JPH09249595A - Production of methanol - Google Patents

Production of methanol

Info

Publication number
JPH09249595A
JPH09249595A JP8062660A JP6266096A JPH09249595A JP H09249595 A JPH09249595 A JP H09249595A JP 8062660 A JP8062660 A JP 8062660A JP 6266096 A JP6266096 A JP 6266096A JP H09249595 A JPH09249595 A JP H09249595A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
methanol
hydrogen
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062660A
Other languages
Japanese (ja)
Inventor
Atsushi Okamoto
淳 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8062660A priority Critical patent/JPH09249595A/en
Publication of JPH09249595A publication Critical patent/JPH09249595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain methanol from carbon monoxide, carbon dioxide and hydrogen under mild conditions in high space velocity and selectivity by using a catalyst comprising palladium prepared from an organic fatty acid palladium salt and a zinc compound. SOLUTION: Carbon monoxide is reacted with carbon dioxide and hydrogen in the presence of a catalyst (preferably having 0.5-10wt.% palladium content) comprising palladium prepared from an organic fatty acid palladium salt (preferably palladium acetate) and a zinc compound (e.g. zinc nitrate). The catalyst is preferably prepared by an impregnation method, e.g. a method dissolving the organic fatty acid palladium salt into a dispersing medium and supporting the compound on the zinc compound. The catalyst is as necessary, preferably subjected to treatments such as baking, reduction, etc. Furthermore, the reaction is preferably carried out at 250-350 deg.C under 40-100atm in 10<3> to 5×10<4> hr<-1> gas space velocity at (1/10) to (10/1) molar ratio of hydrogen/carbon monoxide and carbon dioxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一酸化炭素及び二酸
化炭素と水素を反応させてメタノールを製造する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing methanol by reacting carbon monoxide and carbon dioxide with hydrogen.

【0002】[0002]

【従来の技術】従来、合成ガスからのメタノール製造方
法は酸化亜鉛−酸化クロム触媒の存在下、300〜35
0気圧、300〜400℃の反応条件で工業的に実施さ
れていた(ドイツ特許第441433号) 。後に銅−酸化亜鉛
系触媒により100〜200気圧、200〜300℃の
反応条件でメタノールが製造されるようになり、現在に
至っている(ドイツ特許第2056612 号) 。しかしながら
高圧高温での操作を必要とするので、より低圧力、低温
度で有効な触媒に関する研究が精力的になされ、パラジ
ウム触媒が穏やかな反応条件下でメタノールを生成する
ことが見出された。報告例としてジャーナル・オブ・キ
ャタリシス(Journal of Catalysis)52巻 157頁 (1978
年) 、特開昭56-95136号、特開昭57-209236 号、ケミス
トリー・レターズ(Chemistry Letters) 1249頁 (1981
年)、日本化学会誌1982年 2月号 213頁等がある。
2. Description of the Related Art Conventionally, a process for producing methanol from synthesis gas has been performed in the presence of a zinc oxide-chromium oxide catalyst at 300-35.
It was carried out industrially under reaction conditions of 0 atm and 300 to 400 ° C. (German Patent No. 441433). Later, a copper-zinc oxide catalyst was used to produce methanol under reaction conditions of 100 to 200 atm and 200 to 300 ° C., which has been achieved up to now (German Patent No. 2056612). However, since it requires operation at high pressure and high temperature, research into catalysts that are effective at lower pressures and temperatures has been vigorous and it has been found that palladium catalysts produce methanol under mild reaction conditions. As an example of the report, Journal of Catalysis, Vol. 52, p. 157 (1978
, JP-A-56-95136, JP-A-57-209236, Chemistry Letters, page 1249 (1981).
, 1982, February 1982, page 213, etc.

