持酸化鉄触媒とする
ことができる。なお、上記の調整方法において行われる
焼成温度としては、300℃以上が好ましい。300℃
未満では原料として用いる鉄塩が分解しないため、十分
な二酸化炭素の転化率が得られないことがある。
As a method for preparing a supported iron oxide catalyst, for example, by a precipitation method, ammonia water or sodium carbonate is added to an aqueous solution of aluminum nitrate to obtain a precipitate, which is washed with water, dried and calcined to obtain an alumina carrier. . This alumina carrier is dipped in an iron nitrate aqueous solution and dried,
A supported iron oxide catalyst can be obtained by firing in an air stream. The firing temperature used in the above adjusting method is preferably 300 ° C. or higher. 300 ° C
If the amount is less than the above, the iron salt used as a raw material will not be decomposed, so that a sufficient carbon dioxide conversion rate may not be obtained.

【0010】本発明の方法において使用する触媒に含ま
れる酸化鉄の量は、Fe23 に換算して、3〜80重
量%でよい。より好ましくは5〜70重量%である。酸
化鉄の量が3重量%未満では、十分な反応活性を得られ
ないことがある。また、80重量%以上では、担体の細
孔をすべて酸化鉄が満たしてしまうために表面積が低下
し、十分な活性が得られないことがある。
The amount of iron oxide contained in the catalyst used in the method of the present invention may be 3 to 80% by weight in terms of Fe 2 O 3 . It is more preferably 5 to 70% by weight. If the amount of iron oxide is less than 3% by weight, sufficient reaction activity may not be obtained. On the other hand, when the content is 80% by weight or more, iron oxide fills all the pores of the carrier, so that the surface area decreases, and sufficient activity may not be obtained.

【0011】本発明の方法においては、二酸化炭素の還
元剤として水素を用いるが、この水素の量は二酸化炭素
に対する水素のモル比として規定することができる。具
体的には、水素/二酸化炭素の比は0.05〜25で実
施することができるが、0.1〜20が特に好ましい。
水素/二酸化炭素の比が0.05未満では、リサイクル
する二酸化炭素の量が多くなり、一方、水素/二酸化炭
素の比が25を越えると十分な一酸化炭素生成速度が得
られなくなり不経済となることがある。
In the method of the present invention, hydrogen is used as a carbon dioxide reducing agent, and the amount of hydrogen can be defined as the molar ratio of hydrogen to carbon dioxide. Specifically, the hydrogen / carbon dioxide ratio may be 0.05 to 25, but 0.1 to 20 is particularly preferable.
If the hydrogen / carbon dioxide ratio is less than 0.05, the amount of carbon dioxide to be recycled increases, while if the hydrogen / carbon dioxide ratio exceeds 25, a sufficient carbon monoxide generation rate cannot be obtained, which is uneconomical. May be.

【0012】なお、反応系内に供給するガスとして水素
及び二酸化炭素のほか、希釈ガスとして窒素またはその
他不活性ガスを添加してもよい。
In addition to hydrogen and carbon dioxide as a gas supplied into the reaction system, nitrogen or other inert gas may be added as a diluting gas.

【0013】本発明の方法は、反応温度300℃〜10
00℃の範囲で実施することができるが、転化率の点か
ら、より好ましくは500℃〜900℃である。反応温
度が300℃未満では二酸化炭素の十分な転化率が得ら
れず、また、1000℃を越える場合には触媒のシンタ
リングにより活性の低下を起こしたりすることがある。
The method of the present invention has a reaction temperature of 300 ° C. to 10 ° C.
Although it can be carried out in the range of 00 ° C, it is more preferably 500 ° C to 900 ° C from the viewpoint of conversion. If the reaction temperature is less than 300 ° C, a sufficient conversion rate of carbon dioxide cannot be obtained, and if it exceeds 1000 ° C, the activity may decrease due to the sintering of the catalyst.

【0014】反応圧力については特に制限はなく、常圧
から20気圧、好ましくは常圧から10気圧で反応を行
うのがよい。
The reaction pressure is not particularly limited, and the reaction may be carried out at atmospheric pressure to 20 atm, preferably atmospheric pressure to 10 atm.

