JPH0987217A - Production of ethanol - Google Patents

Production of ethanol

Info

Publication number
JPH0987217A
JPH0987217A JP7267974A JP26797495A JPH0987217A JP H0987217 A JPH0987217 A JP H0987217A JP 7267974 A JP7267974 A JP 7267974A JP 26797495 A JP26797495 A JP 26797495A JP H0987217 A JPH0987217 A JP H0987217A
Authority
JP
Japan
Prior art keywords
iron
catalyst
zinc
copper
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7267974A
Other languages
Japanese (ja)
Other versions
JP2685130B2 (en
Inventor
Hiromitsu Fujimura
浩光 藤村
Kenichi Nakamura
健一 中村
Minoru Takagawa
實 高川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUSHO SANGYOSHO KISO SANGYO
TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO
Original Assignee
TSUSHO SANGYOSHO KISO SANGYO
TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUSHO SANGYOSHO KISO SANGYO, TSUSHOSANGYOSHO KISO SANGYOKYOKUCHO filed Critical TSUSHO SANGYOSHO KISO SANGYO
Priority to JP7267974A priority Critical patent/JP2685130B2/en
Publication of JPH0987217A publication Critical patent/JPH0987217A/en
Application granted granted Critical
Publication of JP2685130B2 publication Critical patent/JP2685130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ethanol, capable of producing the useful ethanol in a high CO2 conversion and in a high yield by catalytically hydrogenating the carbon dioxide in the presence of a specific catalyst. SOLUTION: This method for producing the ethanol comprises catalytically hydrogenating (B) the carbon dioxide in the presence of (A) a catalyst containing iron, copper, zinc and potassium in copper/iron, zinc/iron and potassium/iron atomic ratios of 0.2-3.0, 0.2-3.0 and 0.01-0.5, respectively. The component A is preferably the catalyst further containing the VIII group element in the periodic table, selected from cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum. The ratio of the VIII group element in the catalyst containing the VIII group element to the iron is preferably 0.00001-2. In the catalytic hydrogenation reaction, a mixture gas comprising the carbon dioxide and hydrogen or further containing an inert gas is used as raw materials in a CO2 /H2 molar ratio of 0.1-10 at 200-400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は二酸化炭素を接触水
素化してエタノールを製造する方法に関する。エタノー
ルは、各種化学品、医薬や農薬などの重要な基礎原料と
なる。
TECHNICAL FIELD The present invention relates to a method for producing ethanol by catalytic hydrogenation of carbon dioxide. Ethanol is an important basic raw material for various chemicals, medicines and agricultural chemicals.

【0002】[0002]

【従来の技術】エタノールは、現在、澱粉や廃糖蜜等の
酵母による発酵法や酸性触媒等の存在下においてエチレ
ンを水和する方法によって製造されている。近年、地球
温暖化などの環境問題が取り沙汰されており、特にその
主因物質であると考えられる二酸化炭素の排出抑制が検
討されているが、最も望ましい解決策は、これを回収し
再資源化することである。その一つの方策として二酸化
炭素を炭素資源としたエタノールへの工業的な変換技術
の開発が求められている。
2. Description of the Related Art Ethanol is currently produced by a fermentation method using yeast such as starch and molasses and a method of hydrating ethylene in the presence of an acidic catalyst. In recent years, environmental problems such as global warming have been highlighted, and in particular, suppression of carbon dioxide emission, which is considered to be the main causative agent, is being studied, but the most desirable solution is to recover and recycle it. That is. As one of the measures, the development of an industrial conversion technology for converting carbon dioxide into a carbon resource into ethanol is required.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
の様な観点から二酸化炭素を炭素源として有効に利用し
て工業的に有用なエタノールを製造する方法を提供する
ことにある。
An object of the present invention is to provide a method for producing industrially useful ethanol by effectively using carbon dioxide as a carbon source from the above viewpoint.

【0004】[0004]

【課題を解決するための手段】本発明者らは二酸化炭素
の接触水素化によりエタノールを合成すべく鋭意研究を
重ねた結果、 (1)鉄、銅、亜鉛およびカリウムが一定比
率で構成される触媒、または (2)該触媒に、更にコバル
ト、ニッケル、ルテニウム、ロジウム、パラジウム、オ
スミウム、イリジウム、白金より選ばれた周期律表第VI
II族元素(以下VIII族元素と称す)を含む触媒存在下に
おいて、二酸化炭素の水素化反応を行うことによって高
収率でエタノールが生成することを見い出し、本発明を
完成させるに至った。
[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors to synthesize ethanol by catalytic hydrogenation of carbon dioxide, (1) iron, copper, zinc and potassium are composed at a constant ratio. A catalyst, or (2) a periodic table selected from the group consisting of cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum
The inventors have found that ethanol is produced in high yield by carrying out a hydrogenation reaction of carbon dioxide in the presence of a catalyst containing a group II element (hereinafter referred to as a group VIII element), and completed the present invention.