【0003】これらの文献では有効なメタノールの生産
性を与える報告例は少なく、それらについても実用上、
不利益な点が多い。例えば特開昭55-43003号では、酸化
ランタン、酸化ネオジウム等の高価な触媒担体を必要と
する欠点を有している。また特開昭56-95137号では依然
として150気圧以上の高い反応圧力を必要としており
改良の余地は大きい。一方で入手が容易で且つ廉価な酸
化亜鉛等の亜鉛化合物を触媒担体として用いる例もジャ
ーナル・オブ・キャタリシス(Journal of Catalysis)70
巻 287頁 (1981年) 等に報告されているが充分なメタノ
ール空時収量は得られていない。
[0003] In these documents, there are few reports that give effective productivity of methanol.
There are many disadvantages. For example, JP-A-55-43003 has a drawback that an expensive catalyst carrier such as lanthanum oxide and neodymium oxide is required. Further, JP-A-56-95137 still requires a high reaction pressure of 150 atm or higher, and there is a lot of room for improvement. On the other hand, an example of using a zinc compound such as zinc oxide, which is easily available and inexpensive, as a catalyst carrier is also available in the Journal of Catalysis 70
Vol. 287 (1981), etc., but sufficient space-time yield of methanol has not been obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、以上
の如き状況に鑑み、一酸化炭素及び二酸化炭素と水素を
含む合成ガスから、より穏やかな反応条件でメタノール
を製造する方法を提供することにある。
In view of the above situation, an object of the present invention is to provide a method for producing methanol from carbon monoxide and a synthesis gas containing carbon dioxide and hydrogen under milder reaction conditions. Especially.

【0005】[0005]

【問題を解決するための手段】本発明者は上記課題を解
決するために鋭意検討を行った結果、有機脂肪酸パラジ
ウム塩から調製されたパラジウムと亜鉛化合物からなる
触媒の存在下で一酸化炭素及び二酸化炭素と水素を反応
させることにより有効なメタノール空時収量と高いメタ
ノールへの選択率が得られることを見出し、本発明に至
った。即ち本発明は、有機脂肪酸パラジウム塩から調製
されたパラジウムと亜鉛化合物からなる触媒の存在下で
一酸化炭素及び二酸化炭素と水素を反応させることを特
徴とするメタノールの製造法である。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that carbon monoxide and It has been found that an effective methanol space-time yield and a high selectivity to methanol can be obtained by reacting carbon dioxide with hydrogen, and the present invention has been completed. That is, the present invention is a method for producing methanol, which comprises reacting carbon monoxide and carbon dioxide with hydrogen in the presence of a catalyst composed of a palladium compound prepared from an organic fatty acid palladium salt and a zinc compound.

【0006】[0006]

【発明の実施の形態】本発明の一酸化炭素及び二酸化炭
素と水素を反応させるメタノール合成反応は下式で表す
ことができる。 CO + 2H2 → CH3 OH CO2 + 3H2 → CH3 OH + H2
BEST MODE FOR CARRYING OUT THE INVENTION The methanol synthesis reaction of reacting carbon monoxide and carbon dioxide of the present invention with hydrogen can be represented by the following formula. CO + 2H 2 → CH 3 OH CO 2 + 3H 2 → CH 3 OH + H 2 O