【0015】触媒に対するガス供給速度は単位触媒体積
当たりのガスの供給速度(SV) SV=(供給ガスの全容積(標準状態におけるml/時
間(hr))/(触媒の容積(ml)) で規定することができる。本発明の方法においてはSV
は500〜100000/hrでよい。SVが500/
hr未満では一酸化炭素の生成速度が小さく、またSV
が100000/hrを越えると原料の転化率が低下し
経済的でなくなることがある。
The gas supply rate to the catalyst is the gas supply rate per unit catalyst volume (SV) SV = (total volume of supply gas (ml / hour (hr) in standard state) / (catalyst volume (ml)) SV in the method of the present invention can be defined.
May be 500 to 100,000 / hr. SV is 500 /
If it is less than hr, the production rate of carbon monoxide is low, and SV
If it exceeds 100,000 / hr, the conversion rate of the raw material may be lowered and it may not be economical.

【0016】反応方法は触媒とガスが効率的に接触でき
れば特に制限はなく、たとえば、固定床、流動床、移動
床で反応を行わせることができる。触媒は成型して用い
てもあるいは粉末のまま用いても差し支えなく、反応方
法によって所望の大きさに成型して用いればよい。
The reaction method is not particularly limited as long as the catalyst and the gas can be efficiently contacted, and for example, the reaction can be carried out in a fixed bed, a fluidized bed or a moving bed. The catalyst may be used by molding or may be used as a powder, and may be molded into a desired size according to the reaction method and used.

【0017】[0017]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明がこれらの実施例によって制限されるものではな
いことはいうまでもない。
EXAMPLES The present invention will be described below with reference to examples.
Needless to say, the present invention is not limited to these examples.

【0018】実施例1 硝酸鉄九水和物を水10ccに溶かした後、3mm径の
球状アルミナ(住友化学製、KHA−24)10gを加
え、3時間浸漬した。その後、110℃で20時間乾燥
したのち、700℃で2時間空気焼成し、酸化鉄/アル
ミナ触媒を得た。上記操作を2回反復して、30重量%
酸化鉄/アルミナ担持触媒を調製した。この触媒1.5
gを内径14mmのSUS反応管に充填し、温度を70
0℃に保ち、ここにモル比3:1:1の窒素、二酸化炭
素、水素の混合ガス400cc/minを供給した。
尚、反応ガスの分析はガスクロマトグラフィーにより行
った。SVおよび反応結果を表1に示す。
Example 1 Iron nitrate nonahydrate was dissolved in 10 cc of water, and 10 g of spherical alumina having a diameter of 3 mm (KHA-24, manufactured by Sumitomo Chemical Co., Ltd.) was added, followed by immersion for 3 hours. Then, it was dried at 110 ° C. for 20 hours and then air-baked at 700 ° C. for 2 hours to obtain an iron oxide / alumina catalyst. Repeat the above operation twice to obtain 30% by weight
An iron oxide / alumina supported catalyst was prepared. This catalyst 1.5
g into an SUS reaction tube having an inner diameter of 14 mm, and the temperature was adjusted to 70
The temperature was kept at 0 ° C., and 400 cc / min of a mixed gas of nitrogen, carbon dioxide and hydrogen having a molar ratio of 3: 1: 1 was supplied thereto.
The reaction gas was analyzed by gas chromatography. Table 1 shows the SV and the reaction results.

【0019】実施例2 硝酸鉄九水和物を水10ccに溶かした後、3mm径の
球状アルミナ(住友化学製、KHA−24)10gを加
え、3時間浸漬した。その後、110℃で20時間乾燥
したのち、700℃で2時間空気焼成し、8重量%酸化
鉄/アルミナ担体触媒を調製した。
Example 2 Iron nitrate nonahydrate was dissolved in 10 cc of water, and then 10 g of spherical alumina (KHA-24, manufactured by Sumitomo Chemical Co., Ltd.) having a diameter of 3 mm was added and immersed for 3 hours. Then, it was dried at 110 ° C. for 20 hours and then air-baked at 700 ° C. for 2 hours to prepare an 8 wt% iron oxide / alumina carrier catalyst.