【0005】即ち本発明は、 (1)鉄、銅、亜鉛、及びカ
リウムを含み、銅/鉄、亜鉛/鉄、カリウム/鉄の原子
比でそれぞれ、0.2〜3.0、0.2〜3.0、0.
01〜0.5で構成される触媒を用いて二酸化炭素を接
触水素化することを特徴とするエタノールの製造方法、
および (2)鉄、銅、亜鉛、及びカリウムと、更にコバル
ト、ニッケル、ルテニウム、ロジウム、パラジウム、オ
スミウム、イリジウム、白金から選ばれた周期律表第VI
II族元素を含む触媒を用いる該エタノールの製造方法で
ある。
That is, the present invention includes (1) iron, copper, zinc, and potassium, and the atomic ratios of copper / iron, zinc / iron, and potassium / iron are 0.2 to 3.0 and 0.2, respectively. ~ 3.0, 0.
A method for producing ethanol, which comprises catalytically hydrogenating carbon dioxide using a catalyst composed of 01 to 0.5;
And (2) iron, copper, zinc, and potassium, and further, periodic table VI selected from cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum.
This is a method for producing ethanol using a catalyst containing a Group II element.

【0006】[0006]

【発明の実施の形態】本発明のエタノール合成反応は、
次式で表される。 2CO2 +6H2 → C2 5 OH+3H2 O 本発明の触媒を調製するにあたっては鉄、銅、亜鉛、カ
リウム、又は鉄、銅、亜鉛、カリウム、VIII族元素の各
成分が最終的に組み合わされていればよく、各元素の出
発物質としての化合物形態には特に制限はなく、例えば
各当該元素の酸化物、水酸化物、塩基性炭酸塩、硝酸
塩、酢酸塩、または各種錯体などが用いられる。調製さ
れた触媒は一般的には還元して反応に使用することを考
慮すれば、鉄及び銅についての出発物質については易還
元性化合物もしくは易還元性化合物に変換できる化合物
が好ましい。本発明の触媒における各成分の構成比は、
銅/鉄、亜鉛/鉄、カリウム/鉄の原子比でそれぞれ、
0.2〜3.0、0.2〜3.0、0.01〜0.5で
あり、これらの範囲を越えると、エタノールの生成量が
低下する。本発明の触媒調製に用いるVIII族元素は、コ
バルト、ニッケル、ルテニウム、ロジウム、パラジウ
ム、オスミウム、イリジウム、白金であり、それぞれの
水酸化物、塩化物、炭酸塩、硝酸塩、酢酸塩などの形態
で用いることができる。本発明のVIII族元素を含む触媒
におけるVIII族元素の構成比は、鉄に対する原子比で
0.00001〜2の範囲である。VIII族元素の構成比
がこの範囲を越えると、エタノールの生成量が低下す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The ethanol synthesis reaction of the present invention comprises:
It is expressed by the following equation. 2CO 2 + 6H 2 → C 2 H 5 OH + 3H 2 O In preparing the catalyst of the present invention, iron, copper, zinc, potassium, or each component of iron, copper, zinc, potassium, and the group VIII element is finally combined. The form of the compound as a starting material for each element is not particularly limited, and for example, oxides, hydroxides, basic carbonates, nitrates, acetates, or various complexes of each element are used. . Considering that the prepared catalyst is generally reduced and used in the reaction, the starting materials for iron and copper are preferably easily reducing compounds or compounds capable of being converted into easily reducing compounds. The composition ratio of each component in the catalyst of the present invention is
The atomic ratios of copper / iron, zinc / iron, potassium / iron,
It is 0.2 to 3.0, 0.2 to 3.0, and 0.01 to 0.5, and when it exceeds these ranges, the production amount of ethanol decreases. Group VIII elements used in the preparation of the catalyst of the present invention are cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, in the form of their respective hydroxides, chlorides, carbonates, nitrates, acetates, etc. Can be used. The composition ratio of the Group VIII element in the catalyst containing the Group VIII element of the present invention is in the range of 0.00001 to 2 in terms of atomic ratio to iron. If the composition ratio of the Group VIII element exceeds this range, the amount of ethanol produced will decrease.