【0007】本発明の触媒調製に用いられる有機脂肪酸
パラジウム塩の例としてはPd(HCOO)2、Pd(C
2 4 ) 、Pd(CH3 COO )2 、 [Pd(NH3 )
4 ](CH3 COO )2 、 [Pd(PPh3 )2 ]
(CH3 COO )2 、Pd(C1735COO )2 、P
d(C6 5 COO )2 等を挙げることができる。これ
らの有機脂肪酸パラジウム塩中で酢酸パラジウムが最も
安価であり、工業的には有利に用いられる。一般にパラ
ジウム触媒の調製には塩化パラジウム等のハロゲン化物
を用いることが多いが、還元時に塩化水素等を生成し、
メタノール生成能を著しく阻害するためにハロゲン元素
を含むパラジウム化合物は使用されない。また本発明の
亜鉛化合物の例としては硝酸亜鉛、酢酸亜鉛、蓚酸亜
鉛、蟻酸亜鉛、炭酸亜鉛、塩基性炭酸亜鉛、酸化亜鉛、
水酸化亜鉛、燐酸亜鉛等を用いることができる。本発明
の触媒のパラジウム含有量に特に制限はないが、0.1
〜20wt%、好ましくは0.5〜10wt%である。
Examples of the organic fatty acid palladium salt used for preparing the catalyst of the present invention include Pd (HCOO) 2 and Pd (C
2 O 4 ), Pd (CH 3 COO) 2 , [Pd (NH 3 )
4] (CH 3 COO) 2 , [Pd (PPh 3) 2]
(CH 3 COO) 2 , Pd (C 17 H 35 COO) 2 , P
can be exemplified d (C 6 H 5 COO) 2 or the like. Of these organic fatty acid palladium salts, palladium acetate is the cheapest and is industrially advantageously used. Generally, a halide such as palladium chloride is often used for the preparation of a palladium catalyst, but hydrogen chloride or the like is generated during reduction,
Palladium compounds containing halogen elements are not used because they significantly impair the ability to generate methanol. Examples of the zinc compound of the present invention include zinc nitrate, zinc acetate, zinc oxalate, zinc formate, zinc carbonate, basic zinc carbonate, zinc oxide,
Zinc hydroxide, zinc phosphate or the like can be used. The palladium content of the catalyst of the present invention is not particularly limited,
-20 wt%, preferably 0.5-10 wt%.

【0008】本発明における触媒の調製方法に特に制限
はなく、混練法、共沈法、含浸法等の様々な方法を用い
ることができる。例えば上記のパラジウム化合物と亜鉛
化合物を湿式混練して調製する方法、パラジウム化合物
と亜鉛化合物の混合溶液を適当な沈澱剤を用いて共沈さ
せる方法等を用いることができる。しかしパラジウムを
有効に利用するためには含浸法によって担持することが
最も好ましい。含浸法による場合にはパラジウム化合物
を適当な分散媒に溶解させ亜鉛化合物に担持させる方
法、パラジウム化合物と亜鉛化合物を溶解させた分散媒
から適当な触媒担体に共含浸させる方法等を用いること
ができる。ここで用いられる分散媒は担持するのに充分
な溶解度が得られるのであれば良く、水、アンモニア
水、酢酸、メタノール、アセトン、テトラヒドロフラ
ン、ベンゼン等や、これらの混合溶液を用いることがで
きる。また触媒担体はメタノールの生成を阻害したり、
生成したメタノールの副次的な反応に触媒活性を示さな
いものであれば特に制限はなく、活性炭、シリカ、α−
アルミナ等を用いることができる。
The method for preparing the catalyst in the present invention is not particularly limited, and various methods such as kneading method, coprecipitation method and impregnation method can be used. For example, a method of wet kneading the palladium compound and the zinc compound, a method of coprecipitating a mixed solution of the palladium compound and the zinc compound with an appropriate precipitant, and the like can be used. However, in order to effectively use palladium, it is most preferable to support it by an impregnation method. In the case of the impregnation method, a method of dissolving a palladium compound in a suitable dispersion medium and supporting it on a zinc compound, a method of co-impregnating a dispersion medium in which a palladium compound and a zinc compound are dissolved into a suitable catalyst carrier, and the like can be used. . Any dispersion medium may be used as long as it has a solubility sufficient to be supported, and water, ammonia water, acetic acid, methanol, acetone, tetrahydrofuran, benzene, or a mixed solution thereof can be used. Also, the catalyst carrier inhibits the production of methanol,
There is no particular limitation as long as it does not show catalytic activity in the secondary reaction of the produced methanol, activated carbon, silica, α-
Alumina or the like can be used.