【0020】この触媒1.5gを用いた以外は、実施例
1と全く同様にして反応を行った。SVおよび結果を表
1に示す。
The reaction was carried out in exactly the same manner as in Example 1 except that 1.5 g of this catalyst was used. The SV and the results are shown in Table 1.

【0021】実施例3〜5 実施例2のアルミナの代わりにジルコニア、シリカ、チ
タニアを用いた以外は全く同様にして、それぞれ8重量
%酸化鉄担持触媒を調製した。
Examples 3 to 5 8 wt% iron oxide-supported catalysts were prepared in the same manner except that zirconia, silica, and titania were used in place of alumina in Example 2.

【0022】これらの触媒1.5gを用いた以外は、実
施例1と全く同様にして反応を行った。SVおよび結果
を表1に示す。
The reaction was carried out in exactly the same manner as in Example 1 except that 1.5 g of these catalysts were used. The SV and the results are shown in Table 1.

【0023】比較例1 塩化ロジウム三水和物を水10ccに溶かした後、3m
m径の球状アルミナ(住友化学製、KHA−24)10
gを加え、3時間浸漬した。その後、110℃で20時
間乾燥したのち、10%水素(残り窒素)気流下、50
0℃で1時間還元し、0.5重量%Rh/アルミナ担体
触媒を調製した。
Comparative Example 1 Rhodium chloride trihydrate was dissolved in 10 cc of water and then 3 m
m-diameter spherical alumina (Sumitomo Chemical, KHA-24) 10
g was added and it was immersed for 3 hours. After that, it is dried at 110 ° C. for 20 hours and then, under a 10% hydrogen (remaining nitrogen) stream, it is heated to 50
Reduction was carried out at 0 ° C. for 1 hour to prepare a 0.5 wt% Rh / alumina carrier catalyst.

【0024】この触媒1.5gを用いた以外は、実施例
1と全く同様にして反応を行った。SVおよび結果を表
1に示す。
The reaction was carried out in exactly the same manner as in Example 1 except that 1.5 g of this catalyst was used. The SV and the results are shown in Table 1.

【0025】比較例2〜6 塩化ロジウム三水和物、塩化ルテニウム三水和物、テト
ラアンミンパラジウムジクロライド一水和物、テトラア
ンミン白金ジクロライド一水和物、塩化イリジウムを原
料に、比較例1と同様にして、それぞれ0.5重量%の
貴金属をシリカに担持した触媒を調製した。
Comparative Examples 2 to 6 Rhodium chloride trihydrate, ruthenium chloride trihydrate, tetraamminepalladium dichloride monohydrate, tetraammine platinum dichloride monohydrate, and iridium chloride were used as raw materials in the same manner as in Comparative Example 1. Thus, a catalyst was prepared in which 0.5% by weight of noble metal was supported on silica.

【0026】これらの触媒をそれぞれ1.5g用い、反
応温度を500℃とした以外は、実施例1と全く同様に
して反応を行った。SVおよび結果を表1に示す。
The reaction was carried out in exactly the same manner as in Example 1 except that 1.5 g of each of these catalysts was used and the reaction temperature was 500 ° C. The SV and the results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】実施例6 実施例1で用いた触媒と同じロットの触媒を用い、触媒
活性と時間の関係を明らかにするために、実施例1と同
条件下、100時間連続して反応を行った。SVおよび
その結果を表2に示す。
Example 6 Using the same lot of catalyst as the catalyst used in Example 1, the reaction was carried out continuously for 100 hours under the same conditions as in Example 1 in order to clarify the relationship between catalyst activity and time. It was The SV and its results are shown in Table 2.

【0029】比較例7 硝酸銅三水和物を水10ccに溶かした後、3mm径の
球状アルミナ(住友化学製、KHA−24)10gを加
え、3時間浸漬した。その後、110℃で20時間乾燥
した後、10%水素(残り窒素)気流下、500℃で1
時間還元し、10重量%銅/アルミナ担体触媒を調製し
た。
Comparative Example 7 After dissolving copper nitrate trihydrate in 10 cc of water, 10 g of spherical alumina having a diameter of 3 mm (KHA-24, manufactured by Sumitomo Chemical Co., Ltd.) was added and immersed for 3 hours. After that, it is dried at 110 ° C. for 20 hours and then at 500 ° C. for 1 hour in a 10% hydrogen (remaining nitrogen) stream.
After 10 hours of reduction, a 10 wt% copper / alumina carrier catalyst was prepared.