【0007】本発明における触媒の調製方法としては、
特に制限はないが、次に示す如き方法を採用することが
できる。例えば、鉄、銅、亜鉛、カリウムを含む触媒の
調製方法の例としては、1)鉄、銅、亜鉛、カリウムの化
合物を混練して調製する方法、2)鉄、銅、亜鉛の化合物
の混合溶液と沈澱剤とを混合して得られる共沈澱にカリ
ウム化合物を含浸または混合して調製する方法、3)鉄、
銅、カリウムの化合物の混合溶液を適当な亜鉛化合物上
に担持して調製する方法、4)銅、亜鉛、カリウムの化合
物の混合溶液を適当な鉄化合物上に担持して調製する方
法等が挙げられる。更にVIII族元素を含有する触媒の調
製方法の例としては、1)鉄、銅、亜鉛、カリウム、VIII
族元素の化合物を混練して調製する方法、2)鉄、銅、亜
鉛の化合物の混合溶液と沈澱剤とを混合して得られる共
沈殿にカリウム化合物とVIII族元素化合物とを含浸また
は混合して調製する方法、3)鉄、銅、亜鉛、VIII族元素
の化合物の混合溶液と沈澱剤とを混合して得られる共沈
澱にカリウム化合物を含浸または混合して調製する方
法、4)鉄、銅、カリウム、VIII族元素の化合物の混合溶
液を適当な亜鉛化合物上に担持して調製する方法。5)
銅、亜鉛、カリウム、VIII族元素の化合物の混合溶液を
適当な鉄化合物上に担持して調製する方法等が挙げられ
る。また本発明の触媒調製においては、必須構成成分の
均一分散または担持のために反応に悪影響を及ぼさない
物質を更に使用することができる。このような物質とし
て、アルミナ、シリカ、マグネシア、チタニア、珪藻
土、炭素などが挙げられる。
The method for preparing the catalyst in the present invention is as follows:
Although not particularly limited, the following method can be adopted. For example, as an example of a method for preparing a catalyst containing iron, copper, zinc and potassium, 1) a method of kneading and preparing a compound of iron, copper, zinc and potassium, 2) mixing of a compound of iron, copper and zinc A method in which a coprecipitate obtained by mixing a solution and a precipitant is impregnated with or mixed with a potassium compound, 3) iron,
Copper, a method of supporting a mixed solution of a compound of potassium on a suitable zinc compound, 4) a method of supporting a mixed solution of a compound of copper, zinc, potassium on a suitable iron compound, and the like. To be Further examples of the method for preparing a catalyst containing a Group VIII element include 1) iron, copper, zinc, potassium, VIII
A method of preparing a compound of a group element by kneading, 2) impregnating or mixing a potassium compound and a group VIII element compound in a coprecipitate obtained by mixing a mixed solution of a compound of iron, copper and zinc and a precipitant. Method, 3) iron, copper, zinc, a method of impregnating or mixing a potassium compound in a coprecipitate obtained by mixing a mixed solution of a compound of a Group VIII element and a precipitant, 4) iron, A method in which a mixed solution of a compound of copper, potassium and a Group VIII element is supported on an appropriate zinc compound. Five)
Examples thereof include a method in which a mixed solution of a compound of copper, zinc, potassium and a group VIII element is supported on a suitable iron compound to prepare. Further, in the preparation of the catalyst of the present invention, a substance which does not adversely influence the reaction can be further used for the purpose of uniformly dispersing or supporting the essential constituent components. Such substances include alumina, silica, magnesia, titania, diatomaceous earth, carbon and the like.

【0008】このようにして調製された触媒前駆体は、
焼成した後、水素にて還元し、触媒として反応に使用す
ることができる。触媒前駆体の焼成処理は、その方法に
特に制限はないが、炉内に静置して焼成する方法やガス
気流中で行う方法等で行われ、空気または不活性ガスの
任意の割合に混合された雰囲ガス等にて焼成する方法が
採られる。焼成温度としては、一般に200〜600℃
の範囲が好ましく、焼成時間としては0.5〜10hr
程度である。触媒の水素還元処理は、純水素または不活
性ガスにより任意の割合に希釈された水素中で行われ、
処理方法に特に制限はないが、生成する水等の除去を考
慮すると上記のガスを流通しながら行うのが好ましい。
還元温度としては250〜500℃の範囲が好ましく、
還元時間は0.5〜20hr程度である。水素還元後の
触媒は、極めて酸化され易いため反応に使用する直前に
反応器内で水素還元処理を行うのが望ましい。なお触媒
の還元は、水素のみならず、水素と一酸化炭素の混合ガ
スや一酸化炭素にてもおこなうことができる。
The catalyst precursor thus prepared is
After calcination, it can be reduced with hydrogen and used as a catalyst in the reaction. The method of firing the catalyst precursor is not particularly limited in its method, but is performed by a method of leaving it in a furnace and firing it, a method of performing it in a gas stream, etc., and mixing it in any proportion of air or an inert gas. A method of firing with the atmosphere gas or the like is adopted. The firing temperature is generally 200 to 600 ° C.
Is preferable, and the firing time is 0.5 to 10 hours.
It is a degree. The hydrogen reduction treatment of the catalyst is carried out in pure hydrogen or hydrogen diluted to an arbitrary ratio with an inert gas,
The treatment method is not particularly limited, but in consideration of removal of generated water and the like, it is preferable to perform the treatment while circulating the above gas.
The reduction temperature is preferably in the range of 250 to 500 ° C,
The reduction time is about 0.5 to 20 hours. Since the catalyst after hydrogen reduction is extremely susceptible to oxidation, it is desirable to perform hydrogen reduction treatment in the reactor immediately before using it in the reaction. The reduction of the catalyst can be performed not only with hydrogen, but also with a mixed gas of hydrogen and carbon monoxide or carbon monoxide.

【0009】本発明の触媒において、反応に使用する場
合の形状については特に制限はないが、粉末、打錠成型
品、押し出し成型品等の形状で使用することができる。
本発明における反応方法としては、固体触媒を用いる通
常の反応方式であれば特に制限はないが、気相固定床、
気相流動床、液相懸濁床等の方式を用いることができ
る。
In the catalyst of the present invention, the shape of the catalyst used in the reaction is not particularly limited, but it may be in the form of powder, tablet-molded product, extrusion-molded product or the like.
The reaction method in the present invention is not particularly limited as long as it is a normal reaction method using a solid catalyst, a gas phase fixed bed,
A system such as a gas phase fluidized bed or a liquid phase suspension bed can be used.