【0009】本発明の触媒の形状に特に制限はなく、粉
末、粗粒子、打錠成形ペレット、押出成形ペレット等の
形状で使用することができる。本発明の触媒は反応に用
いる前に必要に応じて焼成、還元等の処理を行うことが
望ましい。焼成処理は焼成炉内に静置または流動させ空
気または不活性ガス雰囲気下に200〜600℃の範囲
で処理することが好ましい。還元処理は常法を採用で
き、常温〜500℃の範囲でヒドラジンによる還元、ホ
ルマリン水溶液による還元、水素ガスによる還元等が有
効である。またメタノール合成原料の合成ガスやメタノ
ールによっても還元することができる。本発明における
反応方法としては固体触媒を用いる通常の反応方式であ
れば特に制限はなく、固定床、流動床、懸濁床の状態で
反応に用いることができる。
The shape of the catalyst of the present invention is not particularly limited, and it can be used in the form of powder, coarse particles, tableting pellets, extrusion pellets and the like. It is desirable that the catalyst of the present invention be subjected to treatment such as calcination and reduction, if necessary, before it is used in the reaction. The calcining treatment is preferably performed by standing or flowing in a calcining furnace and treating in the range of 200 to 600 ° C. in air or an inert gas atmosphere. A conventional method can be adopted for the reduction treatment, and reduction with hydrazine, reduction with an aqueous formalin solution, reduction with hydrogen gas, etc. are effective in the range of room temperature to 500 ° C. It can also be reduced by the synthesis gas of methanol synthesis raw material or methanol. The reaction method in the present invention is not particularly limited as long as it is an ordinary reaction method using a solid catalyst, and it can be used for the reaction in a fixed bed, fluidized bed or suspension bed state.

【0010】本発明の反応に用いられる原料ガスは一般
のメタノール合成に用いられる合成ガスであって、一酸
化炭素及び二酸化炭素と水素を含有していれば特に制限
はなく、不活性ガス、メタン等を含んでいても何ら差し
支えない。一般には天然ガスの水蒸気改質やナフサ、石
炭の分解等によって得られたものが用いられる。一酸化
炭素と二酸化炭素からなる酸化炭素類/水素のモル組成
比は、1/50〜50/1の範囲であり、1/10〜1
0/1の範囲であることが好ましい。一酸化炭素及び二
酸化炭素と水素の反応条件は、反応温度について100
〜500℃、好ましくは250〜350℃の範囲、反応
圧力は10〜200気圧、好ましくは40〜100気圧
の範囲、ガス空間速度は102 〜105 hr-1、好まし
くは103 〜5.0×104 hr-1の範囲である。
The raw material gas used in the reaction of the present invention is a synthesis gas used in general methanol synthesis and is not particularly limited as long as it contains carbon monoxide, carbon dioxide and hydrogen, and an inert gas, methane. It does not matter even if it includes etc. Generally, those obtained by steam reforming of natural gas, decomposition of naphtha, coal, etc. are used. The molar composition ratio of carbon oxides / hydrogen composed of carbon monoxide and carbon dioxide is in the range of 1/50 to 50/1, and 1/10 to 1: 1.
It is preferably in the range of 0/1. The reaction conditions of hydrogen with carbon monoxide and carbon dioxide are 100 at the reaction temperature.
To 500 ° C., preferably 250 to 350 ° C., reaction pressure 10 to 200 atm, preferably 40 to 100 atm, gas hourly space velocity 10 2 to 10 5 hr −1 , preferably 10 3 to 5. It is in the range of 0 × 10 4 hr −1 .

【0011】[0011]

【実施例】本発明について以下に実施例、比較例により
具体的に説明するが、本発明はこれらの実施例に制限さ
れるものではない。なお各実施例、比較例において、メ
タノール収率、空時収量および選択率の算出には下式を
用いた。 メタノール収率(%) =メタノール生成速度(mol/hr)×10
0 /{一酸化炭素+二酸化炭素}供給速度(mol/hr) メタノール空時収量(g/L-cat・hr) =メタノール生成速
度(mol/hr)×32.0/触媒容積(ml)×1000 メタノール選択率(%) =メタノール生成速度(mol/hr)×
100 /{一酸化炭素+二酸化炭素}消費速度(mol/hr)
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In each Example and Comparative Example, the following formulas were used to calculate the methanol yield, space-time yield and selectivity. Methanol yield (%) = Methanol production rate (mol / hr) x 10
0 / {Carbon monoxide + carbon dioxide} Supply rate (mol / hr) Methanol space-time yield (g / L-cat · hr) = Methanol production rate (mol / hr) x 32.0 / Catalyst volume (ml) x 1000 Methanol Selectivity (%) = Methanol production rate (mol / hr) ×
100 / {carbon monoxide + carbon dioxide} consumption rate (mol / hr)