【0030】この触媒1.5gを用いた以外は、実施例
6と全く同様にして反応を行った。SVおよび結果を表
2に示す。
The reaction was carried out in exactly the same manner as in Example 6 except that 1.5 g of this catalyst was used. The SV and the results are shown in Table 2.

【0031】比較例8 硝酸鉄九水和物の水溶液に20%炭酸ナトリウム水溶液
をpH7〜8に保ちながら滴下し沈澱を得た。この沈澱
を水洗、ろ過し、110℃で20時間乾燥後3mmφの
ペレットに成型した。これを700℃で2時間空気焼成
して、酸化鉄触媒を調製した。
Comparative Example 8 A 20% aqueous sodium carbonate solution was added dropwise to an aqueous solution of iron nitrate nonahydrate while keeping the pH at 7 to 8 to obtain a precipitate. The precipitate was washed with water, filtered, dried at 110 ° C. for 20 hours, and then molded into 3 mmφ pellets. This was air-calcined at 700 ° C. for 2 hours to prepare an iron oxide catalyst.

【0032】この触媒1.5gを用いた以外は、実施例
6と全く同様にして反応を行った。SVおよび結果を表
2に示す。
The reaction was carried out in exactly the same manner as in Example 6 except that 1.5 g of this catalyst was used. The SV and the results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】二酸化炭素と水素の混合ガスを接触させ
ることにより、選択的に、しかも収率よく一酸化炭素を
製造することができる。
By contacting a mixed gas of carbon dioxide and hydrogen, carbon monoxide can be produced selectively and in good yield.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 久則 三重県四日市市別名6丁目8−20 (72)発明者 中村 宗太郎 三重県鈴鹿市長太旭町6丁目19−18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisanori Okada 6-8-20, also known as Yokkaichi City, Mie Prefecture (72) Inventor Sotaro Nakamura 6-19-18 Nagataasahicho, Suzuka City, Mie Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素と水素を触媒に接触させ一酸
化炭素を製造するにあたり、触媒が不活性担体に担持さ
れた酸化鉄触媒であることを特徴とする一酸化炭素の製
造方法。
1. A method for producing carbon monoxide, characterized in that when carbon dioxide and hydrogen are brought into contact with a catalyst to produce carbon monoxide, the catalyst is an iron oxide catalyst supported on an inert carrier.
【請求項2】 不活性担体がアルミナ、シリカ、シリカ
アルミナ、マグネシア、カルシア、ジルコニア、チタニ
ア又はそれらの混合物であることを特徴とする請求項1
に記載の一酸化炭素の製造方法。
2. The inert carrier is alumina, silica, silica-alumina, magnesia, calcia, zirconia, titania or a mixture thereof.
The method for producing carbon monoxide according to 1.
【請求項3】 二酸化炭素と水素を300℃〜1000
℃の範囲内の温度において触媒と接触させることを特徴
とする請求項1又は2に記載の一酸化炭素の製造方法。
3. Carbon dioxide and hydrogen at 300 ° C. to 1000 ° C.
The method for producing carbon monoxide according to claim 1 or 2, wherein the catalyst is brought into contact with the catalyst at a temperature within the range of ° C.
JP5065274A 1993-03-24 1993-03-24 Production of carbon monoxide Pending JPH06279012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065274A JPH06279012A (en) 1993-03-24 1993-03-24 Production of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065274A JPH06279012A (en) 1993-03-24 1993-03-24 Production of carbon monoxide

Publications (1)

Publication Number Publication Date
JPH06279012A true JPH06279012A (en) 1994-10-04

Family

ID=13282188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065274A Pending JPH06279012A (en) 1993-03-24 1993-03-24 Production of carbon monoxide

Country Status (1)