【0010】本発明の反応に用いられる原料は、二酸化
炭素と水素、またはそれに不活性ガスから成る混合ガス
が用いられる。これらの混合比率には特に制限はない
が、CO2 /H2 モル比で0.1〜10の範囲であるこ
とが望ましい。反応温度は100〜600℃、好ましく
は200〜400℃の範囲である。反応圧力としては2
〜300気圧、好ましくは10〜80気圧の範囲であ
る。ガス空間速度は、100〜50000hrー1、好ま
しくは1000〜30000hrー1の範囲である。反応
生成物としては、主生成物のエタノールの他に、メタノ
ール、プロパノール、ブタノール等のアルコール類、ア
セトアルデヒド、酢酸エステル等、炭化水素類、一酸化
炭素等が生成する。エタノールを始めとした液状生成物
は、蒸留等により分離回収することができる。
As the raw material used in the reaction of the present invention, carbon dioxide and hydrogen, or a mixed gas containing an inert gas thereof is used. The mixing ratio of these is not particularly limited, but the CO 2 / H 2 molar ratio is preferably in the range of 0.1 to 10. The reaction temperature is in the range of 100 to 600 ° C, preferably 200 to 400 ° C. The reaction pressure is 2
The pressure is in the range of up to 300 atm, preferably 10 to 80 atm. The gas hourly space velocity is in the range of 100 to 50,000 hr -1 , preferably 1000 to 30,000 hr -1 . As reaction products, in addition to ethanol, which is the main product, alcohols such as methanol, propanol, butanol, acetaldehyde, acetic acid ester, hydrocarbons, carbon monoxide, etc. are produced. Liquid products such as ethanol can be separated and recovered by distillation or the like.

【0011】[0011]

【実施例】以下に本発明について実施例及び比較例を以
て具体的に説明する。但し本発明はこれらの実施例に制
限されるものではない。なお各実施例及び比較例におけ
る触媒活性試験は、触媒量を1.0gとし、ガス空間速
度 5000hr-1で行った。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to these examples. The catalyst activity test in each example and comparative example was carried out at a gas hourly space velocity of 5000 hr −1 with a catalyst amount of 1.0 g.

【0012】実施例1 硝酸銅三水和物6.04g、硝酸亜鉛六水和物7.44
g、硝酸鉄九水和物30.30gをビーカーに採り10
0mlのイオン交換水に溶解した。イオン交換水200
mlに水酸化ナトリウム26.00gを溶解し60℃に
保った水溶液をよく攪拌しながら、上記金属塩溶液を滴
下して沈澱物を得た。この沈澱物をイオン交換水約3リ
ットルで洗浄した後60℃の乾燥器内で一晩乾燥した。
この乾燥沈澱5.00gを精秤し、炭酸カリウム0.0
60gを溶解したイオン交換水3mlをを加え混練し、
スラリー化した。触媒の仕込み原子比は、鉄:銅:亜
鉛:カリウム=1:0.33:0.33:0.026で
あった。これを60℃の乾燥器内で2時間乾燥した。そ
の後坩堝に移して400℃、3時間焼成し、得られた粉
末を成型し、16/32メッシュに整粒した。整粒物の
うち2.5gを精秤して還元管に充填し、常圧下、水素
流速150ml/min、300℃にて水素還元処理を
1時間行った。還元処理後、触媒層が冷却したところで
還元管を封管し一晩放置した。還元管から触媒を回収す
る際、発熱及び重量増加が落ち着いてから1.0gを精
秤して反応管に充填し、常圧下、水素流速100ml/
min、350℃にて反応前水素還元処理を30分間行
った。反応前水素還元処理後、触媒層が冷却したところ
でCO2 /H2 =1/3モル組成の原料ガスに切り換え
て昇圧し、系内が70kg/cm2 となったところで原
料ガス流速を90ml/minに調整し昇温を開始し
た。所定の反応温度に達し定常状態となったところで反
応生成物をオンラインでガスクロマトグラフにより分析
した。触媒活性試験の結果を表1に示す。
Example 1 6.04 g of copper nitrate trihydrate and 7.44 of zinc nitrate hexahydrate
g, iron nitrate nonahydrate 30.30g in a beaker 10
It was dissolved in 0 ml of ion-exchanged water. Deionized water 200
26.00 g of sodium hydroxide was dissolved in ml and the aqueous solution kept at 60 ° C. was well stirred, and the above metal salt solution was added dropwise to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and then dried overnight in a dryer at 60 ° C.
5.00 g of this dried precipitate was accurately weighed and potassium carbonate was added to 0.0
3 ml of ion-exchanged water in which 60 g was dissolved was added and kneaded,
It was made into a slurry. The charged atomic ratio of the catalyst was iron: copper: zinc: potassium = 1: 0.33: 0.33: 0.026. This was dried in a dryer at 60 ° C. for 2 hours. After that, the powder was transferred to a crucible and baked at 400 ° C. for 3 hours, and the obtained powder was molded and sized to 16/32 mesh. 2.5 g of the sized product was precisely weighed and filled in a reducing tube, and hydrogen reduction treatment was carried out under normal pressure at a hydrogen flow rate of 150 ml / min and 300 ° C. for 1 hour. After the reduction treatment, when the catalyst layer cooled, the reduction tube was sealed and left overnight. When recovering the catalyst from the reduction tube, 1.0 g was precisely weighed and charged into the reaction tube after the heat generation and the increase in weight had subsided, and the hydrogen flow rate was 100 ml / under normal pressure.
Pre-reaction hydrogen reduction treatment was performed for 30 minutes at 350 ° C. for min. After the pre-reaction hydrogen reduction treatment, when the catalyst layer was cooled, the raw material gas of CO 2 / H 2 = 1/3 molar composition was switched to increase the pressure, and when the system became 70 kg / cm 2 , the raw material gas flow rate was 90 ml / It was adjusted to min and the temperature rise was started. When a predetermined reaction temperature was reached and a steady state was reached, the reaction products were analyzed online by gas chromatography. The results of the catalytic activity test are shown in Table 1.