【0012】実施例1 市販の粉末状酸化亜鉛 5.99gに酢酸パラジウム0.255gを
アセトン溶液から含浸担持した。得られた粉末を錠剤成
型器でペレット成型した後に粉砕して粒径 0.5〜1.0mm
に整えた。これを水素気流中で 300℃、 3時間還元処理
して2wt%パラジウム担持酸化亜鉛触媒とした。この触媒
2.50g(1.80mL)を SUS製耐圧反応管に充填し反応温度 2
75℃および 300℃、反応圧力 70kg/cm2 の条件下で反応
ガス(CO/CO2/H2/CH4=25/5/69/1vol%)を毎時10リットル
(標準状態換算) で流通させ反応を行った。ガスクロマ
トグラフ分析からメタノールおよびメタンの生成が確認
され、他の生成物は認められなかった。結果を表1に示
す。
Example 1 0.299 g of palladium acetate was impregnated and supported on 5.99 g of commercially available powdered zinc oxide from an acetone solution. The obtained powder is pelletized with a tablet press and then crushed to a particle size of 0.5 to 1.0 mm.
Prepared. This was reduced in a hydrogen stream at 300 ° C. for 3 hours to obtain a 2 wt% palladium-supported zinc oxide catalyst. This catalyst
2.50 g (1.80 mL) was filled in a SUS pressure resistant reaction tube and the reaction temperature was set to 2
75 ° C. and 300 ° C., the reaction pressure 70 kg / cm reactive gas under the conditions of 2 (CO / CO 2 / H 2 / CH 4 = 25/5/69 / 1vol%) per hour 10 l
The reaction was carried out by circulating (converted to standard conditions). Gas chromatographic analysis confirmed the production of methanol and methane, and no other products were observed. The results are shown in Table 1.

【0013】実施例2 市販の粉末状酸化亜鉛 9.60g、酢酸パラジウム 1.06gを
用いて、実施例1と同様にして5wt%パラジウム担持酸化
亜鉛触媒を調製した。この触媒2.43g(1.80mL)を用いて
実施例1と同じ条件で活性試験を行ったところ、メタノ
ールおよびメタンの生成が確認され、他の生成物は認め
られなかった。結果を表1に示す。
Example 2 A 5 wt% palladium-supported zinc oxide catalyst was prepared in the same manner as in Example 1 except that 9.60 g of commercially available powdered zinc oxide and 1.06 g of palladium acetate were used. When an activity test was conducted using 2.43 g (1.80 mL) of this catalyst under the same conditions as in Example 1, production of methanol and methane was confirmed, and other products were not observed. The results are shown in Table 1.

【0014】実施例3 実施例1で調製した触媒 0.86g(0.65mL)を用いて実施例
1と同じ反応条件で活性試験を行ったところ、メタノー
ルおよびメタンの生成が確認され、他の生成物は認めら
れなかった。結果を表1に示す。
Example 3 An activity test was conducted under the same reaction conditions as in Example 1 using 0.86 g (0.65 mL) of the catalyst prepared in Example 1. As a result, formation of methanol and methane was confirmed, and other products were confirmed. Was not recognized. The results are shown in Table 1.

【0015】実施例4 実施例2で調製した触媒 0.85g(0.65mL)を用いて実施例
1と同じ反応条件で活性試験を行ったところ、メタノー
ルおよびメタンの生成が確認され、他の生成物は認めら
れなかった。結果を表1に示す。
Example 4 When 0.85 g (0.65 mL) of the catalyst prepared in Example 2 was used and an activity test was conducted under the same reaction conditions as in Example 1, production of methanol and methane was confirmed and other products were confirmed. Was not recognized. The results are shown in Table 1.