Country Link
JP (1) JPH06279012A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064852A1 (en) * 1999-04-27 2000-11-02 Showa Denko K. K. Process for producing hydrogenated ester, hydrogenation catalyst for use therein, and process for producing the catalyst
WO2001066463A1 (en) * 2000-03-07 2001-09-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing carbon monoxide by reverse conversion with an adapted catalyst
US6936730B1 (en) 1999-04-27 2005-08-30 Showa Denko K.K. Process for producing hydrogenated ester, hydrogenating catalyst used therefor and process for producing the catalyst
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
CN111770793A (en) * 2018-05-29 2020-10-13 积水化学工业株式会社 Catalyst, carbon dioxide reduction method, and carbon dioxide reduction device
WO2021054820A1 (en) * 2019-09-20 2021-03-25 Universiti Kebangsaan Malaysia A catalyst composition and method of making thereof for carbon monoxide production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936730B1 (en) 1999-04-27 2005-08-30 Showa Denko K.K. Process for producing hydrogenated ester, hydrogenating catalyst used therefor and process for producing the catalyst
WO2000064852A1 (en) * 1999-04-27 2000-11-02 Showa Denko K. K. Process for producing hydrogenated ester, hydrogenation catalyst for use therein, and process for producing the catalyst
JP4903339B2 (en) * 2000-03-07 2012-03-28 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for producing carbon monoxide by catalytic reverse conversion
WO2001066463A1 (en) * 2000-03-07 2001-09-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing carbon monoxide by reverse conversion with an adapted catalyst
FR2806073A1 (en) * 2000-03-07 2001-09-14 Air Liquide Process for obtaining carbon monoxide by the inverse retroconversion of carbon dioxide and hydrogen in the presence of a catalyst based on zinc and chromium oxides.
JP2003525832A (en) * 2000-03-07 2003-09-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for producing carbon monoxide by reverse conversion using a catalyst
KR100760502B1 (en) * 2000-03-07 2007-10-04 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for producing carbon monoxide by reverse conversion with an adapted catalyst
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
CN111770793A (en) * 2018-05-29 2020-10-13 积水化学工业株式会社 Catalyst, carbon dioxide reduction method, and carbon dioxide reduction device
EP3804851A4 (en) * 2018-05-29 2022-03-02 Sekisui Chemical Co., Ltd. Catalyst, method for reducing carbon dioxide, and apparatus for reducing carbon dioxide
US11305261B2 (en) 2018-05-29 2022-04-19 Sekisui Chemical Co., Ltd. Catalyst, carbon dioxide reducing method, and apparatus for reducing carbon dioxide
WO2021054820A1 (en) * 2019-09-20 2021-03-25 Universiti Kebangsaan Malaysia A catalyst composition and method of making thereof for carbon monoxide production
CN114521155A (en) * 2019-09-20 2022-05-20 马来西亚国立大学 Catalyst composition for carbon monoxide production and process for preparing the same

Similar Documents

Publication Publication Date Title
KR0142192B1 (en) Process for preparation of allyl acetate
JP4741623B2 (en) Catalyst composition for oxychlorination reaction
UA77384C2 (en) Catalyst and process for producing vinyl acetate
RU2202411C2 (en) Vinyl acetate-synthesis catalyst containing palladium, gold, copper, and a certain fourth metal
WO1998046524A1 (en) Process for preparing synthesis gas
KR100400591B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
KR20060132818A (en) Process for the manufacture of methylmercaptan
KR870000057B1 (en) Process for preparing oxalic acid diester
JP4287995B2 (en) Catalysts for vinyl acetate containing metallic palladium and gold and copper acetate
JP3543550B2 (en) Method for producing chlorine
JPH06279012A (en) Production of carbon monoxide
CA1207788A (en) Process for the production of a diester of oxalic acid
JPH05221602A (en) Production of synthesis gas
JP2813770B2 (en) Ethanol production method
EP0040414B1 (en) Process for producing acetaldehyde
JP3095497B2 (en) How to convert carbon dioxide with ethane
JP4163292B2 (en) Hydrocarbon reforming catalyst and reforming method
JP3089677B2 (en) How to reduce carbon dioxide with propane
JPH0987217A (en) Production of ethanol
JP4163302B2 (en) Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier
JP3413234B2 (en) Synthesis gas production method
JP3413235B2 (en) Synthesis gas production method
JPH08245211A (en) Production of carbon monoxide
JPH05170404A (en) Method for converting carbon dioxide by methane
EP0526974A1 (en) Process for the preparation of acetic acid