【0013】実施例2 実施例1の乾燥沈澱5.00gを精秤して乳鉢にとり、
酢酸パラジウム0.16gを精秤して加え、混練した。
混練後、炭酸カリウム0.060gを溶解したイオン交
換水3mlをを加え混練し、スラリー化した。触媒の仕
込み原子比は、鉄:銅:亜鉛:カリウム:パラジウム=
1:0.33:0.33:0.026:0.021であ
った。以後、実施例1と同様の調製法にて触媒を調製
し、触媒活性試験を実施した。試験結果を表1に示す。
Example 2 5.00 g of the dry precipitate of Example 1 was precisely weighed and placed in a mortar,
0.16 g of palladium acetate was precisely weighed and added, and kneaded.
After kneading, 3 ml of ion-exchanged water in which 0.060 g of potassium carbonate was dissolved was added and kneaded to form a slurry. The charged atomic ratio of the catalyst is iron: copper: zinc: potassium: palladium =
It was 1: 0.33: 0.33: 0.026: 0.021. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. Table 1 shows the test results.

【0014】実施例3 実施例1の乾燥沈澱5.00gを精秤して乳鉢にとり、
テトラアンミン水酸化白金(II)二水和物0.19gを
精秤して加え混練した。混練後、炭酸カリウム0.06
0gを溶解したイオン交換水3mlをを加え混練し、ス
ラリー化した。触媒の仕込み原子比は、鉄:銅:亜鉛:
カリウム:白金=1:0.33:0.33:0.02
6:0.016であった。以後、実施例1と同様の調製
法にて触媒を調製し、触媒活性試験を実施した。試験結
果を表1に示す。
Example 3 5.00 g of the dry precipitate of Example 1 was precisely weighed and placed in a mortar,
0.19 g of tetraammine platinum (II) hydroxide dihydrate was precisely weighed and kneaded. After kneading, potassium carbonate 0.06
3 ml of ion-exchanged water in which 0 g was dissolved was added and kneaded to form a slurry. The charged atomic ratio of the catalyst is iron: copper: zinc:
Potassium: Platinum = 1: 0.33: 0.33: 0.02
It was 6: 0.016. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. Table 1 shows the test results.

【0015】実施例4 硝酸銅三水和物6.04g、硝酸亜鉛六水和物7.44
g、硝酸鉄九水和物30.30g、硝酸ニッケル六水和
物0.08gをビーカーに採り100mlのイオン交換
水に溶解した。イオン交換水200mlに水酸化ナトリ
ウム14.30gを溶解し60℃に保った水溶液をよく
攪拌しながら、上記金属塩溶液を滴下して沈澱物を得
た。触媒の仕込み原子比は、鉄:銅:亜鉛:カリウム:
ニッケル=1:0.33:0.33:0.026:0.
0038であった。以降、実施例1と同様の調製法にて
触媒を調製し、触媒活性試験を実施した。試験結果を表
1に示す。
Example 4 6.04 g of copper nitrate trihydrate and 7.44 of zinc nitrate hexahydrate
g, iron nitrate nonahydrate 30.30 g, and nickel nitrate hexahydrate 0.08 g were placed in a beaker and dissolved in 100 ml of ion-exchanged water. 14.30 g of sodium hydroxide was dissolved in 200 ml of ion-exchanged water, and the above metal salt solution was added dropwise while well stirring the aqueous solution kept at 60 ° C to obtain a precipitate. The charged atomic ratio of the catalyst is iron: copper: zinc: potassium:
Nickel = 1: 0.33: 0.33: 0.026: 0.
It was 0038. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. Table 1 shows the test results.