【0016】実施例5 市販の粉末状酸化亜鉛 23.4gに酢酸パラジウム 0.99gを
トルエン溶液から含浸担持した。得られた粉末を 400
℃、 3時間空気焼成し、錠剤成型器でペレット成型した
後に粉砕して粒径 0.5〜1.0mm に整えた。これを水素気
流中で 300℃、3時間還元処理して2wt%パラジウム担持
酸化亜鉛触媒とした。この触媒 2.68g(1.80mL)を用いて
実施例1と同じ条件で活性試験を行ったところ、メタノ
ール及びメタンの生成が確認され、他の生成物は認めら
れなかった。結果を表1に示す。
Example 5 23.4 g of commercially available powdered zinc oxide was impregnated with 0.99 g of palladium acetate from a toluene solution. 400 powder obtained
The mixture was air-calcined at ℃ for 3 hours, pelletized with a tablet molding machine and then pulverized to a particle size of 0.5 to 1.0 mm. This was subjected to reduction treatment in a hydrogen stream at 300 ° C. for 3 hours to obtain a 2 wt% palladium-supported zinc oxide catalyst. When 2.68 g (1.80 mL) of this catalyst was used for the activity test under the same conditions as in Example 1, the production of methanol and methane was confirmed, and no other product was observed. The results are shown in Table 1.

【0017】比較例1 市販の粉末状酸化亜鉛 10.0gに塩化パラジウム0.331gを
希塩酸水溶液から含浸担持した。得られた粉末を実施例
1と同様に処理して2wt%パラジウム担持酸化亜鉛触媒と
した。この触媒 2.50g(1.80mL)を用いて実施例1と同じ
条件で活性試験を行ったところ、メタノールの生成は認
められなかった。
Comparative Example 1 0.31 g of palladium chloride was impregnated and supported on 10.0 g of commercially available powdered zinc oxide from a dilute aqueous hydrochloric acid solution. The obtained powder was treated in the same manner as in Example 1 to obtain a 2 wt% palladium-supported zinc oxide catalyst. When 2.50 g (1.80 mL) of this catalyst was used and an activity test was conducted under the same conditions as in Example 1, formation of methanol was not observed.

【0018】比較例2 市販の粉末状酸化亜鉛 10.0gに塩化パラジウム0.330gを
28wt%のアンモニア水溶液から含浸担持した。得られた
粉末を実施例1と同様に処理して2wt%パラジウム担持酸
化亜鉛触媒とした。この触媒 2.58g(1.80mL)を用いて実
施例1と同じ条件で活性試験を行ったところ、メタノー
ルの生成は認められなかった。
Comparative Example 2 0.330 g of palladium chloride was added to 10.0 g of commercially available powdered zinc oxide.
It was impregnated and supported from a 28 wt% aqueous ammonia solution. The obtained powder was treated in the same manner as in Example 1 to obtain a 2 wt% palladium-supported zinc oxide catalyst. When 2.58 g (1.80 mL) of this catalyst was used and an activity test was conducted under the same conditions as in Example 1, the formation of methanol was not observed.

【0019】[0019]

【表1】 ガス メタノール メタノール 反応温度 空間速度 収率(空時収量) 選択率 ℃ hr-1 %(g/L・hr) % 実施例1 275 5560 5.83(131) 98.3 300 5560 14.7 (331) 98.7 実施例2 275 5560 10.4 (232) 99.2 300 5560 18.1 (404) 98.6 実施例3 275 15400 2.03(130) 94.0 300 15400 6.08(389) 95.4 実施例4 275 15400 4.58(295) 97.0 300 15400 9.69(626) 97.4 実施例5 275 5560 6.16(138) 98.2 300 5560 15.1 (338) 98.4[Table 1] Gas Methanol Methanol Reaction temperature Space velocity Yield (space time yield) Selectivity ° C hr -1 % (g / L · hr)% Example 1 275 5560 5.83 (131) 98.3 300 5560 14 .7 (331) 98.7 Example 2 275 5560 10.4 (232) 99.2 300 5560 18.1 (404) 98.6 Example 3 275 15400 2.03 (130) 94.0 300 154006 .08 (389) 95.4 Example 4 275 15400 4.58 (295) 97.0 300 15400 9.69 (626) 97.4 Example 5 275 5560 6.16 (138) 98.2 300 5560 15 .1 (338) 98.4