【0016】比較例1 水酸化鉄10.01gを200mlナス型フラスコに取
り、硝酸銅三水和物2.67g、硝酸亜鉛六水和物3.
29g、硝酸カリウム1.11gを溶解したイオン交換
水100mlを加え、60℃の湯浴で加熱しながら減圧
し水を蒸発させた。こうして得られた粉末を空気中で4
00℃、 3時間焼成した。触媒の仕込み原子比は、鉄:
銅:亜鉛:カリウム=1:0.1:0.1:0.1であ
った。以後、実施例1と同様の調製法にて触媒を調製
し、触媒活性試験を実施した。試験結果を表2に示す。
Comparative Example 1 10.01 g of iron hydroxide was placed in a 200 ml eggplant-shaped flask, and 2.67 g of copper nitrate trihydrate and zinc nitrate hexahydrate 3.
29 g and 100 ml of ion-exchanged water in which 1.11 g of potassium nitrate was dissolved were added, and the pressure was reduced while heating in a water bath at 60 ° C. to evaporate the water. 4 of the powder thus obtained in air
It was baked at 00 ° C. for 3 hours. The charged atomic ratio of the catalyst is iron:
It was copper: zinc: potassium = 1: 0.1: 0.1: 0.1. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. The test results are shown in Table 2.

【0017】比較例2 硝酸銅三水和物14.48g、硝酸亜鉛六水和物4.4
6g、硝酸第二鉄九水和物6.06gをビーカーにとり
100mlのイオン交換水に溶解した。よく攪拌しなが
ら水酸化ナトリウム18.65gを溶解したイオン交換
水200mlを滴下し沈澱物を得た。この沈澱物をイオ
ン交換水約3リットルで洗浄した後、60℃の乾燥器内
で一晩乾燥した。この乾燥沈澱5.00gを精秤し、炭
酸カリウム0.83gを溶解したイオン交換水10ml
を加え混練し、スラリー化した。触媒の仕込み原子比は
鉄:銅:亜鉛:カリウム=1:2:4:0.8であっ
た。以後、実施例1と同様の調製法にて触媒を調製し、
触媒活性試験を実施した。試験結果を表2に示す。
Comparative Example 2 14.48 g of copper nitrate trihydrate and 4.4 of zinc nitrate hexahydrate
6 g and ferric nitrate nonahydrate 6.06 g were placed in a beaker and dissolved in 100 ml of ion-exchanged water. While stirring well, 200 ml of ion-exchanged water in which 18.65 g of sodium hydroxide was dissolved was added dropwise to obtain a precipitate. This precipitate was washed with about 3 liters of ion-exchanged water and then dried overnight in a dryer at 60 ° C. This dry precipitate (5.00 g) is precisely weighed and ion-exchanged water (10 ml) in which potassium carbonate (0.83 g) is dissolved
Was kneaded and made into a slurry. The charged atomic ratio of the catalyst was iron: copper: zinc: potassium = 1: 2: 4: 0.8. Thereafter, a catalyst was prepared by the same preparation method as in Example 1,
A catalytic activity test was conducted. The test results are shown in Table 2.

【0018】比較例3 硝酸銅三水和物7.24g、硝酸亜鉛六水和物17.8
5g、硝酸第二鉄九水和物6.06gをビーカーにとり
100mlのイオン交換水に溶解した。よく攪拌しなが
ら水酸化ナトリウム21.76gを溶解したイオン交換
水200mlを滴下し沈澱物を得た。この沈澱物をイオ
ン交換水約3リットルで洗浄した後、60℃の乾燥機内
で一晩乾燥した。得られた乾燥沈澱に炭酸カリウム0.
83gを溶解したイオン交換水10mlを加え混練し、
スラリー化した。触媒の仕込み原子比は、鉄:銅:亜
鉛:カリウム=1:4:1:0.8であった。以後、実
施例1と同様の調製法にて触媒を調製し、触媒活性試験
を実施した。試験結果を表2に示す。
Comparative Example 3 7.24 g of copper nitrate trihydrate and 17.8 of zinc nitrate hexahydrate
5 g and ferric nitrate nonahydrate 6.06 g were placed in a beaker and dissolved in 100 ml of ion-exchanged water. While stirring well, 200 ml of ion-exchanged water in which 21.76 g of sodium hydroxide was dissolved was added dropwise to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and then dried overnight in a dryer at 60 ° C. The obtained dried precipitate was treated with potassium carbonate (0.1%).
Add 10 ml of ion-exchanged water in which 83 g was dissolved and knead,
It was made into a slurry. The charged atomic ratio of the catalyst was iron: copper: zinc: potassium = 1: 4: 1: 0.8. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. The test results are shown in Table 2.

【0019】比較例4 硝酸銅三水和物14.51g、硝酸亜鉛六水和物35.
69g、硝酸第二鉄九水和物24.31gをビーカーに
とり200mlのイオン交換水に溶解した。よく攪拌し
ながら水酸化ナトリウム43.42gを溶解したイオン
交換水400mlを滴下し沈澱物を得た。この沈澱物を
イオン交換水約3リットルで洗浄したのち、60℃の乾
燥機内で一晩乾燥した。得られた乾燥沈澱3.96gを
精秤し、炭酸カリウム0.0033gを溶解したイオン
交換水5mlを加え混練し、スラリー化した。触媒の仕
込み原子比は、鉄:銅:亜鉛:カリウム=1:1:2:
0.004であった。以後、実施例1と同様の調製法に
て触媒を調製し、触媒活性試験を実施した。試験結果を
表2に示す。
Comparative Example 4 14.51 g of copper nitrate trihydrate, zinc nitrate hexahydrate 35.
69 g and ferric nitrate nonahydrate 24.31 g were placed in a beaker and dissolved in 200 ml of ion-exchanged water. 400 ml of ion-exchanged water in which 43.42 g of sodium hydroxide was dissolved was added dropwise while stirring well to obtain a precipitate. The precipitate was washed with about 3 liters of ion-exchanged water and then dried overnight in a dryer at 60 ° C. 3.96 g of the obtained dry precipitate was precisely weighed, 5 ml of ion-exchanged water in which 0.0033 g of potassium carbonate was dissolved was added and kneaded to form a slurry. The charged atomic ratio of the catalyst was iron: copper: zinc: potassium = 1: 1: 2 :.
It was 0.004. Thereafter, a catalyst was prepared by the same preparation method as in Example 1 and a catalyst activity test was conducted. The test results are shown in Table 2.

【0020】[0020]

【表1】 実施例1 実施例2 実施例3 実施例4 反応温度 ℃ 300 300 300 300反応圧力 kg/cm2 70 70 70 70 CO2 転化率 % 44.4 44.7 45.6 43.4 (選択率) %*1 一酸化炭素 5.9 5.7 5.5 6.3 エタノール 19.5 21.2 22.4 21.0 他のアルコール類*2 7.5 8.1 10.0 8.0 炭化水素類*3 46.1 48.5 49.9 53.5 *1 炭素基準 *2 メタノール、プロパノール、ブタノールの合計 *3 炭素数1〜5の飽和及び不飽和炭化水素化合物 Table 1 Example 1 Example 2 Example 3 Example 4 Reaction temperature ℃ 300 300 300 300 300 Reaction pressure kg / cm 2 70 70 70 70 70 CO 2 conversion% 44.4 44.7 45.6 43.4 (Selectivity)% * 1 Carbon monoxide 5.9 5.7 5.5 5.5 6.3 Ethanol 19.5 21.2 22.4 21.0 Other alcohols * 2 7.5 8.1 10.0 8.0 Hydrocarbons * 3 46.1 48.5 49.9 53.5 * 1 Carbon standard * 2 Total of methanol, propanol and butanol * 3 Saturated and unsaturated hydrocarbon compounds with 1 to 5 carbon atoms

【0021】[0021]

【表2】 比較例1 比較例2 比較例3 比較例4 反応温度 ℃ 300 300 300 300反応圧力 kg/cm2 70 70 70 70 CO2 転化率 % 21.3 37.7 35.0 33.8 (選択率) %*1 一酸化炭素 25.1 9.8 12.0 10.9 エタノール 6.2 10.2 11.1 9.4 他のアルコール類*2 3.8 7.6 7.6 8.1炭化水素類*3 35.0 37.3 34.0 71.0 *1 炭素基準 *2 メタノール、プロパノール、ブタノールの合計 *3 炭素数1〜5の飽和及び不飽和炭化水素化合物[Table 2] Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Reaction temperature ℃ 300 300 300 300 300 Reaction pressure kg / cm 2 70 70 70 70 70 CO 2 conversion% 21.3 37.7 35.0 33.8 (Selectivity)% * 1 Carbon monoxide 25.1 9.8 12.0 10.9 Ethanol 6.2 10.2 11.1 9.4 Other alcohols * 2 3.8 7.6 7.6 8.1 Hydrocarbons * 3 35.0 37.3 34.0 71.0 * 1 Carbon standard * 2 Sum of methanol, propanol and butanol * 3 Saturated and unsaturated hydrocarbon compounds with 1 to 5 carbon atoms

【0022】[0022]

【発明の効果】以上の実施例から明らかなように、本発
明の触媒を用いて二酸化炭素の接触水素化反応を行うこ
とにより高いCO2 転化率で高いエタノールの選択率が
得られる。従って本発明の方法によれば有用なエタノー
ルが高い収率で得られることになり、本発明の工業的意
義は大きい。
As is apparent from the above examples, by carrying out the catalytic hydrogenation reaction of carbon dioxide using the catalyst of the present invention, a high CO 2 conversion and a high ethanol selectivity can be obtained. Therefore, according to the method of the present invention, useful ethanol can be obtained in a high yield, and the industrial significance of the present invention is great.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉄、銅、亜鉛、及びカリウムを含み、銅/
鉄、亜鉛/鉄、カリウム/鉄の原子比でそれぞれ、0.
2〜3.0、0.2〜3.0、0.01〜0.5で構成
される触媒を用いて二酸化炭素を接触水素化することを
特徴とするエタノールの製造方法。
1. Iron / copper / zinc / potassium containing copper /
The atomic ratios of iron, zinc / iron, and potassium / iron are 0.
A method for producing ethanol, which comprises catalytically hydrogenating carbon dioxide using a catalyst composed of 2 to 3.0, 0.2 to 3.0, and 0.01 to 0.5.
【請求項2】鉄、銅、亜鉛、及びカリウムと、更にコバ
ルト、ニッケル、ルテニウム、ロジウム、パラジウム、
オスミウム、イリジウム、白金から選ばれた周期律表第
VIII族元素を含む触媒を用いる請求項1記載のエタノー
ルの製造方法。
2. Iron, copper, zinc, and potassium, and further cobalt, nickel, ruthenium, rhodium, palladium,
Periodic table selected from osmium, iridium and platinum
The method for producing ethanol according to claim 1, wherein a catalyst containing a Group VIII element is used.
JP7267974A 1995-09-22 1995-09-22 Ethanol production method Expired - Lifetime JP2685130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7267974A JP2685130B2 (en) 1995-09-22 1995-09-22 Ethanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7267974A JP2685130B2 (en) 1995-09-22 1995-09-22 Ethanol production method