【0020】[0020]

【発明の効果】本発明によればパラジウムと廉価な亜鉛
化合物からなる触媒存在下で一酸化炭素及び二酸化炭素
と水素を反応させることにより、70気圧程度の穏やか
な反応条件下で有用なメタノールを高い空時収量と選択
率で得ることができる。
According to the present invention, by reacting carbon monoxide and carbon dioxide with hydrogen in the presence of a catalyst composed of palladium and an inexpensive zinc compound, useful methanol can be produced under mild reaction conditions of about 70 atm. It can be obtained with high space-time yield and selectivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機脂肪酸パラジウム塩から調製されたパ
ラジウムと亜鉛化合物からなる触媒の存在下で一酸化炭
素及び二酸化炭素と水素を反応させることを特徴とする
メタノールの製造法。
1. A method for producing methanol, which comprises reacting carbon monoxide and carbon dioxide with hydrogen in the presence of a catalyst comprising palladium and a zinc compound prepared from an organic fatty acid palladium salt.
【請求項2】酢酸パラジウムを亜鉛化合物に担持して調
製された触媒を用いる請求項1記載のメタノールの製造
法。
2. The method for producing methanol according to claim 1, wherein a catalyst prepared by supporting palladium acetate on a zinc compound is used.
JP8062660A 1996-03-19 1996-03-19 Production of methanol Pending JPH09249595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062660A JPH09249595A (en) 1996-03-19 1996-03-19 Production of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062660A JPH09249595A (en) 1996-03-19 1996-03-19 Production of methanol

Publications (1)

Publication Number Publication Date
JPH09249595A true JPH09249595A (en) 1997-09-22

Family

ID=13206687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062660A Pending JPH09249595A (en) 1996-03-19 1996-03-19 Production of methanol

Country Status (1)

Country Link
JP (1) JPH09249595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371088B1 (en) * 2000-10-30 2003-02-06 한국과학기술연구원 Catalyst for reverse-water-gas-shift reaction
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371088B1 (en) * 2000-10-30 2003-02-06 한국과학기술연구원 Catalyst for reverse-water-gas-shift reaction
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol

Similar Documents

Publication Publication Date Title
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
US4368142A (en) Methanation catalyst
US20120065279A1 (en) Bimetallic mo/co catalyst for producing of alcohols from hydrogen and carbon monoxide containing gas
JPH07108862B2 (en) Process for catalytic production of first alcohol mixture from synthesis gas
US4476250A (en) Catalytic process for the production of methanol
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JP2813770B2 (en) Ethanol production method
JP3328845B2 (en) Hydrogen production method and catalyst used for it
JP2685130B2 (en) Ethanol production method
JPS5953249B2 (en) Production method of aromatic alcohol
JPH05221602A (en) Production of synthesis gas
JPH09249595A (en) Production of methanol
US4826803A (en) Process for the production of a syngas conversion catalyst
JP2005131469A (en) Ethanol/steam reforming catalyst, its manufacturing method and hydrogen manufacturing method
JPH09249594A (en) Production of methanol
JP4163302B2 (en) Method for preparing hydrocarbon reforming catalyst and magnesium oxide molded body for forming catalyst carrier
JPS6113689B2 (en)
US3939191A (en) Process for methanol synthesis
JP3089677B2 (en) How to reduce carbon dioxide with propane
JP3143744B1 (en) Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
EA039032B1 (en) Start-up procedure for a fischer-tropsch process
US5118891A (en) Syngas conversion catalyst, production and use thereof
JPS6045537A (en) Production of oxygen-containing organic compound
JP7332871B2 (en) Methanol production method and methanol production catalyst