Publications (2)

Publication Number Publication Date
JPH0987217A true JPH0987217A (en) 1997-03-31
JP2685130B2 JP2685130B2 (en) 1997-12-03

Family

ID=17452175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7267974A Expired - Lifetime JP2685130B2 (en) 1995-09-22 1995-09-22 Ethanol production method

Country Status (1)

Country Link
JP (1) JP2685130B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157404B1 (en) * 1999-11-11 2007-01-02 Korea Research Institute Of Chemical Technology Catalyst for preparing hydrocarbon
WO2007094454A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094471A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094468A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094461A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2014111597A (en) * 2005-12-16 2014-06-19 Battelle Memorial Inst Alcohol synthesis from co or co2
JP2020105150A (en) * 2018-12-28 2020-07-09 国立研究開発法人産業技術総合研究所 Method for producing methoxy propanol
CN111659432A (en) * 2020-05-22 2020-09-15 北京化工大学 CO2Iron-based catalyst for preparing ethanol by hydrogenation, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
JPS61268638A (en) * 1985-05-17 1986-11-28 アンステイテユ・フランセ・デユ・ペトロ−ル Use of catalyst for synthesizing saturated fatty primary alcohol
JPH0273023A (en) * 1987-01-28 1990-03-13 Exxon Res & Eng Co Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180437A (en) * 1982-03-26 1983-10-21 アンステイテユ・フランセ・デユ・ペトロ−ル Manufacture of mixture of methanol and higher alcohol from synthetic gas
JPS61268638A (en) * 1985-05-17 1986-11-28 アンステイテユ・フランセ・デユ・ペトロ−ル Use of catalyst for synthesizing saturated fatty primary alcohol
JPH0273023A (en) * 1987-01-28 1990-03-13 Exxon Res & Eng Co Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157404B1 (en) * 1999-11-11 2007-01-02 Korea Research Institute Of Chemical Technology Catalyst for preparing hydrocarbon
JP2014111597A (en) * 2005-12-16 2014-06-19 Battelle Memorial Inst Alcohol synthesis from co or co2
WO2007094454A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094471A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094468A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
WO2007094461A1 (en) * 2006-02-17 2007-08-23 Nippon Steel Engineering Co., Ltd. Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2007216178A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Catalyst for synthesizing methanol, preparing method of the catalyst and manufacturing method of methonol
JP2007217373A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Catalyst for synthesizing methanol, method for producing the same and method for producing methanol
JP2007245139A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2007245138A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2020105150A (en) * 2018-12-28 2020-07-09 国立研究開発法人産業技術総合研究所 Method for producing methoxy propanol
CN111659432A (en) * 2020-05-22 2020-09-15 北京化工大学 CO2Iron-based catalyst for preparing ethanol by hydrogenation, preparation method and application

Also Published As

Publication number Publication date
JP2685130B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
KR100922998B1 (en) Process for preparing monohydric alcohols from monocarboxylic acids or derivatives thereof
JP3345783B2 (en) Synthesis gas production method
JPH0336571B2 (en)
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
JP2685130B2 (en) Ethanol production method
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
JP2002511017A (en) Use of Ce / Zr mixed oxide phase for the production of styrene by dehydrogenation of ethylbenzene
JP2813770B2 (en) Ethanol production method
JPH05221602A (en) Production of synthesis gas
JPS647974B2 (en)
CN115430418A (en) Catalyst, preparation method thereof and method for preparing acetic acid by using catalyst
JPH0436140B2 (en)
JPS6362525B2 (en)
JP3784878B2 (en) Production method of vinyl ether
JP2000080053A (en) Production of cyloalkyldimethanol
JPH07133242A (en) Production of ethanol
JPH0456015B2 (en)
JP2958994B2 (en) Methanol dehydrogenation catalyst
JPS62258335A (en) Production of methyl isobutyl ketone
JP3413235B2 (en) Synthesis gas production method
JPH06279352A (en) Production of tartronic acid
JP3346820B2 (en) Production method of methyl chloride
JPH08151346A (en) Production of ketomalonic acid
JPH10109949A (en) Production of alpha-phenylethyl alcohol
JPS611630A (en) Production of lower alcohol

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term